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Neurons in the early stages of processing in the primate visual system
ef�ciently encode natural scenes. In previous studies of the chromatic
properties of natural images, the inputs were sampled on a regular array,
with complete color information at every location. However, in the retina
cone photoreceptors with different spectral sensitivities are arranged in
a mosaic. We used an unsupervised neural network model to analyze the
statistical structure of retinal cone mosaic responses to calibrated color
natural images. The second-order statistical dependencies derived from
the covariance matrixof the sensory signals were removed in the �rst stage
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of processing. These decorrelating �lters were similar to type I receptive
�elds in parvo- or konio-cellular LGN in both spatial and chromatic char-
acteristics. In the subsequent stage, the decorrelated signals were linearly
transformed to make the output as statistically independent as possible,
using independent component analysis. The independent component �l-
ters showed luminance selectivity with simple-cell-like receptive �elds,
or had strong color selectivity with large, often double-opponent, recep-
tive �elds, both of which were found in the primary visual cortex (V1).
These results show that the “form” and “color” channels of the early
visual system can be derived from the statistics of sensory signals.

1 Introduction

New algorithms have recently been developed to test the hypothesis that
sensory signals are transformed in the early stages of sensory processing to
reduce the redundancy of the inputs (Barlow, 1961; Field, 1994). The spa-
tial properties of ganglion cells in the retina and thalamocortical neurons
in the lateral geniculate nucleus (LGN) are consistent with algorithms that
use second-order statistics to decorrelate natural scenes (Atick, 1992; Atick
& Redlich, 1993) and the localized and oriented simple cells in the primary
visual cortex (V1) reduce higher-order statistics (Olshausen & Field, 1996;
Bell & Sejnowski, 1997; van Hateren & van der Schaaf, 1998). These stud-
ies used gray-scale natural images. Natural color images have also been
analyzed using RGB inputs (Tailor, Finkel, & Buchsbaum, 2000; Hoyer &
Hyvarinen, 2000) and LMS inputs with the spectral sensitivities of the hu-
man L-, M-, and S-cone photoreceptors (Wachtler, Lee, & Sejnowski, 2001).
In these studies, the images were sampled on a regular grid, with the color
at each location represented as a vector of three elements. In the retina cone
photoreceptors are arranged in a mosaic, with only one cone at each loca-
tion. Thus, chromatic information in the retina is extracted by comparing
the responses of different cone types at different locations, which requires
spatial interaction. This is not the case for RGB or LMS color images, where
the information for chromaticity is fully available at each pixel.

Here, we consider a model that incorporates the cone mosaic found in the
trichromatic foveal region of primates. We adopt a hierarchical model that
consists of a decorrelating stage corresponding to LGN and a subsequent
independent component analysis (ICA) stage corresponding to V1 (Bell &
Sejnowski, 1997). Applyingbiological and computational constraints at each
level of processing allows a better comparison to the properties of neurons
in the early visual system.

2 Methods

2.1 Cone Mosaic Responses. A small cone mosaic patch was used to
model the trichromatic foveal region of the primate retina (see Figure 1). To
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obtain estimates of the cone mosaic responses to natural scenes, we took
natural images using a 3CCD camera and converted them into LMS images
(see the appendix for details). By scanning the data set randomly with the
cone mosaic, 507,904 samples were generated.

2.2 Model.

2.2.1 Computational Goal. We assume that the early stages of visual pro-
cessing are linear,

u D Wx, (2.1)

where x D (x1, . . . , xn)T are the input signals to the visual system (namely,
the cone mosaic responses), W D [w1, . . . , wn]T is a square matrix consisting
of receptive �elds wi, and u D (u1, . . . , un)T is the output, corresponding to
the neural activities (Olshausen & Field, 1996; Bell & Sejnowski, 1997).

The computational goal of the system is assumed to reduce the redun-
dancies or statistical dependencies among the output elements. This coding
scheme is known as minimum entropy coding or factorial coding (Atick,
1992; Field, 1994) and can be implemented by ICA (Bell & Sejnowski, 1995;
Lee, 1998; Girolami, 1999; Hyvarinen, Karhunen, & Oja, 2001).

