NCBI PubMed NLMPubMed
Entrez PubMed Nucleotide Protein Genome Structure OMIM PMC Journals Books
 Search for
  Limits  Preview/Index  History  Clipboard  Details     
About Entrez

Text Version

Entrez PubMed
Overview
Help | FAQ
Tutorial
New/Noteworthy
E-Utilities

PubMed Services
Journals Database
MeSH Database
Single Citation Matcher
Batch Citation Matcher
Clinical Queries
LinkOut
Cubby

Related Resources
Order Documents
NLM Catalog
NLM Gateway
TOXNET
Consumer Health
Clinical Alerts
ClinicalTrials.gov
PubMed Central
 Show: 
1: Neural Comput. 2003 Feb;15(2):397-417. Related Articles, Links
Click here to read 
Spatiochromatic receptive field properties derived from information-theoretic analyses of cone mosaic responses to natural scenes.

Doi E, Inui T, Lee TW, Wachtler T, Sejnowski TJ.

Institute for Neural Computation, University of California, San Diego, La Jolla, CA 92093, USA. edoi@ucsd.edu

Neurons in the early stages of processing in the primate visual system efficiently encode natural scenes. In previous studies of the chromatic properties of natural images, the inputs were sampled on a regular array, with complete color information at every location. However, in the retina cone photoreceptors with different spectral sensitivities are arranged in a mosaic. We used an unsupervised neural network model to analyze the statistical structure of retinal cone mosaic responses to calibrated color natural images. The second-order statistical dependencies derived from the covariance matrix of the sensory signals were removed in the first stage of processing. These decorrelating filters were similar to type I receptive fields in parvo- or konio-cellular LGN in both spatial and chromatic characteristics. In the subsequent stage, the decorrelated signals were linearly transformed to make the output as statistically independent as possible, using independent component analysis. The independent component filters showed luminance selectivity with simple-cell-like receptive fields, or had strong color selectivity with large, often double-opponent, receptive fields, both of which were found in the primary visual cortex (V1). These results show that the "form" and "color" channels of the early visual system can be derived from the statistics of sensory signals.

PMID: 12590812 [PubMed - indexed for MEDLINE]


 Show: