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Pairwise correlations among spike trains recorded in vivo have been fre-
quently reported. It has been argued that correlated activity could play
an important role in the brain, because it efficiently modulates the re-
sponse of a postsynaptic neuron. We show here that a neuron’s output
firing rate critically depends on the higher-order statistics of the input en-
semble. We constructed two statistical models of populations of spiking
neurons that fired with the same rates and had identical pairwise correla-
tions, but differed with regard to the higher-order interactions within the
population. The first ensemble was characterized by clusters of spikes
synchronized over the whole population. In the second ensemble, the
size of spike clusters was, on average, proportional to the pairwise cor-
relation. For both input models, we assessed the role of the size of the
population, the firing rate, and the pairwise correlation on the output
rate of two simple model neurons: a continuous firing-rate model and
a conductance-based leaky integrate-and-fire neuron. An approximation
to the mean output rate of the firing-rate neuron could be derived ana-
lytically with the help of shot noise theory. Interestingly, the essential
features of the mean response of the two neuron models were similar.
For both neuron models, the three input parameters played radically dif-
ferent roles with respect to the postsynaptic firing rate, depending on
the interaction structure of the input. For instance, in the case of an en-
semble with small and distributed spike clusters, the output firing rate
was efficiently controlled by the size of the input population. In addi-
tion to the interaction structure, the ratio of inhibition to excitation was
found to strongly modulate the effect of correlation on the postsynaptic
firing rate.
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1 Introduction

The brain consists of a huge number of neurons that are heavily inter-
connected. These cells interact by producing rapid depolarizations of their
membrane, the action potentials (spikes) that are propagated along the axon
and excite or inhibit postsynaptic neurons by inducing postsynaptic poten-
tials (PSPs). The integration of PSPs can bring the postsynaptic neurons, in
turn, to fire a spike.

Such interactions within the neuronal network lead to temporal corre-
lations between spike trains of different neurons. Pairwise correlations of
spike trains are routinely observed in virtually all regions of the brain. They
have been related to the representation of sensory information (DeCharms
& Merzenich, 1996) and motor behavior (Baker, Spinks, Jackson, & Lemon,
2001), but also to more abstract processing levels (Steinmetz et al., 2000;
Salinas & Sejnowski, 2001). The effect of correlated synaptic input on the
neuronal response has been investigated in several recent theoretical and
numerical studies (Feng & Brown, 2000; Salinas & Sejnowski, 2000; Svirskis
& Rinzel, 2000; Feng & Zhang, 2001; Stroeve & Gielen, 2001). They showed
that temporal correlation can have a tremendous effect on the rate and vari-
ability of the output of model neurons.

Pairwise correlations are generally used to characterize the statistical de-
pendence of parallel spike trains. However, as pointed out, for example, by
Bohte, Spekreijse, and Roelfsema (2000), an ensemble of spike trains is not
completely described by pairwise interactions. Thus, the effect of pairwise
correlation cannot be studied without also taking into account correlations
among three or more spike trains (i.e., higher-order interactions). This point
is illustrated by the following example. Under the general assumption that
only the timing of presynaptic spikes and not their form is important, we
can model series of incoming spikes as point processes (Tuckwell, 1988;
Cox & Isham, 1980). A presynaptic ensemble of N spike trains can then
be thought of as N parallel point processes. We define an interaction as
the occurrence of simultaneous spikes in different spike trains. The inter-
actions can be classified as second, third, . . . , Nth-order, corresponding to
clusters of 2, 3, . . . , N simultaneous spikes. For simplicity, we assume that
the ensemble is homogeneous, that is, the firing rates of all spike trains
are identical and, similarly, the rates of second, third, . . . , Nth-order inter-
actions are identical for any subset of 2, 3, . . . , N spike trains picked from
the ensemble. We now consider a homogeneous ensemble of N parallel
spike trains where all spikes are associated with pairwise (second-order)
interactions: there are no interactions of order 3 or higher, nor are there
isolated spikes, that is, spikes in one spike train without a counterpart in
another one. If κ is the rate of each second-order interaction, the discharge
rate r of an individual spike train is r = (N − 1)κ . The correlation coef-
ficient between two point processes in a homogeneous system is the rate
of interactions with simultaneous spikes on both processes, divided by the
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discharge rate of an individual process (see appendix A). Thus, in the case of
an ensemble with only second-order interactions, the correlation coefficient
is c = 1/(N−1). It is approximately inversely proportional to the number of
presynaptic inputs. For N = 100 correlated spike trains, the correlation co-
efficient will be about 10−2. Stronger pairwise correlations can be obtained
only by introducing higher-order interactions. A single third-order inter-
action (or triplet), for instance, contributes to the pairwise correlations in
three pairs of spike trains, while introducing only one spike per process.
The same second-order interaction is obtained by having one pair of spikes
in each of the three pairs of spike trains. This results in two spikes in each
single process, that is, twice as many as in the triplet case, which results in
a halved correlation coefficient.

In a homogeneous high-dimensional system, certain combinations of
rates and pairwise correlations thus imply the existence of higher-order in-
teractions. Biological neural networks are typically not homogeneous (in
the sense defined above), but very little is known about their actual interac-
tion structure. The assessment of the statistical significance of simultaneous
events across more than two neurons is a nontrivial problem. Different statis-
tical methods have been proposed (Martignon, von Hasseln, Grün, Aertsen,
& Palm, 1995; Martignon et al., 2000; Gütig, Aertsen, & Rotter, 2002).

Here, we report on a study of the effects of higher-order interactions on
the response of model neurons. Specifically, we constructed two different
spike train ensembles and compared their effects on the response of a firing-
rate (FR) neuron model and a conductance-based leaky integrate-and-fire
(IF) model. For both neuron models, we assessed the effects of the pairwise
correlation in the input on the output firing rate of the neuron. Analyti-
cal results were derived for the FR neuron. Preliminary results have been
presented elsewhere (Kuhn, Rotter, & Aertsen, 2002).

2 Two Models for Correlated Neuronal Populations

The realization x(t) of a stochastic point process consists of a sequence of
points in time . . . , tk, tk+1, . . . that can be represented by a pulse train,

x(t) =
∑

k

δ(t − tk),

where δ(t) is the Dirac delta function. To reduce the number of parameters
defining the input ensemble, we model spike trains as parallel Poisson point
processes with homogeneous interaction structures. Moreover, we restrict
our treatment to instantaneous statistical dependence, that is, the interaction
among spike trains originates from simultaneous spikes only.

2.1 Single Interaction Process Model. The single interaction process
(SIP) model was motivated by results of Deppisch et al. (1993) and Bohte
et al. (2000). They simulated a network of integrate-and-fire neurons and
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observed that it could show periods of random looking, unsynchronized
neuronal activities, but also population bursts, with almost all neurons firing
synchronously. The SIP model is defined as follows. First, a single realization
wu(t) of a Poisson process with stationary rate α is generated. Each process
xi(t) in a set of N spike trains is then defined by

xi(t) = wu(t) + wi(t) (i = 1, 2, . . . , N),

where wi(t) is an independent realization of a Poisson process with rate
β. The superposition of independent Poisson processes is again a Poisson
process with a rate equal to the sum of the individual rates (see Cox & Isham,
1980). Thus, the rate of xi(t) is

r = α + β.

Figure 1A shows the realization wu(t) (top) that is copied into each individ-
ual spike train xi(t) (bottom), introducing a statistical dependence between
them. We characterized the statistical dependence between two spike trains
by the count correlation coefficient,

c = α/(α + β).

Note that the ensemble model is completely constrained by the rate r and the
pairwise count correlation coefficient c. The relations α = rc and β = r(1−c)
are used for the numerical simulation of a set of spike trains with given rate
and given pairwise correlation. In the literature, the pairwise dependence is
frequently expressed by the cross-correlation. The cross-correlation function
R(
t) of two spike trains xi(t) and xj(t) is

R(
t) = αδ(
t) + (α + β)2.

A derivation of the cross-correlation function and the count correlation co-
efficient is presented in appendix A.

When using the SIP model as input to a point neuron, all individual
spike trains xi(t) are summed up. The compound process can, in turn, be
decomposed into two independent processes: a Poisson process with rate α,
in which each point accounts for N simultaneous spikes, and a Poisson pro-
cess of rate Nβ, resulting from the sum of all independent realizations wi(t).
The dependence between spike trains in the SIP model is thus described by
a single interaction process (of order N). We can write∑

i
xi(t) =

∑
i

[wu(t) + wi(t)] = Nwu(t) +
∑

i
wi(t).

The decomposition into two independent processes greatly facilitates the
analysis of the neuronal response. This model of correlated spike trains also
appears in Feng and Brown (2000) and Stroeve and Gielen (2001).
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Figure 1: Two models of spike train ensembles with identical rates and pair-
wise correlations but different higher-order statistics. (A) The single interaction
process (SIP) model. Each spike train xi(t) of the ensemble is composed of a
fixed realization wu(t) of a Poisson process with rate α and an independent re-
alization of a Poisson process with rate β. (B) The multiple interaction process
(MIP) model. Each spike train xi(t) is realized by randomly deleting spikes from
a fixed realization wg(t). The generating process is a realization of a Poisson
process with rate γ . (C) Fifty spike trains with a rate of 20 spikes per second and
pairwise correlation coefficient 0.1, generated according to the SIP model. Their
summed activity is shown below (bin size 5 ms). (D) Fifty spike trains with the
same rate and pairwise correlation as in A, but generated according to the MIP
model.
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2.2 Multiple Interaction Process Model. In the second model of a spik-
ing population, the interaction structure is composed of spike clusters in-
volving only subsets of the spike trains. The multiple interaction process
(MIP) model is constructed as follows. Each individual spike train is a
thinned version (Cox & Isham, 1980) of one and the same realization wg(t)
of a Poisson process. Individual spike trains xi(t) are thus produced by
random deletions of pulses in wg(t). The deletions are independent. The
thinning process is repeated for all spike trains in the ensemble. If the rate
of wg(t) is γ and the probability of deletion is (1 − ε), then the rate of each
individual spike train is

r = γ ε.

Figure 1B shows the generating process wg(t) (top) and the resulting cor-
related spike trains x1(t), . . . , xN(t) (bottom). Note that the pulses in each
individual spike train are Poisson (Snyder & Miller, 1991). The count corre-
lation coefficient is

c = ε.

Again, the rate r and correlation coefficient c together completely constrain
the model, and the relations ε = c and γ = r/c are used for the numerical
simulation of the ensemble of spike trains. The cross-correlation function of
any two spike trains xi(t) and xj(t) is

R(
t) = γ ε2δ(
t) + (γ ε)2.

The derivation of the cross-correlation function and the count correlation
coefficient is again given in appendix A.

The sum of the N individual spike trains results in a pulse train similar to
the generating realization wg(t), but with each pulse scaled differently. The
scalar amplitude n represents the number of (synchronous) spikes at this
point in time. As the deletion of a certain pulse in wg(t) occurs with a fixed
probability and is independent for each of the N individual spike trains, the
number n follows a binomial distribution:

n ∼ B(n; ε, N) =
(

N
n

)
εn(1 − ε)N−n.

The scalar n is independent for each point in the compound process. The sum
process can thus be decomposed into N + 1 independent Poisson processes
(Snyder & Miller, 1991), each process containing only points with identical
multiplicity. Such a process is called an interaction process of order n, with
n ∈ {0, 1, . . . , N}. Evidently, the rate of the interaction process of order n is
γ B(n; ε, N).

Figures 1C and 1D show realizations of an ensemble of 50 spike trains,
generated according to the SIP and the MIP model, respectively. In both
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cases, the individual input rate r and the count correlation coefficient c were
identical (r = 20 spikes per second, c = 0.1). The compound activity of all
spike trains is shown below the spike rasters. Although any single spike
train, as well as any pair of spike trains picked from the two ensembles,
would be statistically indistinguishable, the population activity is clearly
different for both models.

3 Results

The effects of both ensemble models were tested on two neuron models. To
reduce the complexity of the input, we first focused on a simplified setting.
We assume the input population to be composed of two subpopulations,
one excitatory and one inhibitory, with the same size and rate of the excita-
tory and the inhibitory populations. The excitatory presynaptic spike trains
were correlated, generated according to the SIP or the MIP model, whereas
the inhibitory presynaptic spike trains were modeled as independent Pois-
son processes. We assessed the influence of the input parameters, and in
particular of the excitatory pairwise correlation, on the mean output rate
of two types of model neurons: the FR neuron and the conductance-based
leaky IF neuron. The output of the FR neuron is represented by a continuous
function of time, the instantaneous firing rate of the neuron, and could be
treated analytically. The response of the IF neuron was studied by means of
numerical simulations. In addition, the latter model was studied for inputs
with different proportions of excitation and inhibition.

3.1 Response of the Firing Rate Neuron. The continuous FR neuron
is widely used in neural network studies. Its membrane potential U(t) is
described by

C
d
dt

U(t) = − 1
R

U(t) + I(t), (3.1)

with C the membrane capacitance, R the membrane resistance, and I(t) the
input current. The membrane potential U(t) is a low-pass version of the
input current I(t). The output firing rate ro(t) of the neuron is given by the
activation function, which is assumed to be an instantaneous function of
the potential. Here, we used the Heaviside step function H(x),

H(x) =
{

0 for x < 0
1 for x ≥ 0.

(3.2)

In this case, the output rate of the neuron is expressed by

ro(t) = KH(U(t) − θ), (3.3)
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where θ represents the threshold and K is a constant with dimension spike
per second. Alternatively, a sigmoidal function is often used as activation
function. In our case, however, we used the step function because it greatly
facilitates the analysis of the neuronal response. Since we are interested
only in the qualitative behavior of the output rate, the constant K will not
be considered any further, and ro(t) will be dimensionless.

An example of the response of the membrane potential U(t) to the input
described above is shown in Figure 2. Synapses were modeled by current
pulses. The PSPs were thus represented by an instantaneous jump of po-
tential (positive or negative, according to the excitatory or inhibitory nature
of the synapse), followed by an exponential decay toward rest, with time
constant τ = RC = 10 ms. Excitatory and inhibitory PSPs had the same ab-
solute amplitude, fixed at a value of 1. The excitatory and inhibitory input
population size was N = 100 in this example, and the individual excitatory
and inhibitory input firing rate was r = 20 spikes per second. The excita-
tory input was modeled by the SIP model (see Figure 2A), or by the MIP
model (see Figure 2B), and the pairwise correlation coefficient was c = 0.4,
in both cases. Observe that for both input models, the membrane poten-
tial shows large depolarizations caused by the occurrence of synchronous
excitatory presynaptic spikes. These depolarizing events had, however, dif-
ferent characteristics for both input models, as we will see in more detail in
the following.

3.1.1 Amplitude Distribution of the Membrane Potential. The probability
density function (pdf) of the amplitude distribution of the membrane poten-
tial is represented in Figure 2 next to sample time courses of the membrane
potential. The histogram is an estimate generated from a 200 s simulation,
with a bin size of 4 (in units of the PSP amplitude). The thick black lines
represent an analytical approximation of part of the pdf. As the output rate
of the FR neuron is an instantaneous function of the membrane potential,
knowledge of the pdf of the potential is sufficient to derive the mean output
rate of the neuron. We now describe the main assumptions made to obtain
the approximation of the pdf; a full derivation for the potential and the
mean output rate is given in appendix B. The approximation of the pdf is
based on the decomposition of the input into independent components (cf.
section 2) and the use of a classical result of shot noise theory. The mem-
brane potential of a FR neuron can be considered as a filtered point process.
Assuming identical synapses, it can be represented by U(t) = ∑

k h(t − tk),
with tk denoting the times of occurrences of synaptic events and h(t) the
impulse response of the filter realized by the synapse and the membrane.
For synapses modeled as current pulses, h(t) is simply the impulse response
of the membrane, given by

h(t) =
{

0 for t < 0

Ae−t/τ for t ≥ 0,
(3.4)
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Figure 2: Time course (left) and probability density function (pdf, right) of the
membrane potential of the firing rate (FR) neuron. The membrane potential is
expressed in units of the PSP amplitude. (A) The excitatory input to the FR
neuron consisted of 100 excitatory spike trains, generated according to the SIP
model (individual firing rate is 20 spikes per second, pairwise correlation 0.4).
The inhibitory input was composed of 100 independent Poisson processes with
a rate of 20 spikes per second. The pdf estimated from a 200 s simulation of
the membrane potential is shown on the right (histogram with a bin width of
4). A segment of the analytical approximation of the pdf (see text) is overlaid
(thick black line). The dotted line indicates the firing threshold. (B) Same input
rate and pairwise correlation as in A, but using the MIP model for excitatory
inputs. (C) Approximation (see text for details) of the membrane potential with
the SIP model as excitatory input. The approximation retained the large fluctu-
ations caused by clusters of synchronous input spikes (compare with A). The
estimated pdf of the approximated membrane potential (from a 200 s simulation
of the approximated membrane potential, bar histogram) matched the analyti-
cally calculated pdf (thick black line, same as in A). (D) Approximation of the
membrane potential using the MIP model for excitatory inputs. Again, the esti-
mated pdf (histogram) matched the analytical expression (thick black line, same
as in B).
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with A being the postsynaptic potential amplitude and τ the membrane
time constant. If the synaptic events follow a Poisson statistics, the filtered
process is called a shot noise (Papoulis, 1991). If the rate of the incoming
events is large compared to the time constant of the filter, the distribution of
membrane potentials is approximately gaussian (see Papoulis, 1991). In the
case of our two input models, however, the interaction structure does not
admit a normal approximation. The right panels in Figures 2A and 2B show
that the membrane potential densities are clearly not gaussian. Gilbert and
Pollak (1960) derived an exact expression for the pdf of a shot noise with
exponential impulse response. They showed that for A = 1 and τ = 1, the
shot noise U(t) with underlying rate of pulses λ = 1, has density

P(U) =
{

e−g for 0 ≤ U < 1
e−g(1 − log U) for 1 ≤ U < 2,

where g = − ∫∞
0 e−t log t dt, Euler’s constant. In fact, the analytic expression

of P(U) changes at U = 1, 2, 3, . . . The expression for a given segment is
derived recurrently from the expression of the preceding segment. The case
with parameters A, τ , and λ arbitrary can be extended from the results of
Gilbert and Pollak (1960) and is shown in appendix B.