A linear generative model for the input data x is given by

x D As D s1a1 C ¢ ¢ ¢ C snan , (2.2)

where A D [a1 , . . . , an] is a set of basis functions and s1, . . . , sn are their
coef�cients, called sources or causes. Given sources s that are statistically
independent of each other, equation 2.2 assumes that the input x isgenerated
by a linear mixture of statistically independent causes s. The goal of ICA is
to �nd a matrix W that unmixes x so that u D s, namely, W D A¡1 (up to
permutation and scaling).

The assumption of statistical independence among sources s and the
general evidence of high redundancy in the sensory input x mean that the
basis functions ai introduce statistical dependency in the input. Equation 2.2
means that when a source si is activated (i.e., taking nonzero value), more
than one sensor will concurrently have nonzero values according to the
pattern of ai , which leads to statistical dependency in the sensory signals x.

2.2.2 Hierarchical Implementation. We followed the approach of Bell and
Sejnowski (1997) in decomposing the linear transformation W into decorre-
lation and ICA, WIWZ (see Figure 2): the �rst operator WZ decorrelates the
input x such that the covariance matrix of its output uZ satis�es

huZuZ
Ti D h(WZx)(WZx)Ti D I, (2.3)
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Figure 2: Three-stage model of the early visual system. This is three-layer feed-
forward neural network. The �rst stage corresponds to the photoreceptor layer
in the retina, as shown in Figure 1. The subsequent stages are assumed to reduce
redundancy in the sensory input in a sequential manner.

where I is the identity matrix. This decorrelation normalizing the output
variance is also known as the whitening transformation or zero-phase �lters
(Bell & Sejnowski, 1997). The second operator WI makes the decorrelated
signals WZx to be statistically as independent as possible (ICA for whitened
data). This decomposition is justi�ed as follows. First, the overlap of cone

Figure 1:Facing page. Properties of the input. (a)Cone mosaic model. This is based
on the anatomical data from old world monkeys. It consists of 217 photorecep-
tors of L- (red), M- (green), and S-cone (blue). L- and M-cones are arranged
randomly (Mollon & Bowmaker, 1992), whereas S-cones are arranged regularly
(de Monasterio, McCrane, Newlander, & Schein, 1985; Szel, Diamantstein, &
Rohlich, 1988). The cone ratio is L : M D 1 : 1 (Mollon & Bowmaker, 1992; Bay-
lor et al., 1987),and S-cone occupies about 3% (de Monasterio et al., 1985; Mollon
& Bowmaker, 1992). In this model L : M : S D 112 : 98 : 7. (b) Spectral sensitivi-
ties of cone photoreceptors. Here we used those of human cone photoreceptors
(Stockman & Sharpe, 2000). (c–e) An example of cone mosaic output compared
with RGB and gray-scale natural images. (c) RGB image. (d) Gray-scale im-
age. M-cone responses are shown for reference. Larger responses correspond to
brighter pixels. (e) Cone mosaic responses. The red hexagon shows the window
of the cone mosaic shown in a; thus, the image inside is the response pattern of
the cone mosaic. This image was prepared by concatenating several response
patches of the same cone mosaic. The pixels are arranged in the hexagonal grid
instead of a square grid to mimic the closely packed structure of the retinal cone
mosaic as shown in a. They are generated by averaging fourpixels of square-grid
images with one pixel offset between each row. (f) Examples of natural images.
Sixty-two natural images were used.
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spectral sensitivities (especially between L- and M-cones) produces a strong
correlation between elements of the input, as is the case of gray-scale natural
images. This correlation could be removed as a �rst step toward a statis-
tically independent representation. This operation restricts the solution of
the next stage WI to be in the orthogonal matrix manifold. Second, spatial
properties of receptive �elds of retinal ganglion cells and LGN cells have
been suggested to be explained by decorrelation, using gray-scale data sets
(Atick, 1992; Atick & Redlich, 1993; Bell & Sejnowski, 1997).

2.2.3 Learning Algorithms. WZ is a whitening matrix that satis�es equa-
tion 2.3 with an additional degree of freedom in the choice of whitening
matrix: if WZ is a whitening matrix, UWZ is also a whitening matrix for
arbitrary orthogonal matrices U. Here we assume that the whitening matrix
is symmetric, WZ

T D WZ , which makes it unique. For gray-scale natu-
ral images, this whitening yields a set of zero-phase �lters, which �atten
the spatial-frequency (1/f) spectrum of shift-invariant data and show con-
centric center-surround receptive �eld organization (Atick, 1992; Atick &
Redlich, 1993). Such a matrix can be derived by matrix square root of the in-
verse of the input covariance matrix (Golub & Loan, 1996; Bell & Sejnowski,
1997) or using a more biologically plausible learning algorithm (Atick &
Redlich, 1993). Since both are equivalent, we used the former method for
convenience.

