
P1: FHB/SPH P2: FHB/SPH QC: FHB/SPH T1: FHB

LE061-23 LE061/Kaernbach-v1.cls April 16, 2003 16:58

IV

Neural and
Representational Models

411



P1: FHB/SPH P2: FHB/SPH QC: FHB/SPH T1: FHB

LE061-23 LE061/Kaernbach-v1.cls April 16, 2003 16:58

412



P1: FHB/SPH P2: FHB/SPH QC: FHB/SPH T1: FHB

LE061-23 LE061/Kaernbach-v1.cls April 16, 2003 16:58

Guest Editorial

Ad Aertsen
Albert-Ludwigs Universität Freiburg, Germany

A model is an attempt to capture the essence of things. Hence, as a rule, a model
strives to be as simple as possible, admitting complexity only as necessary. This is
a very sensible rule, in fact. Approaches that disregard it tend to produce a muddle
rather than a model—an insight I owe to Valentino Braitenberg. Thus, we generally
use models as simplified versions of reality. They summarize our knowledge from
previous experiments, allow us to make predictions to be tested in new experiments,
and, above all, they enable us to make a conceptual interpretation of our results
and insights.

The brain is an enormously complex system. The total number of possible
states in a network comprising some 1011 neurons is exceedingly large. In fact,
only a vanishing fraction of them will actually occur during a lifetime. This com-
plexity has important strategic implications, both for experimental and theoretical
approaches to brain function. In such a system, we cannot expect that the under-
lying principles will simply pop out from merely observing the neuronal activity
during an experiment. A formal theory is needed to work out testable predictions
regarding the functioning of the system. These predictions, in turn, lead to the
design of new experiments that can critically test the theory. At the same time, a
theory of such complex and only partially observable system must incorporate the
relevant biological constraints. Otherwise, it runs the danger of degenerating into
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a sterile formal game. Thus a close interaction of experiment and theory provides
the optimal research strategy to make substantial progress in brain research.

Ideas on possible principles of brain function may well be formulated on the
basis of common sense. At the level of neuronal activity, however, this approach
is often misleading, or even incorrect. A serious discourse on brain function could
develop only several decades ago, after researchers attempted to abstractly define
and actually mimic “intelligent behavior” in terms of models and simulated these
on electronic computers. This started a new process of scientific inquiry in areas
such as artificial intelligence, cognitive science, and computational neuroscience
that, in turn, served as a rich source of inspiration for brain theoreticians. At the
same time, insights and findings from brain research provided useful ideas for the
understanding of complex artificial systems as studied in engineering and computer
science. Thus, in our experience, the conceptual connections among modern brain
science and physics, mathematics, and computer science are the most exciting and
fruitful ones.

The new field of computational neuroscience presents a good case in point. A
recent special issue of the journal Nature Neuroscience states that “Perhaps the
most exciting and difficult challenge currently facing biological scientists is to un-
derstand how complex biological systems work. These systems exist at all levels
of organization, from the genetic determinants of protein structure to the complex
interplay of individual neurons in orchestrating behavior.” In response to this chal-
lenge, computational neuroscience was developed “to provide a solid theoretical
foundation and a set of technological approaches, aimed to enhance our under-
standing of nervous system function by providing modeling tools that describe
and transcend these many different levels of organization” (National Institute of
Health, 2000, p. 1161).

The issue we are dealing with here—understanding human brain function—is
quite formidable, indeed. The brain enables us to actively interact with our environ-
ment. Speed, fault tolerance, adaptivity, and creativity characterize normal brain
operation and ultimately guarantee that we successfully master our daily lives. The
combination of these various properties is unprecedented among current technical
systems. The neural networks of the brain have to integrate a steady stream of
sensory inputs with previously stored experiences. Likewise, they must produce a
continuous flow of output commands to control behavior that, in turn, influences
sensory perception. Many of the associated brain processes run in parallel and are
distributed over multiple brain areas, giving rise to fast and well-coordinated tran-
sients of neural activity. Thus, the brain represents a complex and high-dimensional
dynamical system, the function of which can be fully understood only in its be-
havioral context.

Ever since the times of Sherrington (1941) and Hebb (1949), neurobiologists
have pursued the notion that neurons do not act in isolation, but rather that they
organize into assemblies for the various computational tasks involved in organiz-
ing meaningful behavior (see also James, 1890, for an early formulation of this
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concept). Over the years, different definitions of “neural assembly” have been
proposed, each implying different functions and properties. Some of these were
phrased in terms of anatomy, others in terms of shared function or shared stimulus
response (see Gerstein, Bedenbaugh, & Aertsen, 1989, for a review, with many ref-
erences to the original literature). One operational definition for the cell assembly
has been particularly influential: near-simultaneity or some other specific timing
relation in the firing of the participating neurons. As, for instance, elaborated in the
concept of the “synfire chain” (Abeles, 1991), the synaptic influence of multiple
neurons converging onto others in the cortical network is much stronger if they
fire in (near-)coincidence (Diesmann, Gewaltig, & Aertsen, 1999). Thus, temporal
coherence or synchronous firing, postulated as a mechanism for perceptual integra-
tion (Hebb, 1949), is in fact directly available to the brain as a potential neural code
(Johannesma, Aertsen, van den Boogaard, Eggermont, & Epping, 1986; Perkel &
Bullock, 1968).