3.1.2 Analytic Approximation of Membrane Potential Distribution. What is
the use of this result for the derivation of the membrane potential density of
the FR neuron to the SIP and MIP input models? If the proportions of excita-
tion and inhibition are equal (i.e., the input is balanced), the neuron’s output
firing rate is driven by the fluctuations of the membrane potential above the
threshold. Synchronous clusters of input spikes induce large excursions of
the membrane potential that are likely to constitute the major contribution
to the neuronal output rate. If, in addition, the nonsynchronous input spikes
(excitatory or inhibitory) do not significantly contribute to the membrane
potential excursions, but only to the mean membrane potential level, we
can approximate the membrane potential by the filtered interaction process
(i.e., the process with simultaneous spikes), together with a constant mem-
brane potential offset due to the nonsynchronous input spikes. For the input
with the SIP model, the interaction process has fixed amplitude N and rate
rc, and the nonsynchronous input consists of an excitatory spike train with
rate Nr(1− c) and an inhibitory spike train with rate Nr. The resulting mean
membrane potential offset is given by Campbell’s theorem and amounts to
−Nrcτ (see appendix B). We can write

P(U) ≈ PeN (U + Nrcτ),

where the pdf of the potential response to the SIP model is approximated
by a shifted version of the pdf of the filtered Nth-order interaction process
PeN (U). The latter can be derived on the basis of Gilbert and Pollak’s method.
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The rigorous justification of this approximation is given in appendix B. Fig-
ure 2C shows an example of the time course of the approximated membrane
potential, with the same parameters as in Figure 2A (left panel). Observe
that the small fluctuations caused by the nonsynchronous input spikes dis-
appeared, but their mean level was retained.

A similar approximation can be made for input defined by the MIP
model. To be able to use the shot noise density directly, we make the addi-
tional assumption that the stochastic spike clusters generated by the MIP
model can be approximated by the average cluster; we replace the N + 1
interaction processes of order 0 to N by a single interaction process of order
(amplitude) Nc and rate r/c. The density of the potential response to the
MIP model thereby becomes

P(U) ≈ Pen̄(U + Nrτ),

where Pen̄(U) is the pdf of the filtered average interaction process and −Nrτ
the mean membrane potential offset, caused by the independent inhibitory
input. Again, we refer to appendix B for a complete derivation of this result.
An example of the time course of the approximated membrane potential
response to the input with the MIP model is shown in figure 2D (left panel).

Because of the piecewise expression of the shot noise pdf, the conve-
nience of our approximation depends on the number of segments that must
be taken into account. For a membrane’s impulse response of amplitude A
(see equation 3.4), the expression changes its form at integer multiples of A.
For the SIP model (see Figure 2C, right), the neuron’s response to a synchro-
nized spike cluster has amplitude N. We used the first segment of the pdf,
extending over [−Nrcτ, −N(rcτ −1)[. (We use the conventional mathemati-
cal notation x ∈ [a, b[ to indicate a ≤ x < b.) For the parameter set considered
here, the approximation of the potential holds for U ∈ [−8, 92[ in units of A.
Comparison with the histogram estimated from 200 second simulation of
the approximated membrane potential shows an excellent correspondence.
For the MIP model (see Figure 2D, right), we used the first two segments. As
we reduced the model’s interaction structure to the average spike cluster, the
neuron’s response to a synchronized cluster has amplitude Nc, and the first
two segments cover [−Nrτ, −N(rτ − 2c)[, which corresponds to [−20, 60[.
Note that the change of the analytic form of the pdf can be recognized from
the sharp bend at U = −N(rτ − c) = 20. Again, a numerical estimate from
the simulation of the approximated membrane potential (see the histogram
in Figure 2D, right) shows excellent correspondence. If we now compare
the analytical approximation of the pdf with the pdf estimated from a sim-
ulation of the full input model (Figures 2A and 2B, right), the agreement is
very good. A small discrepancy can be observed only near the lower bound
of the domain considered. There, our approximation neglected the fluctu-
ations due to the nonsynchronous input spikes that spread the membrane
potential around the mean value.
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3.1.3 Mean Response Rate. We can now consider the mean output rate
ro for the FR neuron,

ro ≡ E[(ro(t)] =
∫ ∞

θ

P(U) dU = 1 − Q(θ), (3.5)

where Q(x) = ∫ x
−∞ P(U) dU, the cumulative probability distribution func-

tion of the membrane potential. We thus obtain an approximation of the
mean output rate by integrating over the approximated density, which has
to be known between −∞ and θ . In Figure 2, the threshold θ is represented
by a dotted line and was set to 30. The number of segments of the pdf that
must enter the calculation of ro is thus determined by the value of the in-
put parameters, the threshold, and the membrane time constant. For the SIP
model, an approximation of the mean output rate based on the first segment
of the probability distribution is

ro ≈ 1 −
[

D̃
(

θ

N
+ rcτ

)rcτ 1
rcτ

]
, (3.6)

with D̃ = e−rcτg/�(rcτ), where �(z) = ∫∞
0 tz−1e−tdt is the gamma function.

It is valid for −rcτ ≤ θ/N < −(rcτ − 1). For larger θ , additional segments of
the distribution have to be included. For the MIP model, the approximation
based on the first two segments is given in appendix B in equation B.2.

We used these approximations to study the output rate of the FR neuron
in response to both types of input. The input was described by three param-
eters: the size N of the input population, the rate r of individual inputs, and
the correlation coefficient c between any two individual excitatory inputs.
N and r were identical for the excitatory and the inhibitory populations.
We examined how the input correlation coefficient c influenced the mean
output rate ro of the FR neuron. In addition, we systematically varied N and
r. The results are shown in Figure 3. Analytical approximations are repre-
sented by thick gray lines, and results obtained by numerical simulations
are given by black dots. Figure 3A shows the output rate ro as a function of
the input correlation coefficient c for several input population sizes N = 40,
100, 500, 1000 and a fixed input rate of r = 20 spikes per second. The SIP
model was used as the excitatory input ensemble. For all N, ro increased
monotonically with the correlation coefficient. Indeed, as c grows larger,
the rate of occurrence of simultaneous excitatory input spikes, given by
rc, increases, and membrane potential excursions above threshold become
more frequent, leading to an increase of the mean output rate. Nevertheless,
observe that the overall increase of ro does not scale with N and tends to
saturate rapidly for larger input population sizes. In the limit N → ∞, we
have

ro ≈ 1 − (rcτ)rcτ−1

�(rcτ)
e−rcτg.
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This limit is plotted as a dashed line in Figure 3A. Figure 3B features the
output rate of the FR neuron for identical input conditions, with an interac-
tion structure of the excitatory population generated according to the MIP
model. For small values of c, the response of the FR neuron showed a con-
siderably stronger dependence on the ensemble size than in the SIP model.
For N = 40, for instance, the initial increase of ro was smaller than with the
SIP model. By contrast, for N = 1000, a small input correlation induced a
much larger output rate with the MIP model. For larger N, a further increase
of c led to a decrease of ro. Note that for c = 1, both correlated input models
are statistically identical, and the responses of the FR neuron were thus the
same.

For both the SIP and MIP input models, the analytical approximations of
ro for the FR neuron model were in very good agreement with the simulation
results, showing that the assumptions made were appropriate. As hypoth-
esized, the response of the neuron is driven by the occurrence of excitatory
spike clusters for the largest part of the correlation range. If c approaches 0,
the rate of these synchronous events tends to 0, and the approximate treat-
ment of the SIP model degrades. The reason is that it neglects the contribu-
tion of nonsynchronous excitatory input spikes, the rate of which is Nr(1−c),
increasing for smaller c. This is shown in the inset of Figure 3A, depicting
the output rate of the FR neuron for c = 0.005, 0.01, . . . , 0.1. Whereas the
approximation tends to 0, the neuron response to the full SIP input model
has nonzero values at c = 0, for N = 1000. The success of the approximation
near c = 0 thus critically depends on the values of r and N.

For the response to the MIP model, we limited the approximation to the
first two segments of the pdf and thus could not approximate the response
of the FR neuron over the whole range of c (see Figure 3B). For small correla-
tion coefficients, the size of the mean synchronous spike cluster Nc is small
compared to the threshold, and many segments of the shot noise density
must be taken into consideration. The success of the analytical approxi-
mation here indicates that the stochastic nature of the size of synchronous
clusters does not play a significant role for the mean output rate.