The ICA algorithm we used can be derived using information maximiza-
tion or maximum likelihood estimation (Bell & Sejnowski, 1995; Cardoso,
1997) with the natural gradient (Amari, Cichocki, & Yang, 1996),

DWI / [I ¡ Q (u)u]WI, (2.4)

where Q (u) D ¡ @ log p(u)
@u , p(u) D Pip(ui) is the probability density of u, and

DWI is the change of weights computed iteratively until it converges to
zero. Note that it requires a density model of p(ui). We use the extended
infomax algorithm for ICA that assumes different p(ui)’s for supergaussian
and subgaussian density (Lee, Girolami, & Sejnowski, 1999). Thus, the re-
sults do not require the coef�cients to have sparse distributions, unlike some
previous methods (Olshausen & Field, 1996; Bell & Sejnowski, 1997).

3 Results

3.1 Decorrelating Stage. All units in the decorrelating stage showed
concentric center-surround receptive �eld organization with the center re-
gion driven by a single cone (see Figure 3). Receptive �elds of type I neurons
of parvo- or konio-cellular LGN (pLGN/kLGN) of the macaque have these
properties (Lennie & D’Zmura, 1988; in their review, as in this study, the
properties of retinal ganglion cells were not distinguished from those of
LGN cells). They can be further classi�ed on the basis of the center-driving
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Figure 3: Receptive �elds of the decorrelating stage. Each panel shows a weight-
ing pattern (receptive �eld organization) from cone mosaic to a certain decor-
relating unit. Here we show two examples for each L-, M-, and S-center type.
Bright and dark circles show positive and negative weights; red, green, and blue
colors correspond to weights of L-, M-, and S-cone; and the circle size indicates
the amplitude of the weight.

cone type, leading to three types of units that we refer to as L-center, M-
center, and S-center. All units were classi�ed as color selective unit using
the criterion in Hanazawa, Komatsu, and Murakami (2000): the Color Selec-
tivity Index (CSI) greater than 0.5 (see Figure 4b).1 This matches the lack of
luminance or achromatic units in pLGN/kLGN (Lennie & D’Zmura, 1988;
Hanazawa et al., 2000). Figure 4a illustrates color selectivity pro�les in com-
parison with those of pLGN/kLGN neurons, showing agreement between
the model and the physiological data. Figure 4c is the histogram of their
color tuning directions, segregated in three clusters as in the physiologi-
cal data. The color tuning directions of the L-center and M-center types
were almost completely opposite (¡6.3 § 13.5 and 180.8 § 1.9, respectively).
This is also con�rmed in Figure 4a, where contours of the responses were
aligned in the same orientation but in the reverse order. This indicates that
both the L- and M-center types were responsible for the same r-g channel,

1 (Color Selectivity Index) = [(max response) ¡ (min response)]/[max abs(response)].
In the physiological study of Hanazawa et al. (2000), the response is de�ned by [mean
discharge ratio] ¡ [baseline activity]. Therefore, negative values are possible.
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while the S-center type was responsible for the y-b channel, in the color
opponent stage.

Regarding L-center and M-center type, there was no signi�cant cone-
type speci�city in the receptive �eld organization. In fact, they showed
close similarity to the whitening �lters derived from a single cone-type
cone mosaic (here we used M-cone, and as a result the data are gray-scale):
wZ

TwZgray /kwZkkwZgray k D 0.995 §0.005. This suggests that their receptive
�eld organization is determined mainly by spatial factor, not by cone-type
dependent chromatic factor. This also means that the signi�cant color selec-
tivity of L- and M-center type is mainly due to the weighting ratio between
the center and the surround, itself mainly due to the spatial factor, not the
cone-type speci�c, antagonistic wiring. These results would be reasonable
since the majority of the input signals come from L- and M-cones, of which
spectral sensitivities are highly overlapping. Therefore, the statistics of cone
mosaic data are close to those of gray-scale (only M-cone) data.