The notion that the functional organization of the cortex is based on interac-
tions within and among groups of cells in large neural networks is supported by the
anatomical structure and, in particular, by the massive connectivity of this part of
the brain (Braitenberg & Schüz, 1991). Until recently, however, few physiological
data have directly addressed the cell assembly hypothesis. Neither the study of
global activity in large populations of neurons, nor the recording of single-neuron
activity allows for a critical test of this concept. Rather, one seeks to observe the
activities of many separate neurons simultaneously, preferably in awake, behaving
animals, and to analyze these multiple single-neuron activities for possible signs
of (dynamic) interactions between them. Results of such analyses are then used
to draw inferencs regarding the processes taking place within and between hy-
pothetical cell assemblies. Thus, in recent years, it has become possible to study
directly various phenomena associated with neuronal assemblies. The salient re-
sult of these direct assembly observations has been that the neuronal interaction
structure and, hence, the membership and internal organization of the observed
assemblies depend on stimulus—and behavioral context, exhibiting systematic
dynamic changes on several different time scales, with time constants down to the
millisecond range. (see Aertsen, Erb, & Palm, 1994, for a review and discussion
on possible mechanisms involved).

These modulations of functional inter-neuron coupling form an interesting and
novel feature of cortical network organization. In particular, they are the signature
of an ongoing process of dynamical and activity-related “linking” and “unlinking”
of neurons into modifyible, coherent groups. This process may have interesting
functional implications at different levels of observation. At the single-neuron
level, it may explain how even little specificity in anatomical connections could be
dynamically sorted out to yield the complex functional properties that have been
observed for cortical neurons. Thus, it might provide a natural mechanism for the
physiologically measured context-dependence and intrinsic dynamics of receptive
fields in central sensory neurons. At the multiple-neuron level, dynamic coupling
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may account for coherence variations in a spatially distributed neural code. Several
phenomena in neocortical activity point at possible candidates for such distributed
codes. One example is the observation of stimulus-specific oscillatory events in
the visual cortex, with coherence properties that may extend over wide ranges of
cortex (reviewed in Singer, 1999). A second is the relative exuberance of highly
accurate and behavior-related spatio—temporal spike patterns in cortical activity,
pointing at the presence of “synfire reverberations” (Prut et al., 1998). Finally, at
the level of the organization of perception and action, modulation of functional
coupling in interconnected neural networks may provide a mechanism for the
selection and successive ignition of neural assemblies within and across such
networks. Spatio-temporal variation of input activity, carried onto target networks
by divergent-convergent projections, could effectively modulate the activity levels
in these networks (Kuhn, Rotter, & Aertsen, 2003) and, hence, provide the means to
select and dynamically switch from activation of one cell assembly to the next. Such
“threshold control’-like (Braitenberg, 1978; Palm, 1982) mechanisms, possibly in
combination with learning by means of spike-time-dependent synaptic plasticity
(Bi & Poo, 2001) have, in fact, been proposed to implement the flexible generation
of Hebbian “phase sequences” (Hebb, 1949) of cell assemblies and the dynamic
flow of neural information associated with them (Aertsen et al., 1994; Salinas &
Sejnowski, 2001).

In summary, the highly dynamic interplay of activity and connectivity in the
cortical network gives rise to an ongoing process of rapid functional reorgani-
zation. Everchanging groups of neurons, each one recruited for brief periods of
time, become co-activated and again de-activated, following each other in rapid
succession. It is our conjecture that this dynamic reorganization provides the neu-
ral substrate to implement the computations involved in “higher brain function,”
including our capacity to perceive, to behave, and to learn.

The various contributions to this section on neural and representational models
are firmly rooted in these recent developments in neuroscience. This holds, in par-
ticular, for Grossberg’s perspective of “the complementary brain” and its relation
to neural dynamics (chap. 19, this volume). Here, the author presents a readable
account of his ambitious proposal for a neural-dynamics-based implementation
of the classical view that the external world is paralleled by an appropriate inter-
nal representation in the brain (e.g., Craik, 1943; McCulloch, 1965). Unlike the
classical view of computer-inspired collections of independent black boxes, how-
ever, his approach makes effective use of the emerging properties of a complex
dynamical system of interacting feedforward and feedback processing streams.
Much in the same vein, Kompass (chap. 20, this volume) addresses the temporal
structure of human perception and cognition in terms of neural network dynamics.
His contribution makes a case for a discrete mental time frame with an atomic
unit of approximately 4.5 ms, and relates this temporal organization with the syn-
chronization dynamics in Abelesian synfire chain networks. Leeuwenberg, finally,
takes a more abstract view in his exploration of “structual information theory” as a
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formal vehicle to represent the perception of visual form (chap. 21, this volume).
Here, the relation to a possible neuronal implementation scheme is neither sought
nor is it obvious from the mathematical formalism. Thus, the intrigued reader with
a background in biology is provided with the interesting challenge of working out
a biologically feasible realization of this mathematical elegance.

With these contributions in a book on psychophysics beyond sensation we have
truly come a long way from the view that “psychophysics is the scientific discipline
that studies phenomena which cease to be interesting once you clearly perceive
them” (a view prevalent at the time I started out as a student in neuroscience).
At the same time, the chapters you are about to read underline another important
development, that of “models beyond boxology”. Biological and mathematical
sophistication have matured to the extent that we can truly hope that a moderately
realistic model of brain function is within reach. Whether that model (or—more
likely—a collection of models) is ultimately correct is less important than that it
is inspiring and capable of organizing our theoretical and experimental endeavors.
Certainly, one criterion should be firmly kept in mind: The models we develop
should preferably outqualify Salman Rushdie’s M2C2Ds for P2C2E (“machines
too complicated to describe” to control “processes too complicated to explain”)
(Rushdie, 1991). The proof of the present pudding is left as an exercise to the
reader.
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