This independence of the stochastic nature of the cluster size allows us to
explain the observed effects in terms of the average cluster. For small values
of c, the rate r/c of the mean cluster is large. The frequent occurrence of
small clusters (with size proportional to c) results in their accumulation in
the membrane potential, which drives the potential above threshold θ (see
Figure 2B) and increases the output rate. Nevertheless, the rate of occurrence
of the synchronous input events decreases with increasing c. The clusters
become larger but less frequent with increasing c. If their mean inter-event
interval (inverse rate) is smaller than the membrane time constant, they do
not accumulate, and the increase of the cluster size cannot compensate for
their less frequent occurrence. For a large input population size, these two
opposing effects result in a non-monotonic dependence of the output rate
on the input correlation (see Figure 3B).
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Figure 3: Mean output of the firing rate (FR) neuron as a function of the pairwise
correlation coefficient in the population of excitatory inputs, for the two statisti-
cal input models. Relative units are used (see text). Thick gray lines are obtained
from analytical approximations (see text); the black dots represent the results of
simulations (duration 500 s each). (A) The excitation was generated according to
the SIP model, and the inhibition was represented by a set of independent Pois-
son processes. Excitatory and inhibitory population size and rate were identical.
The output rate of the FR neuron is shown for different input population sizes
(N = 40, 100, 500, 1000). The individual input rate was held constant (r = 20
spikes per second). The analytically computed output rate of the FR neuron for
infinite population size is plotted as a dashed line. Inset: Zoom-in of the graph
for low pairwise correlation coefficients (0 ≤ c ≤ 0.1). (B) The excitation was
generated according to the MIP model, everything else as in A. (C) Same input
setting as in A, but for a fixed input population size (N = 500) and different
individual input rates (r = 10, 20, 50, 90 spikes per second). (D) The excitation
was generated according to the MIP model. Everything else as in C. Note that
for c = 0 and c = 1, the SIP and the MIP models coincide.

Figure 3C shows the output rate ro for a fixed population size of N = 500
and for different input rates r = 10, 20, 50, 90 spikes per second, with the SIP
model being used as excitatory input ensemble. The output rate ro increased
with increasing c, and more so for larger r. The form of the dependence of ro
on c was more saturating for larger r. The output rate of the FR neuron with
identical input parameters, but using the MIP model as excitatory input, is
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shown in Figure 3D. We observe a distinct difference with the response to
the SIP input, particularly for small input correlations. Here, for small c, an
increase of c leads to a large increase of ro due to the large N. A consecutive
decrease of ro for larger c occurred for small r only. Indeed, for r = 50, 90
spikes per second, the inter-cluster interval did not become small compared
to the membrane time constant.

After having explored the effects of each of the three input parameters,
we now consider how modifications of the FR neuron and, more precisely, of
the membrane time constant τ , the threshold θ of the activation function, and
the form of the activation function could affect these results. With regard
to τ , note that the output rate of the FR neuron with the SIP model (see
equation 3.6) depends only on the product rτ . Thus, an increase (decrease) of
the time constant has the same effect as the proportional increase (decrease)
of the input rate. This is the case for the density function of any shot noise
with exponential kernel (Gilbert & Pollak, 1960). Taking into consideration
that the membrane potential of the FR neuron response (for both the SIP and
the MIP models) can be decomposed into a sum of several elementary shot
noise processes with different amplitudes and rates (see appendix B), it can
be concluded that the equivalence of τ and r is valid for all input parameters
of both input models. An analogous but somewhat weaker statement can be
made concerning the threshold θ of the activation function. The output rate
of the neuron depends only on the quotient θ/N (see equation 3.6). This is
the case for the approximated response to both the SIP and the MIP models
(see appendix B). Thus, as long as the approximation is good, the effect of
an increase of θ is equivalent to the proportional decrease of N.

Finally, we turn to the effects of the form of the activation function. For an
arbitrary function, it would be necessary to know the entire density function
of the potential to be able to derive the mean output rate of the FR neuron.
The piecewise definition of the density function, however, makes it difficult
to derive an approximation of the output rate. Nevertheless, our method
would still be applicable, and an approximation of the neuronal rate could
be derived, if the input clusters had a low rate. Indeed, in this case, the entire
density function is well approximated by the first few segments. Note that
if the activation function was linear, the mean output rate of the FR neuron
would not be sensitive to any aspect of the input statistics other than the
mean input rate, because the mean output of a linear system is determined
by its mean input only. A nonlinear activation function is thus a prerequisite
for the sensitivity of the neuron to input correlations and, a fortiori, to higher-
order statistics. In turn, any sufficiently nonlinear activation function will
result in different mean responses of the FR neuron to both input models.
Indeed, the response potential densities to both the SIP and MIP model are
different, and the mean output rate will typically be different.

3.2 Response of the Integrate-and-Fire Neuron. In order to compare
the effects of different input ensemble statistics under more realistic condi-
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tions, we simulated a conductance-based leaky IF neuron (Tuckwell, 1988;
Koch, 1999). Its membrane potential was (on average) depolarized with
respect to the resting state, and it fluctuated. Its input conductance was
also increased, similarly to what is typically observed in vivo (Paré, Shink,
Gaudreau, Destexhe, & Lang, 1998).

The essential difference to the membrane potential dynamics of the FR
neuron is that synapses here were modeled not as current pulses but as tran-
sient membrane conductance changes. The subthreshold membrane poten-
tial of the IF neuron was described by

C
d
dt

U(t) = 1
R

[Ur − U(t)] + Ge(t)[Ue − U(t)] + Gi(t)[Ui − U(t)].

Ur is the resting membrane potential. Ge(t) and Gi(t) are the excitatory and
inhibitory synaptic conductances, and Ue and Ui are the excitatory and
inhibitory synaptic reversal potentials, respectively. We use ge(t) and gi(t) to
denote the conductance changes elicited by a single excitatory or inhibitory
presynaptic spike. Both excitatory and inhibitory conductance changes were
modeled by an α-function (Koch, 1999; Rotter & Diesmann, 1999),

ge(t) = geate1−atH(t), Ge(t) =
∑

k

ge(t − te
k),

gi(t) = giate1−atH(t), Gi(t) =
∑

k

gi(t − ti
k),

where ge (gi) is the peak excitatory (inhibitory) conductance change, and 1/a
is the time constant of the conductance change. Both types of synapses had
the same time constant. The times te

k and ti
k represent the occurrences of exci-

tatory and inhibitory input spikes, respectively. The voltage-dependent con-
ductances responsible for the action potential generation were not included
in the model. Instead, when the membrane potential reached a threshold Uθ ,
an action potential was generated and the membrane potential was clamped
to a reset value Ureset for a period trefr. In addition, all synaptic currents were
shunted. This latter mechanism modeled the refractory period.

The various model parameter values were chosen to be in line with the
experimental literature (McCormick, Connors, Lighthall, & Prince, 1985):
C = 500 pF, R = 30 M�, Ur = −70 mV, Uθ = −50 mV, Ureset = −60 mV
(Troyer & Miller, 1997), and trefr = 2 ms. The excitatory synapses modeled
fast glutamatergic (AMPA) synapses, and the inhibitory synapses modeled
fast GABAergic (GABAA) synapses. We set Ue = 0 mV and Ui = −70 mV
(Koch, 1999). The time constant of the synaptic conductance changes was
1/a = 1 ms, and the peak conductances were ge = 1 nS and gi = 3.4 nS,
respectively.

3.2.1 Membrane Potential Response. A depolarized membrane potential
was obtained by bombarding the neuron with Poisson spike trains. We
used independent excitatory and inhibitory spike trains whose rates were
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adjusted such that the membrane potential fluctuated around a mean value
of −54.3 mV (Léger, Stern, Aertsen, & Heck, 2002). We used an excitatory rate
of 9000 spikes per second and an inhibitory rate of 5500 spikes per second,
which is equivalent to 9000 independent individual excitatory inputs and
5500 independent individual inhibitory inputs, both with a rate of 1 spike
per second. We refer to this input as background input. The membrane
potential fluctuated with a standard deviation of 1.5 mV, and the model
neuron fired with a rate of 1 spike per second under these conditions. The
excitatory postsynaptic potential (EPSP) or inhibitory postsynaptic potential
(IPSP) produced by an additional excitatory (inhibitory) input spike had,
on average, an amplitude of 0.16 mV (−0.15 mV). This is in accordance
with Matsumura, Chen, Sawaguchi, Kubota, & Fetz (1996), who found that
EPSPs and IPSPs recorded intracellularly in vivo had similar amplitudes and
time courses.