S-center type shows S-cone speci�city with larger receptive �elds than L-
and M-center types (see Figure 3). This is consistent with the large dendritic
arborization of the small bistrati�ed retinal ganglion cells, which are distinct
from midget and parasol ganglion cells and belong to the konio-cellular (S-
cone) pathway (Dacey, 2000). Our results show that the S-cone weights in the
surround are inhibitory. This is reasonable since the difference of correlated
signals is oriented along the uncorrelated axis. The larger size of S-center

Figure 4: Facing page. Chromatic properties of the decorrelating stage. (a) Color
selectivity. Model data (upper row) were derived from the same units illustrated
in the lower row of Figure 3. Physiological data (lower row) are of pLGN/kLGN
neurons. This diagram shows the responses of a certain unit to a set of color
stimuli distributed in both MacLeod-Boynton (MB) and CIE 1931 xy (CIE-xy)
chromaticity coordinates. For illustration purposes, a CIE-xy chromaticity dia-
gram was used. Open and �lled circles show positive and negative responses,
respectively; their diameters indicate response amplitudes; C corresponds to
the chromaticity of the color stimuli. It is important to note that all color stimuli
were adjusted to have the same luminance (isoluminant stimuli), and thus any
difference among the responses of a certain unit can be attributed to its color
selectivity. Contours of the responses are also plotted: from thick to thin, 80%,
60%, 40%, and 20% of [maximum response] ¡ [minimum response]. Axes of
color orientations de�ned in MB chromaticity coordinates are shown as well (0,
90, 180, 270 degrees). For the analysis of second-layer units, the stimuli were a
uniform pattern to mimic diffuse light in the physiological experiment. (b) Dis-
tribution of color selectivity index. (c) Distribution of color tuning directions.
This direction is de�ned by the maximum slope of the responses. Physiological
data are of pLGN/kLGN. Color of the histogram is identical to that of b. All
physiological data are from Hanazawa, Komatsu, and Murakami (2000).
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type receptive �elds should be due to the sparse arrangement of S-cone in
the cone mosaic, since in the case of L- and M-center type, the cones next
to the center respond in a highly correlated way to the center cone. While
the S-cone antagonism between the center and the surround is reasonable
from the redundancy reduction point of view, physiological studies showed
only the spatially coextensive yellow-blue cells in retinal ganglion cells
(Dacey, 2000).

3.2 ICA Stage. In the ICA stage, two main types of receptive �elds
emerged (see Figures 5 and 6): the majority (94.9%) of luminance type (achro-
matic, color nonselective) and the others (4.6%) of color-selective type. Note
that this analysis was based on W , not WI.

The luminance unit was similar to those derived using gray-scale sam-
ples, showing simple-cell-like receptive �eld with high spatial-frequency
selectivity (see Figure 5a; Bell & Sejnowski, 1997; van Hateren & van der
Schaaf, 1998). This suggests that the luminance units would represent spa-
tial information (without color). Responses to isoluminant color stimuli are
almost constant (see Figure 6a), and the color selectivity index was less than
0.5 for almost all luminance units (0.28 § 0.14; see Figure 6b), showing low
color selectivity. The low value of this index means that the spectral selec-
tivity was almost identical to the luminosity function Vl,2 consistent with
physiological data from simplecells in V1 (Lennie & D’Zmura, 1988; Lennie,
Krauskopf, & Sclar, 1990).

The color-selective units were characterized by cone-type speci�c antag-
onistic regions in their receptive �eld, and classi�ed into two subtypes: Y/B
type of yellow-blue selectivity and R/G type of red-green selectivity. The

Figure 5: Facing page. Receptive �elds of the ICA stage. (a) Receptive �eld or-
ganization. Here, each panel shows a weighting pattern from cone mosaic to
a certain ICA unit. Two examples for each luminance, Y/B, and R/G type are
shown. The optimal bar stimulus for the units is shown just below each recep-
tive �eld. The optimal bar is de�ned by the bar that maximally matches the
weighting pattern. A set of bars was prepared with 13 width, 1 » 3 length,
and 22 orientation for arbitrary location. To �nd the color-opponent region for
color-selective type, weighting patterns were modi�ed as follows: CL C M ¡ S
for Y/B type; CL ¡ M for R/G type (S-cone is neglected). (b) Basis function.
These are the dual vectors of �lters shown in a.