We let two additional populations of excitatory and inhibitory inputs
impinge on the neuron. Both populations had the same size, and the in-
dividual excitatory and inhibitory discharge rates were identical, as with
the FR neuron. The excitatory spike trains were correlated, with parameters
represented by either the SIP or the MIP model; the inhibitory inputs were
always independent. Figure 4A shows a 500 ms realization of the excita-
tory and inhibitory population activity (bottom), with N = 100 and r = 20
spikes per second. Both the input and the IF neuron were simulated with
a time step of 0.1 ms. In the figure, the number of excitatory input spikes
per time step is plotted as a positive integer and the number of inhibitory
input spikes per time step as a negative integer. The SIP model was used for
the excitatory population, and the correlation coefficient was c = 0.1. Note
that the background synaptic input is not shown. The membrane potential
response of the IF neuron is plotted in the upper part of the figure. It fluctu-
ated randomly, characterized by occasional fast depolarizations leading to
an output spike. These were mostly caused by spike clusters involving the
whole correlated excitatory population. Note that the second spike in Fig-
ure 4A was due to the background of independent synaptic input. The same
input parameters were used for Figure 4B, but here the MIP model replaced
the SIP model. The excitatory input activity consisted of a large number of
clusters of smaller size; the output spikes resulted from the summation of
several input clusters. This summation mechanism was rendered stochas-
tic by the background fluctuations of the membrane potential. Due to the
reduced size of the input clusters, the depolarization preceding a response
spike was slower than with the SIP model.

In Figure 4C, we used the SIP model but increased the pairwise correla-
tion coefficient to 0.4. As a consequence, the rate of occurrence of the input
clusters increased, accompanied by a corresponding increase of the output
rate. Figure 4D shows the response of the neuron to the MIP model, with
c = 0.4. The size of the clusters increased compared to c = 0.1 (see Figure 4B),
but their rate of occurrence decreased, as already explained in section 3.1.
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Figure 4: Time course of the membrane potential of the leaky integrate-and-
fire (IF) neuron (top) and the corresponding input (bottom), with the excitation
generated by either the SIP or the MIP model. (A) The excitation was gener-
ated according to the SIP model, with a pairwise correlation coefficient of 0.1;
the inhibition was a population of independent Poisson processes. The input
population size (N = 100) and individual firing rate (r = 20 spikes per second)
were the same for the excitation and the inhibition. The number of excitatory
(inhibitory) input spikes per bin (size 0.1 ms) is plotted as a positive (negative)
number in the lower panel. Note that the additional independent background
inputs that kept the membrane potential in a depolarized state (see text) are not
shown. The dotted line in the upper panel indicates the firing threshold. (B) The
excitation was generated according to the MIP model. The pairwise correlation
and other input parameters were identical to A. (C) The excitation was gener-
ated according to the SIP model, with an excitatory input pairwise correlation
coefficient of 0.4. Other parameters as in A. (D) The excitation was generated ac-
cording to the MIP model. The pairwise correlation and other input parameters
were identical to C.

The output rate was larger than with c = 0.1. However, the clusters were
still not large enough to reliably elicit an output spike individually.

3.2.2 Mean Response Rate. Similarly to the FR neuron, we compared
the response of the IF neuron for the two different input models SIP and



Higher-Order Statistics of Input Ensembles 85

MIP by studying the dependence of the output firing rate on the pairwise
correlation of the excitatory input. In addition, we systematically varied N
and r. Figure 5A shows the output rate ro of the IF neuron to SIP input
as a function of c, for a fixed input rate r = 20 spikes per second, and
for different input population sizes N = 20, 40, 100, 1000. The output rate
slowly increased with the input correlation coefficient. For population sizes
beyond 100, the output rate ro did not increase any further. This behavior
was caused by the membrane potential resetting of the IF neuron. Evidently,
if the input population size is large enough that the depolarizations induced
by an input cluster reach the threshold, a further increase of N has no impact
on the output rate because the rate of occurrence of the input clusters does
not depend on N. In that case, the mean output rate ro of the IF neuron can
thus be approximated by (see Murthy & Fetz, 1994)

ro = ρ(1 − τrefrro), (3.7)

where ρ is the rate of input clusters. For the SIP model, we have ρ = rc. This
approximation is plotted as a thick gray line in Figure 5A and expresses
that the output rate ro is equal to the rate of spike clusters ρ, subtracting
the clusters arriving while the neuron is refractory. Of course, the approx-
imation is not valid if output spikes are (also) caused by the background
bombardment of non-synchronized excitatory spikes (as is the case for c = 0,
for instance).

Figure 5B shows the response of the IF neuron as a function of c but
with the MIP model for the excitation and for r = 20 spikes per second and
N = 20, 40, 100, 300, 500, 1000. For small values of c, the dependence of the
output rate on c was far more strongly modulated than with the SIP model.
For N = 1000, for instance, a small c generated a very large output firing
rate, much larger than with the SIP model. Only for very small populations
(N = 20) was the output rate smaller than with the SIP model, over the
whole range of c (see Figure 5A, inset). For large N, as for the FR neuron,
the dependence of ro on c was non-monotonic. The initial increase of ro
with c was caused by the integration of increasingly large input clusters.
However, when the clusters were large enough that the occurrence of a
single input cluster reliably triggered an output spike, a further increase
of the input correlation was detrimental to the output firing rate. Indeed,
a further increase of c, resulting in even larger input clusters, causes ro to
decrease, because the occurrence rate of clusters decreases with increasing
c. For these larger values of c, the mean output rate ro of the IF neuron
can again be approximated by equation 3.7. We assume that the stochastic
nature of the spike cluster size does not play a role and replace each cluster
by one of average amplitude. The rate of the mean amplitude clusters is r/c.
The approximation given by equation 3.7, with ρ = r/c, is represented as a
thick gray line in Figure 5B. The amplitude of the mean input spike cluster
is proportional to N, and the range of validity of the approximation is larger
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for large values of N. Note that for larger values of ro, the approximation
slightly overestimated the output rate. This is due to the finite rise time of
the conductances used to model the synapses, which allowed synchronized
clusters to impinge on the cell during the depolarization caused by a first
cluster. Such an event happened more frequently at higher rates.

Figure 5C shows the mean output rate of the IF neuron with the SIP
model, for N = 500, and r = 10, 20, 50, 90 spikes per second. N was large
enough so that each input cluster elicited an output spike. The relation be-
tween ro and c depended on r, because the rate of occurrence of the input
clusters is proportional to r. The mean output rate was approximated by
equation 3.7, with ρ = rc (thick gray lines). Again, note that the approxi-
mation is more precise for small values of ro. We replaced the α-function
conductance with a conductance pulse and repeated these simulations. In
that case, the (small) discrepancy between the simulated output rate and
the approximation, observed for larger values of ro, disappeared completely
(data not shown).

The response to exactly the same input parameters, but with the MIP
model instead of the SIP model, is shown in Figure 5D. As N was large, a
non-monotonic dependence of ro on c could be observed. This was the case
for all r. The approximation of the mean output rate ro (see equation 3.7,
ρ = r/c) is plotted as thick gray lines. For the different input rates r, the
left bound of the range of the approximated output rate was chosen as the
value of c producing the maximal output rate in the numerical simulations.
The approximation gave better results for small values of output rates, as
explained above. For large r (50, 90 spikes per second), two local maxima
appeared in the simulation results for the dependence between ro and c. For
the smaller value of c, the interaction structure was thus (locally) optimal
with regard to the generation of output spikes, so that both an increase and
a decrease of c caused a decrease of ro. To first approximation, we can make
the same assumption here as for the response of the FR neuron and explain
this effect in terms of the mean cluster. The mean cluster generated by the
MIP model, for a value of c producing the locally maximal output rate, was
not big enough to depolarize the membrane potential up to the spiking
threshold alone and thus needed support from other inputs. An efficient
arrangement consists of pairs of clusters whose sizes were such that within
the integration time of the membrane, they jointly cause a depolarization
that can just bring the neuron to fire a spike. A pair of larger clusters would
result in the same effect, but it would occur less frequently, as the mean
cluster rate is inversely related to its mean size. Note that the positions of
both peaks are shifted to higher values of c for increasing input rate r. This is
because not only excitation but also inhibition increases with r, necessitating
larger clusters to reach the threshold. Interestingly, this can lead to a non-
monotonic dependence of ro on r. For c around 0.35, for instance, an increase
of the input rate from 50 to 90 spikes per second resulted in a decreased
output rate.
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Figure 5: Mean output rate of the leaky integrate-and-fire (IF) neuron as a func-
tion of the pairwise correlation coefficient of the excitatory input, for the two
different input ensemble statistics. Thick gray lines represent an analytical ap-
proximation of the output firing rate under the assumption of large spike clusters
in the input (see text for details). (A) The excitation was generated according
to the SIP model; the inhibition was a set of independent Poisson processes.
Excitatory and inhibitory population size and rate were identical. The output
rate is shown for different input population sizes (N = 20, 40, 100, 1000) and
constant individual input rate (r = 20 spikes per second). The output rate for
N = 100 and N = 1000 produced undistinguishable curves. The inset compares
the response of the IF neuron for the SIP and the MIP input model as excitation,
for N = 20 and r = 20 spikes per second. It shows that for small population
sizes, the output rate with the SIP model was larger over the whole range of c.
(B) The excitation was generated according to the MIP model. The output rate
is shown for different input population sizes (N = 20, 40, 100, 300, 500, 1000)
and a fixed input rate (r = 20 spikes per second). (C) Same input setting as in
A, for different individual input rates (r = 10, 20, 50, 90 spikes per second) and
a fixed population size (N = 500). (D) The excitation was generated according
to the MIP model. All input parameters as in C. Again, note that for c = 0 and
c = 1 the SIP and the MIP model coincide.
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The input scenarios discussed thus far were composed of equal propor-
tions of excitation and inhibition. The ratio of excitation and inhibition re-
ceived by a cortical neuron in vivo, however, can only be roughly estimated.
Anatomical data suggest that excitation amounts to more than four times
the inhibition (Braitenberg & Schüz, 1998). On the other hand, it has been
argued on the basis of the irregularity of the discharge of cortical neurons
that they operate with equal proportions of excitation and inhibition (van
Vreeswijk & Sompolinsky, 1996; Shadlen & Newsome, 1998). We define the
balance of the input,