2 Due to the use of isoluminant color stimuli, the responses of luminosity function to
the color stimuli are identical. The reverse is also true: any spectral sensitivity is written
as the sum of luminosity function and its residual, S (l) D aVl (l) C D(l), and the response
to an isoluminant stimulus i(l) is

R
S(l)i(l)dl D a

R
Vl (l)i(l)dl C

R
D(l)i (l)dl, where

a ´
R

S(l)i(l)dl/
R

Vl (l)i(l)dl and a
R

Vl (l)dl is constant by de�nition. If the left side
is constant over any isoluminant color stimuli, D(l) D 0; thus, S(l) D aVl (l).
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Figure 6: Chromatic properties of the ICA stage. (a) Color selectivity, derived
from the units shown in the middle row of Figure 5a. For physiological data,
see Figure 3A in Hanazawa et al. (2000) for R/G type; data corresponding to
luminance or Y/B unit are not illustrated there, although they were reported. (b)
Distribution of color selectivity index. (c) Distribution of color tuning direction.
Here, those units of which CSI is greater than 0.5 are included in the analysis in
accordance with the physiological study. Color of the histogram is identical to
that of b. All physiological data are taken from Hanazawa et al. (2000).



Information-Theoretic Analyses of Cone Mosaic Responses 409

color selectivity index was much larger than 0.5 (larger than 1) for all color-
selective units (1.43 § 0.16 for Y/B, 1.70 § 0.01 for R/G; see also Figure 6b),
indicating that they are highly color selective. Note that CSI > 1 indicates
the existence of color opponency, which yields positive response to one
color and negative response to another. These color-selective subtypes may
correspond to the two color channels suggested in psychophysical studies
(Lennie & D’Zmura, 1988). However, it does not match the physiological
studies that showed distributed tuning over the color axis (see the right
panel in Figure 6c; see also Figure 2 in De Valois, Cottaris, Elfar, Mahon,
& Wilson, 2000). Most color-selective units showed orientation selectivity.
Although the orientation selectivity of color-selective cells in V1 is contro-
versial (Michael, 1978; Lennie et al., 1990; Conway, 2001; Johnson, Hawken,
& Shapley, 2001), our results suggest that they may be expected in redun-
dancy reduction of cone mosaic responses.

In addition to luminance units and color-selective units, we obtained a
basis function showing a uniform pattern over the cone mosaic, referred to
as the DC unit. Its receptive �eld organization was affected by the boundary
effect. In a previous study, this component was excluded from the analysis
by subtracting the average for each image patch (Hoyer & Hyvarinen, 2000).

Color-selective units had a larger receptive �eld compared to luminance
units: the size of the optimal bar is 4.42 §3.41 (cone size) for luminance units
and 36.30 § 6.73 and 74.62 § 25.52 for Y/B and R/G units. This is consistent
with the low spatial-frequency selectivity of the color mechanism (Mullen,
1985), as expected, since the color information is derived from the compar-
ison between at least two or three types of cones, but there is only a single
cone at each retinal location. Thus, chromatic information requires averag-
ing over several cones, leading to lower spatial-frequency selectivity. Note
also that the percentage of the color-selective units was signi�cantly lower
than that of luminance units, indicating that the dimensionality assigned
for chromatic information is much less than that for luminance information.

Our analysis thus far of properties of receptive �elds wi suggests that
ICA yields two types of units: luminance units responsible for encoding
spatial information without color and color-selective units responsible for
color information without �ne spatial information. We can rewrite the data-
generative model of the cone mosaic responses (see equation 2.2) as

x D
X

i2Form

uiai C
X

j2Color

ujaj , (3.1)

where we assumed that Form consists of luminance and DC units and Color
consists of color-selective units. Recall that the response ui represents the
presence of the basis function ai in the input x. Some examples of the basis
function are shown in Figure 5b. Regarding luminance units, the basis func-
tions show cone-type irrespective edge pattern, exactly as the case of gray-
scale images. Note that even the locations of S-cone are �lled in as if they
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were part of the edge surface, while S-cone scarcely contributes their recep-
tive �eld organization. Regarding color-selective units, the basis functions
show cone-type speci�c patterns, that is, color information. These suggest
that the statistically independent patterns in the cone mosaic responses are
a large number of cone-type unspeci�c edge patterns and a small number of
cone-type speci�c edge patterns, along with a spatially uniform pattern for
each type. In Figure 7, we visualize these different types of information by
separate images (Color is divided into R/G and Y/B for convenience). It is
clear that the form information is extracted by luminance and DC units (see
Figure 7c), and color information is extracted by Y/B (see Figure 7d) and
R/G units (see Figure 7e) from the cone mosaic responses (see Figure 7b).

In this study, all resulting independent components had supergaussian
distributions. When histogram equalization was used as a model for cone
nonlinearity instead of the physiological model (see the appendix), one
subgaussian component emerged whose basis function showed a DC com-
ponent. This is consistent with other studies using gray-scale images (van
Hateren & van der Schaaf, 1998) or LMS images (Wachtler et al., 2001), both
of which applied the logarithm function as the cone nonlinearity.

3.3 PCA Comparison. The cone mosaic responses were also analyzed
by principal component analysis (PCA) to compare the results with those de-
rived from ICA. As shown in Figure 8, PCA yielded nonlocal �lters as in the
case of gray-scale images (Olshausen & Field, 1996; Bell & Sejnowski, 1997).
There were only two components that showed cone-type speci�city; both

showed S-cone speci�city. This means that the spatial variation (variance)

Figure 7: Facing page. Illustration of information content in Luminance, Y/B,
or R/G channel. (a) RGB image. (b) Cone mosaic responses. This is the same
as Figure 1e but for another natural scene. (c) Reconstruction from luminance
and DC units. For each small patch of cone mosaic frame, the image Ox was
reconstructed by Ox D

P
i uiai, where i indicates luminance and DC units. These

patches were tiled over the whole image. (d) Reconstruction from Y/B units.
As in c above, but i indicates Y/B units. We also postprocessed the image to
represent it using pseudocolor: L- and M-cones are regarded as contributing
yellow direction (i.e., R- and G-pixels with like sign; B-pixel with opposite sign);
S-cone is regarded as blue direction (B-pixel with like sign; R- and G-pixels with
opposite sign). To avoid dark pixels, with color hard to see, the base color is set
to be gray. (e) Reconstruction from R/G units. As in d, except that i indicates
R/G units. In postprocessing, L- and S-cones are regarded as contributing red
direction (i.e., R-pixel with like sign, G-pixel with opposite sign); M-cone is
regarded as green direction (G-pixel with like sign; R-pixel with opposite sign).
Any B-pixel is set as 0. As in d, the base color is set gray. (f) Superimposing
luminance, R/G, and Y/B information above to see form and color information
simultaneously.
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common with all cone-type dominates the chromatic variation speci�c for
each cone type (especially for L- and M-cone type). When LMS natural im-
ages are analyzed by PCA, Y/B and R/G components were as common as
black-white components (Ruderman, Cronin, & Chiao, 1998). This demon-
strates that it is not straightforward for the visual system to extract color
information from the cone mosaic responses.



412 E. Doi, T. Inui, T. Lee, T. Wachtler, and T. Sejnowski

Figure 8: Principal components of cone mosaic responses. Here we show the
1st, 5th, 11th, 18th, 25th, and 120th principal component, as indicated for each
panel. Here, cone type is not indicated by color, but otherwise these are the same
illustrations as Figures 3 and 5a. Cone-type speci�city can be seen in only two
units that show S-cone speci�city; the eighteenth component is one of them.
The �rst component is exactly the same as the DC type basis function in the ICA
stage.

4 Discussion

4.1 Multiplexing and Separating Stages. It has been suggested that in
the pLGN/kLGN, luminance information is conveyed with red-green in-
formation in the r-g opponent channel and that these “multiplexed” signals
are “separated” into red-green and luminance information in the follow-
ing stages, possibly in V1 (Ingling & Martinez-Uriegas, 1983; Lennie &
D’Zmura, 1988; Lennie et al., 1990). Our results reproduce this two-stage
model. We emphasize that this is an emergent property derived from re-
dundancy reduction and not put in by hand as in the previous model stud-
ies (Billock, 1991; De Valois & De Valois, 1993; Kingdom & Mullen, 1995).
These results suggest mechanisms by which the visual system could reduce
redundancy in a sequence of stages.