b = Niri

Nere
,

where Ne (Ni) is the excitatory (inhibitory) input population size and re (ri)
the firing rate of individual excitatory (inhibitory) input lines. We varied
the input balance of the IF neuron by changing the amount of inhibition
(the product Niri). Note that the same variation of b could be obtained by
changing either Ne or re, not necessarily leading to exactly the same effects.
Figure 6A shows the mean output rate of the IF neuron as a function of
the excitatory pairwise correlation, for different levels of inhibition, using
the SIP model for the excitatory input. The excitation was composed of
Ne = 300 and re = 20 spikes per second. The inhibition was Niri = 0, 1200,
3000, 6000, or 9000 spikes per second, corresponding to b = 0, 0.2, 0.5, 1,
1.5. For low levels of inhibition (b = 0, 0.2, 0.5), the output firing rate for
weak pairwise correlations in the input was much larger than for the bal-
anced input. For these values of b, an increase of c caused a decrease of
the output rate. The occurrence of excitatory clusters of size Ne induced
large depolarizations—larger than actually necessary to reach the spiking
threshold. The excess excitatory spikes hence did not contribute to gen-
erating output spikes, which had a detrimental effect on the output rate.
Observe that for b = 0.5, ro decreased down to a value of 10 spikes per
second at c = 0.45 and increased up to about 20 spikes per second at c = 1.
Thus, the initial decrease of ro, caused by spikes participating in the (too)
large synchronization clusters, could be partially compensated for by the
increased cluster rate. Using more inhibition than excitation (b = 1.5), no
output spikes were produced for independent inputs. Due to the hyper-
polarized membrane potential, the fluctuations of the potential were not
large enough to induce spontaneous spiking. Nevertheless, an increase of
the input correlation and the associated occurrence of synchronized clusters
brought the neuron to fire, with an output rate again tending to the maximal
rate of 20 spikes per second for c = 1. This is shown by the overlap with the
thick gray line, representing the approximation expressed by equation 3.7
(with ρ = rc).

The response of the IF neuron to the same input parameters, but with
the MIP model instead of the SIP model for the excitatory input, is shown
in Figure 6B. We again observe considerable differences with the response
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Figure 6: Mean output rate of the leaky integrate-and-fire (IF) neuron as a func-
tion of the pairwise correlation coefficient of the excitatory input, for the two
different input ensemble statistics, with different ratios of inhibition to excita-
tion. Thick gray lines represent an analytical approximation of the output firing
rate, assuming that output spikes are caused only by large spike clusters in the
input. (A) The excitation was generated according to the SIP model. The exci-
tatory population size was Ne = 300, and the excitatory individual firing rate
was re = 20 spikes per second. The product of the inhibitory population size
and rate was Niri = 0, 1200, 3000, 6000, 9000, corresponding to an input balance
(see text) of b = 0, 0.2, 0.5, 1, 1.5. The response of the IF neuron for b = 1.5 and
b = 1 differed only for very low excitatory input correlations. (B) The excitation
was generated according to the MIP model. All input parameters were identical
to A.

to the SIP input, particularly for small input correlations. At small values
of c, a small increment induced a large increase of ro for b = 1 and 1.5.
For b = 0.2, a small increase of c had little influence on ro, and for b = 0,
ro decreased with c. Small values of c generated small synchronized clus-
ters that could drive the output rate up or down, depending on the net
excitation level. This is because for high inhibition levels, the membrane
potential fluctuates strongly, and an increase of excitatory input synchrony
results in an even higher variance of the membrane potential, leading to
more frequent threshold crossings. By contrast, if the excitation level is
high, the synaptic input, on average, tends to depolarize the neuron above
threshold (see Shadlen & Newsome, 1998). In that case, the summation
of rapidly occurring excitatory spikes is efficient, and synchrony does not
greatly accelerate the depolarization of the membrane potential to thresh-
old. For b = 0.2, ro was initially insensitive to changes in c, because the
loss of spikes in the synchronized clusters was exactly compensated by the
greater efficacy of synchronous input. The degree of input balance at which
this effect occurs depends on the input parameters N and r. For larger c,
as N was large, the effect of synchrony was detrimental for all b values. As
the output spikes were then exclusively caused by clusters of synchronous
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input spikes, the mean response rate was well described by the approxima-
tion expressed by equation 3.7 (with ρ = r/c), plotted as a thick gray line
in Figure 6B.

The interaction structure of the input can thus have a dramatic influence
on the output firing rate. A striking example is given by the response of
the IF neuron for b = 0.5. With the interaction structure of the SIP type,
an increase of c from 0 provoked a decrease of the output firing rate, but
with the MIP model, for the same input balance level, the same increase of
correlation induced an increase of the output rate.

4 Discussion

Individual firing rates and pairwise correlations of a population of neurons
do not determine the ensemble uniquely. We showed that neurons can be
very sensitive to the details of the interaction structure of their input ensem-
bles. Thus, it is difficult to draw any definitive conclusions about the effect
of particular input parameters (like pairwise correlation) on a neuron’s out-
put rate, as long as physiological input ensembles are not characterized
in a more complete manner, in particular, by specifying their higher-order
correlation structure.

4.1 Input Ensemble Statistics. In model studies, it is often assumed that
the total input or the membrane potential can be represented by a process
with a gaussian probability density function (Tuckwell, 1988; Feng & Brown,
2000; Svirskis & Rinzel, 2000). Doing so has the advantage that the statistical
properties of the model can be constrained easily. Nevertheless, as the third
and higher cumulants are forced to be zero, this model is obviously not
suited to study the impact of the full ensemble statistics. As we have shown
in this work, it is crucial to take all moments of the input ensemble into
account.

Several studies have tackled the impact of correlated spike trains on the
output of neuron models. Shadlen and Newsome (1998) and Salinas and
Sejnowski (2000) generated correlated spike trains by simulating neurons
with partial common input. Two sets of inputs were randomly drawn from
a finite pool, resulting in a certain fraction of the inputs being used for
both neurons. This introduces a correlation in the output spike trains of
the two neurons. Such spike trains have broader cross-correlograms, which
is more realistic than the exact synchrony used in this study. However, the
higher-order interactions in such ensembles of spike trains were not consid-
ered. Another drawback is that the ensembles were not defined analytically.
Destexhe and Paré (1999) used correlated synaptic input to reproduce the
neuronal properties observed in vivo. They used Poisson processes as inputs
and introduced stochastic dependence by drawing a smaller number of in-
put processes than there were synapses (similarly to Salinas & Sejnowski,
2000), a single Poisson process being used as input to several synapses.
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Again, the relation between the pairwise correlation and the higher-order
correlation structure was not stated explicitly.

Statistically, the interaction structure of an input ensemble has a large
number of degrees of freedom. We picked two extreme situations. In the
SIP model, all of the doublets of spikes on any pair of spike trains occur
simultaneously, resulting in spike clusters synchronized over the whole
population. In the MIP model, the cluster size is a stochastic variable with a
mean increasing linearly with the pairwise correlation. To realize a pairwise
correlation coefficient identical to the SIP model, the average cluster rate
must be higher than in the SIP model. Some studies used an input ensemble
related to the MIP model (Murthy & Fetz, 1994; Bernander, Koch, & Usher,
1994) in order to investigate the effects of input synchrony. Their input
ensemble differed from ours in that the rate of occurrence of spike clusters
was held constant. As a consequence, they parameterized their ensemble
in terms of the absolute synchrony (the size of spike clusters), and not in
terms of the correlation coefficient. Interestingly, Bernander et al. (1994) also
introduced a temporal jitter of the synchronization and showed that the
precision of the spike correlation can strongly modulate the output firing
rate, depending on the values of the input parameters.

The issue of the ensemble statistics was specifically tackled by Bohte et al.
(2000), who studied an input distribution with maximal entropy. Assuming
homogeneous rates and homogeneous pairwise correlations, they derived
a maximally flat distribution of input clusters. The size of an input cluster
was defined as the number of neurons spiking within a single time bin.
They showed that under the assumption of maximal entropy, spike clusters
involving a large number of neurons already exist for a small pairwise
correlation.

The SIP and MIP models were chosen because they represent two ex-
treme cases of input ensembles. The question arises of how similar they
are to the inputs that a real cortical neuron receives. To date, this ques-
tion remains largely unanswered. Let us mention two lines of research that
could help solve this problem. The first is the massively parallel recording
of multiple single cell activities in vivo (Nicolelis, 1998). Statistical meth-
ods suited to the analysis of the corresponding data are beginning to be
available (Gerstein & Aertsen, 1985; Martignon et al., 1995, 2000; Gütig et
al., 2002). Nevertheless, the pool of neurons forming the actual presynap-
tic input ensemble to a single cortical neuron cannot be inferred from such
studies. Therefore, a second source of answers could come from the detailed
investigation of membrane potential fluctuations gained from intracellu-
lar recordings in vivo (Borg-Graham, Monier, & Frégnac, 1998; Azouz &
Gray, 1999; Léger, Stern, Aertsen, & Heck, 2002). Analysis of membrane
potential fluctuations or their time courses, possibly combined with si-
multaneous recordings from neighboring cells, could help to shed light
on the interaction structure of the input ensembles seen by cortical
neurons.
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4.2 Dependence of Response on Input Ensemble Statistics. We used
the SIP and MIP models of spike train ensembles to describe the excita-
tory input into neurons. The inhibitory inputs were assumed independent
throughout this study. With the SIP model and for a fixed pairwise input
correlation, an increase of the input population size induced only a limited
increase of the output rate for two very different neuron models (see Fig-
ures 3A and 5A). This was true at all input rates and over the entire range of
input correlations. Interestingly, this was the case not only for the IF neuron
but also for the FR neuron, whose membrane potential did not undergo any
reset following a threshold crossing. Probing the model neurons with an
interaction structure generated by the MIP model, we observed that for any
fixed pairwise correlation in the input, the range of output rates obtained
by varying the size of the input ensemble was much larger than with the SIP
model (see Figures 3B and 5B). For small input correlations and in contrast
to what happened with an interaction structure of the SIP type, the output
rate increased steadily with the size of the input ensemble and could thus
attain much larger values.

The most striking difference between the response to both interaction
structures was observed for large input populations. By large, we mean that
an input spike cluster involving the whole population elicits a membrane
depolarization that reaches the firing threshold. With the SIP model, the
rate of spike clusters was proportional to both the individual input rate and
the pairwise correlation. For a large input population, the output rate of
the IF neuron was thus approximately linearly related to these two input
parameters (see Figure 5C). By contrast, with input statistics of the MIP
type, the dependence of the IF response on the input firing rate of a large
input ensemble could be non-monotonic (see Figure 5D).

Note that for the FR neuron, the variance of the membrane potential
was the same with the SIP or the MIP input model. Indeed, the autoco-
variance function (and thereby the variance) of a linear system’s output is
entirely determined by the autocovariance function of its input (Papoulis,
1991). As the autocovariance of the summed input ensemble is given by the
sum of the autocovariances and cross-covariances of the individual spike
trains (both of which were identical for the SIP and the MIP input mod-
els), the autocovariance of the membrane potential is identical for both
input ensembles. Thus, the size of the fluctuations, as measured by the
variance of the membrane potential, does not alone explain the output
rate response, as shown by the very different response of the FR neuron
to both input ensembles (see Figure 3). This also implies that the assump-
tion of a gaussian distribution of the membrane potential, which requires
knowing only the first and second moments of the potential, may fail to
predict the mean response rate. Moreover, it can be easily shown that the
variance of the membrane potential increases (monotonically) with the in-
put pairwise correlation c (see appendix B for the complete expression of
the variance of the membrane potential). Thus, despite an increasing vari-



Higher-Order Statistics of Input Ensembles 93

ance of the membrane potential, the response rate can decrease (see Fig-
ures 3B and 3D), depending on the higher-order interactions of the input
ensemble.

Many of the neuronal response properties investigated here were similar
for both the FR and the IF neuron. The differences could originate from
either the postspike reset mechanism built into the IF neuron or from the
use of conductances to model the synapses. Tiesinga, José, and Sejnowski
(2000) studied the differences in the neuronal response to an uncorrelated
input ensemble when using currents or conductances to model synapses.
In the case of the MIP model, we have previously shown that the mean
output of a continuous FR neuron with reversal potentials can be in very
good correspondence to the output rate observed in an otherwise identical
neuron that included a membrane potential reset mechanism (Kuhn, Rotter,
& Aertsen, 2002).

Hence, depending on the higher-order statistics of the input ensemble,
input parameters can have very different effects on the neuron’s output rate.
We studied the effects of pairwise correlation in the excitatory population
across its entire range from 0 to 1. However, in experimental studies, the
correlation coefficient is rarely found to be larger than 0.1 to 0.2 (Aertsen &
Gerstein, 1985; Das & Gilbert, 1999; Eggermont & Smith, 1995; Nelson, Salin,
Munk, Arzi, & Bullier, 1992). Considering this range of input correlations,
it appears that the two different realizations of input correlations consid-
ered here impose different constraints on the way the neuronal response
can be modulated. If the activity of a presynaptic network is characterized
by the synchronization of large pools of neurons, the neuronal output is
approximately linearly modulated by the input rate. By contrast, if the pop-
ulation activity of the presynaptic network is composed of small, distributed
clusters, the size of the input population constitutes an ideal parameter to
modulate the output firing rate of the postsynaptic neuron over a large
range. The latter case would thereby suggest an operation mode based on
the dynamic recruitment of input lines.

4.3 Balance of Excitation and Inhibition. We changed the mean ratio
of inhibition to excitation of the input (the input balance) and observed that
the effects of pairwise correlation in the excitatory population on the output
rate could be reversed. With the SIP model as excitatory input structure,
the monotonic increase of the output rate as a function of the correlation,
observed for equal proportions of excitation and inhibition, could change
into a monotonically decreasing relation (see Figure 6A). Such modulation
of the relative effect of synchrony by the net excitatory level was also ob-
served with the MIP model as interaction structure for low values of the
input correlation coefficient (see Figure 6B). This detrimental effect of input
synchrony on the postsynaptic firing, at high levels of (net) excitation, has
already been reported (Murthy & Fetz, 1994), albeit with a different input
ensemble (see above).
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Stroeve and Gielen (2001) used an input population identical to the SIP
model and reported that the pairwise correlation of excitation affects the
postsynaptic firing rate only if the inhibitory firing rate is sufficiently high. It
must be pointed out that this statement follows from their particular choice
of input parameters. They used a small input size (N = 120), which was
effectively smaller compared to the input used here because the membrane
potential of their model neuron was not in a depolarized state. As shown
in this study, the effects of input correlation depend strongly on the size
of the population. More important, their input parameters were such that
a compensation effect, similar to what was described for Figure 6B (b =
0.2, c < 0.2), was in effect. This is clearly demonstrated by the irregularity
of inter-spike intervals (Stroeve & Gielen, 2001) that increased with the input
correlation. This shows that the neuron’s firing was increasingly caused by
large, randomly occurring spike clusters. As such input clusters induced
membrane depolarizations beyond the firing threshold, the corresponding
“loss of spikes” had to be compensated for by the increased efficacy of
synchrony.

Hence, as demonstrated in Figure 6B for low input correlation, it is ap-
propriate to consider the net excitation level as a powerful means of modu-
lating the effects of input correlation. This possibility was mentioned earlier
by Salinas and Sejnowski (2000). Finally, we would like to stress that both
input and output investigated here were stationary and that an important
and obvious step toward more realistic conditions would be to study the
impact of nonstationary input ensemble statistics.

Appendix A

In this appendix, we derive the cross-correlation function and count corre-
lation coefficient for pairs of spike trains generated by either the SIP or the
MIP model. Consider a homogeneous Poisson point process x(t) with rate
E[x(t)] = λ. The autocorrelation Rxx(
t) of this process is (Papoulis, 1991)

Rxx(
t) = E[x(t)x(t + 
t)] = λδ(
t) + λ2.

For two independent Poisson point processes x(t) and y(t) with rates λ and
µ, respectively, the cross-correlation function Rxy(
t) is

Rxy(
t) = E[x(t)y(t + 
t)] = λµ.

We now consider dependent processes. Let v(t) and w(t) be defined as

v(t) = x(t) + z(t)

w(t) = y(t) + z(t),

where x(t), y(t), and z(t) are independent homogeneous Poisson processes
with rate λ, µ, and ν, respectively. The cross-correlation function of v(t) and
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w(t) is

Rvw(
t) = Rxy(
t) + Rxz(
t) + Ryz(
t) + Rzz(
t)

= νδ(
t) + ν2 + λν + µν + λµ

= νδ(
t) + (ν + λ)(ν + µ).