4.2 Learning Visual Information Processing. It ispossible that the color
selectivity properties of neurons in the visual system are the end result of
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evolution, and during development they are implemented without visual
experience. All of the properties of the cells in our model were obtained
with unsupervised algorithms. This suggests that some of the properties
of cells in both pLGN/kLGN and V1 could be acquired by unsupervised
learning during development from visual input. Other properties of cortical
neurons, such as orientation and direction selectivity, depend on the visual
experience during development (Blakemore & Cooper, 1970; Blakemore &
van Sluyters, 1975). Studies of natural scene statistics also support this idea
(Olshausen & Field, 1996; Bell & Sejnowski, 1997; van Hateren & van der
Schaaf, 1998). There are several psychophysical studies investigating the
plasticity of colorvision during development (Teller, 1998;Knoblauch, Vital-
Durand, & Barbur, 2001); however, the physical basis of plasticity in color
vision has not yet been examined. Our results suggest that color selectivity,
like orientation selectivity, may depend on the statistics of sensory signals.
They also suggest that in general, the visual coding of attributes such as
form and color (Livingstone & Hubel, 1988) can be understood as a result
of redundancy reduction.

4.3 Relation to Previous Studies. Other studies applying ICA to RGB
images (Tailor et al., 2000;Hoyer & Hyvarinen, 2000) used spectral sensitivi-
ties unlike those found in the human retina, which precludes direct compar-
isons to physiological or psychophysical data. We used spectral sensitivities
of human cone photoreceptors, enabling us to obtain results under more re-
alistic conditions. A similar approach was used earlier (Wachtler et al., 2001;
Lee, Wachtler, & Sejnowski, 2002), but without sampling of a trichromatic
cone mosaic. We examined the additional constraint that spatial separability
of chromatic signals imposes on the human visual system and found that in
contrast with the results of previous studies, (1) the cone-type speci�cities
for colorvision can be learned under the realistic and dif�cult condition due
to the cone mosaic sampling; (2) the spectral sensitivity of simple-cell-like
units is along the luminance axis, not the black-white axis; (3) the percentage
of luminance (simple-cell like) units is large (>90%), not low (about 1/3);
and (4) the luminance units show higher spatial-frequency selectivity than
color-selective units.

5 Conclusion

The goal of this study was to analyze the cone mosaic responses to natural
scenes and to �nd an ef�cient coding of spatiochromatic signals in the visual
system. Our results suggest that a hierarchical redundancy reduction model
explains the spatiochromatic properties of neurons in the early stages of
processing in the visual system.

Although our model used more realistic inputs than previous approaches
(Tailor, et al., 2000; Hoyer & Hyvarinen, 2000; Wachtler et al., 2001), it still
assumes a linear transformation. Thus, the current model cannot capture
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complex properties such as nonlinear combination of cone signals (De Val-
ois et al., 2000) or contextual interactions (Wachtler, Sejnowski, & Albright,
1999). Our model nevertheless approximates the early processing stages
of the visual system. The similarities between our results and the known
properties of the visual system further strengthen the hypothesis that re-
dundancy reduction is an organizing principle in the visual system.

Appendix: Preparation of Cone Responses to Natural Scenes

Images of 62 natural scenes was obtained using 3CCD digital still camera
system (HC-2500, Fuji�lm, Japan). Each RGB image (1000 £ 1280 pixels, 10
bits for each R, G, B) were corrected for gamma calibration, effect of iris size,
and exposure time. These linear RGB data, of which spectral sensitivities
were also measured, were transformed into LMS cone responses using a 3£3
matrix. This matrix was derived by minimizing square errors for 170 sur-
face re�ectance functions (Vrhel, Gershon, & Iwan, 1994) rendered by four
kinds of CIE daylight functions (D50, D55, D65, and D75). The resulting
errors were 0.23%, 0.14%, and 0.04% for L-, M-, and S-cone, respectively. Its
approximation accuracy was also evaluated by a different set of re�ectance
functions (ColorCheker, Macbeth, U.S.A.), and the estimation errors were
reasonably small as 0.39%, 0.23%, and 0.03% for L-, M-, and S-cone, respec-
tively. These linear cone response data were further transformed with an
empirical cone nonlinear function (Baylor, Nunn, & Schnapf, 1987) given by

rnl D 1 ¡ exp(¡k ¢ rl), (A.1)

where rl is linear cone responses, rnl is nonlinearly transformed cone re-
sponses, the range of which is [0,1], and the parameter k is determined so
that the median of rl is 0.5 for each scene and for each cone type. We did not
apply any preprocessing of the data such as low-pass �ltering (Olshausen
& Field, 1996) or dimensionality reduction using PCA (van Hateren & van
der Schaaf, 1998).
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