The count correlation coefficient for the two point processes v(t) and w(t)
with respect to a fixed observation interval of duration T is defined in terms
of the stochastic variables V and W giving the respective numbers of points
encountered during the observation interval:

cVW = cov(V, W)√
var(V)var(W)

.

For arbitrary point processes, the count correlation coefficient depends in
general on the observation interval. For the two dependent Poisson pro-
cesses v(t) and w(t) considered above, we have in particular

var(V) = var(X) + var(Z)

var(W) = var(Y) + var(Z)

cov(V, W) = var(Z),

with X, Y, and Z the stochastic variables giving the respective numbers of
points in the processes x(t), y(t), and z(t), in the interval considered. For an
observation interval of duration T, we have

var(X) = λT, var(Y) = µT, var(Z) = νT,

and thus obtain

cVW = ν√
(ν + λ)(ν + µ)

.

Note that this is independent of the observation length T. Thus, we may also
simply use the term “pairwise correlation coefficient” for “count correlation
coefficient.” Normalizing the cross-correlation function of the two processes
by the geometric mean of their respective rates, we obtain an expression of
the cross-correlation as a function of the count correlation coefficient,

Rvw(
t)√
(ν + λ)(ν + µ)

= cVWδ(
t) +
√

(ν + λ)(ν + µ).

The count correlation coefficient thus corresponds to the net integral over
the central peak in the (normalized) cross-correlation function.

The general case represented by v(t) and w(t) is now readily applied to
our two models of spike train ensembles. For the SIP model, we have ν = α
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and λ = µ = β. Hence, the cross-correlation function and count correlation
coefficient between any two spike trains are

R(
t) = αδ(
t) + (α + β)2,

c = α

α + β
.

For the MIP model, it holds that the rate of coincident spikes in any pair of
spike trains is ν = γ ε2 and λ = µ = γ ε−γ ε2. The cross-correlation function
and count correlation coefficient thus are

R(
t) = γ ε2δ(
t) + (γ ε)2,

c = ε.

Appendix B

In this appendix, we develop an analytical approximation of the response
of the FR neuron to the two models of spike train ensembles (SIP and MIP).
The FR neuron was described above (see equations 3.1 through 3.3). The
corresponding synaptic input current is described by a stationary stochas-
tic process, and we are interested in the stationary output rate of the neuron.
The knowledge of the stationary membrane potential distribution is suffi-
cient to derive the mean output rate for this particular neuron model (see
equation 3.5). If we use linear synapses and Poisson-driven synaptic events,
the membrane potential is a shot noise. For pulse-like synaptic currents, the
membrane realizes a first-order low-pass filter with time constant τ = RC
(see equation 3.4).

Gilbert and Pollak (1960) derived an integral equation for the shot noise
distribution and solved it for several particular choices of the filter. For the
filter h(t) defined in equation 3.4, with A = 1 and τ = 1, the shot noise
S(t) with underlying rate λ has an amplitude distribution with density P(S)

given by

P(S) = dSλ−1 for 0 ≤ S < 1.

For larger values of S, P(S) is found by recursion from the integral equation,

P(S) = Sλ−1

[
d − λ

∫ S

1
P(x − 1)x−λ dx

]
.

The constant d is given by

d = e−λg

�(λ)
,
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where g = − ∫∞
0 e−t log t dt is Euler’s constant and �(z) = ∫∞

0 tz−1e−t dt is the
gamma function. Thus, the analytic expression of P(S) changes at integer
values of S. For τ arbitrary, the density is easily shown to be

P�(S) =
{

DSλτ−1 for 0 ≤ S < 1

DSλτ−1φ(λτ, S) for 1 ≤ S < 2
(B.1)

where

φ(λτ, S) = 1 −
[(

1
S − 1

)−λτ

F(λτ, λτ, 1 + λτ ; 1 − S)

]
and F is the hypergeometric function

F(a, b, c; z) =
∞∑

k=0

(a)k(b)k

(c)k

zk

k!

with (a)k := a(a + 1) · · · (a + k − 1). The constant D is

D = e−λτg

�(λτ)
.

If λτ = 1, φ(λτ, S) = 1 − log S, and P�(S) simplifies to

P�(S) =
{

e−g for 0 ≤ S < 1
e−g(1 − log S) for 1 ≤ S < 2,

which is the expression presented in Gilbert and Pollak (1960).
We now formulate the approximation of the membrane potential density,

P(U), for correlated excitatory and independent inhibitory input. The neu-
ron’s impulse response h(t) is given explicitly in equation 3.4. We fix the PSP
amplitude at A = 1. Let us first consider the membrane response to the SIP
model. Let Ne (Ni) be the number of excitatory (inhibitory) input spike trains
and re (ri) the rate of each individual excitatory (inhibitory) spike train. The
excitation can be decomposed into two independent Poisson processes (see
section 2.1). Let UeN (t) be the filtered Neth-order interaction process and
Ue1(t) the filtered first-order process. Ui(t) is the filtered inhibitory input
spike train with total rate Niri. Thus, if teN

k , te1
k , and ti

k denote the times of
events in the corresponding pulse trains, we have

UeN (t) =
∑

k

Neh(t − teN
k )

Ue1(t) =
∑

k

h(t − te1
k )

Ui(t) =
∑

k

−h(t − ti
k).
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Note that we chose the same absolute amplitude for the excitatory and
inhibitory synaptic currents. As we are dealing with a linear system, we
have U(t) = UeN (t) + Ue1(t) + Ui(t), and thus P(U) = (PeN ∗ Pe1 ∗ Pi)(U), the
convolution product of the densities of the three independent components.
We now use Campbell’s theorem to obtain the mean and variance of each
density. As

∫
h(t) dt = τ and

∫
h(t)2 dt = τ/2, we have

E(UeN ) = Neατ = Nerecτ, var(UeN ) = N2
e ατ/2 = N2

e recτ/2,

E(Ue1)=Neβτ =Nere(1−c)τ, var(Ue1)=Neβτ/2=Nere(1−c)τ/2,

E(Ui) = −Niriτ, var(Ui) = Niriτ/2.

For a large range of parameters, in particular for large excitatory popula-
tions, we have var(UeN ) � var(Ue1) + var(Ui), and we can approximate the
convolution (Pe1 ∗ Pi)(U) by a Dirac delta function located at E(Ue1 + Ui).
We obtain

P(U) ≈ PeN (U − Nere(1 − c)τ + Niriτ).

The density of the membrane potential response of the FR neuron to the
MIP model is approximated in a similar manner. Let Ue(t) be the filtered
excitatory input. The interacting point processes in the MIP model can be de-
composed into Ne+1 independent interaction processes (see section 2.2). Let
Uen(t) be the filtered nth-order interaction process, with rate B(n; c, Ne)re/c.
The membrane potential of the FR neuron is then given by

U(t) = Ue(t) + Ui(t) =
N∑

n=0

Uen(t) + Ui(t).

The variance of Ue(t) is var(Ue) = Nere(1 − c + cNe)τ/2. If the relation
var(Ue) � var(Ui) holds true, we can approximate Pi(U) by a Dirac delta
function located at E(Ui) and write

P(U) ≈ Pe(U + Niriτ).

In addition, we approximate Ue(t) by Uen̄(t) = Nec
∑

k h(t − ten̄
k ), where ten̄

k
are the times of pulses in the generating process (wg(t); see section 2.2).
Effectively, we let the order of interaction be deterministic and approximate
the N interaction processes by a single process with amplitude E(n) = Nec
and with the same rate re/c as the generating process. We then get

P(U) ≈ Pen̄(U + Niriτ).

The membrane potential density for both input models can thus be approx-
imated by the expression of the shot noise density (see equation B.1), using
a linear variable transformation U = kS − l. We finally obtain

P(U) ≈ 1
k

P�

(
U + l

k

)
,
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with an appropriate choice of k, l, and of the parameters of the density
function P� (see equation B.1). The mean output rate ro of the FR neuron
is then obtained by integrating over the tail of the potential distribution
(see equation 3.5) and is expressed in a piecewise manner too. The first two
terms are

ro ≈



1 − D
1
λτ

(
θ + l

k

)λτ

for −l ≤ θ < k − l

1 − D

 1
λτ

(
θ+l

k

)λτ

−
θ∫

k−l

(
U+l

k

)λτ−1 ( k
U+l−k

)−λτ

·F
(

λτ, λτ, 1 + λτ ; 1 − U + l
k

)

·dU
k

 for k − l ≤ θ < 2k − l.

(B.2)

It remains to fix values for λ, k, and l, in the expressions above, with the
parameters from the input models. For the SIP model, λ = rec, k = Ne,
and l = −Nere(1 − c)τ + Niriτ . For the MIP model, λ = re/c, k = Nec, and
l = Niriτ . Note that if N = Ne = Ni and r = re = ri, the expression (θ + l)/k
simplifies to θ/N + rcτ for the SIP model and to θ/(Nc) + rτ/c for the MIP
model. Hence, the threshold θ and the size of the input population N appear
only as the ratio θ/N.
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