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In order to detect members of a functional group (cell assembly) in si-
multaneously recorded neuronal spiking activity, we adopted the widely
used operational de�nition that membership in a common assembly is
expressed in near-simultaneous spike activity. Unitary event analysis, a
statistical method to detect the signi�cant occurrence of coincident spik-
ing activity in stationary data, was recently developed (see the com-
panion article in this issue). The technique for the detection of uni-
tary events is based on the assumption that the underlying processes
are stationary in time. This requirement, however, is usually not ful-
�lled in neuronal data. Here we describe a method that properly nor-
malizes for changes of rate: the unitary events by moving window anal-
ysis (UEMWA). Analysis for unitary events is performed separately in
overlapping time segments by sliding a window of constant width along
the data. In each window, stationarity is assumed. Performance and sen-
sitivity are demonstrated by use of simulated spike trains of indepen-
dently �ring neurons, into which coincident events are inserted. If corti-
cal neurons organize dynamically into functional groups, the occurrence
of near-simultaneous spike activity should be time varying and related
to behavior and stimuli. UEMWA also accounts for these potentially in-
teresting nonstationarities and allows locating them in time. The poten-
tial of the new method is illustrated by results from multiple single-unit
recordings from frontal and motor cortical areas in awake, behaving mon-
key.
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1 Introduction

In the companion article in this issue, unitary event analysis was introduced
to detect a certain type of statistical dependency in the spiking activities of
simultaneously recorded neurons: near-coincident spike constellations that
occur more often than expected on the basis of independent �ring rates.
In the literature, such events are discussed as signatures of coherent cell
assemblies, considered to be the building blocks of cortical processing (see
the companion article for references). Unitary event analysis as described
in the companion article was based on the assumption that the underlying
processes are stationary. Typically, however, experimental data show mod-
ulations in �ring rates. In fact, often stimuli are manipulated to enhance
these “responses.” In this article, we describe an extension of the stationary
method, unitary events by moving window analysis (UEMWA), speci�cally
designed to enable an application to nonstationary data.

After introducing and describing the method in detail (section 2), we
illustrate its performance and discuss its sensitivity using simulated spike
sequences under different scenarios of nonstationarities in �ring rate and
nonstationarities in coincidence rate, on the same and on different timescales
(section 3). Two experimental data sets from frontal and motor cortical
recordings are used to illustrate the occurrence of unitary events in neu-
ronal data and their relation to behavioral context (section 4). In section 5,
we concentrate on practical aspects of the application of our new method.
An assessment of the problems of false positives and false negatives is fol-
lowed by guidelines for proper choice of analysis parameters.

2 Detecting Unitary Events by Moving Windows Analysis

The task is to develop a method that allows the detection of unitary events
in nonstationary spike data. The basic idea is to segment the data into sec-
tions over which stationarity can be assumed and analyze the data in these
sections separately by the method developed in the companion article for
the stationary situation. Here, we construct a procedure in which a time
window of width Tw is slid along the data, and unitary event analysis is
performed separately at each window position, de�ning slightly different
rate environments (an alternative approach is described in appendix D and
discussed in section 5). The moving window has to be narrow enough such
that the �ring rates can be assumed to be stationary and at the same time
long enough to obtain suf�cient statistics. It turns out that a third criterion,
the time-dependent rate of the spike coincidences to be detected, also in-
�uences the optimal choice of the analysis window size. In this section, we
describe the procedure sketched above in detail and work out its statistical
interpretation, using the results of the companion article.

Peristimulus time histograms (PSTHs) of spike data from motor and
frontal cortical areas show that �ring rates are usually suf�ciently station-
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ary (cf. section 4, Figures 6 and 7) over time windows on the order of 50 to
100 ms. However, considering a rate level of 1 to 50 s¡1, we expect only 0.1
to 5.0 spikes in a single window. Clearly, these numbers are too low for a sta-
tistical comparison of the numbers of expected and observed coincidences.
An important assumption of the PSTH is that �ring rates are stationary
across trials, and, thus, the average over trials allows computing a reliable
estimate of the �ring rate at any point in time. Using this assumption, the
set of trials performed for a particular experimental condition can be com-
bined to overcome the problem of the low numbers of counts stated above.
Figure 1 illustrates how the data of all available trials are used to construct a
new process. For a time window centered at ti, the data from the M trials are
concatenated to form a new set of parallel spike trains of length M ¢ Tw. Let
vj(t) be the parallel (0, 1)-process (see the companion article) describing the
neuronal spike data of trial j. In this article, all variables representing time
are in units of the temporal resolution h of vj. In these units, the window
width is an odd integer,

Tw D (2n C 1), n 2 f0, 1, 2, . . .g. (2.1)

The new parallel process v on the new time axes t0 is given by

v(t0 ) D vj (t) (2.2)

with

t0 D ( j ¡ 1) ¢ Tw C t ¡
³

ti ¡ 1
2

(Tw ¡ 1)
´

(2.3)

where

t 2
»

ti ¡ 1
2

(Tw ¡ 1) , . . . , ti C
1
2

(Tw ¡ 1)
¼

(2.4)

j 2 f1, . . . , Mg. (2.5)

The stationary unitary event analysis is then performed on these new
parallel spike trains. It can be summarized as follows. The average �r-
ing probabilities of the processes within the time window determine the
expected number of coincidences—the empirical number of coincidences
results from a counting process within the window over all trials. The sig-
ni�cance for excess (or lacking) coincidences is evaluated by comparing the
expected and empirical numbers using the joint-surprise measure, a loga-
rithmic transform of the joint-p-value. The latter expresses the probability
of observing the empirical number of coincidences by chance, under the
null-hypothesis of independent Poisson processes. The full data set is an-
alyzed by successively moving the time window from one position ti to
the next (usually in steps of one bin) and repeating the procedure sketched
above.
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Figure 1: Sketch of the moving window analysis. (A) Parallel spike trains of �ve
neurons (spikes marked as dots) for several repetitions 1, 2, . . . , M (trials) of the
same experiment. A window of width Tw centered at a given point in time ti

de�nes the segment of the data (shaded in gray), which enters the analysis at ti.
(B) From the data in each such time segment, a new time axis t0 is constructed
by concatenating the windows from all trials. Unitary events analysis is then
performed on this new process. The full data set is analyzed by successively
moving the window to the next point in time and repeating the above procedure
(indicated by dashing). Typically, the window is shifted in steps of the time
resolution of the spike data.

3 Dependence of Signi�cance on Spike Rates

In this section we describe the performance of the UEMWA method under
different conditions, including various time courses of the �ring rates and
the coincident rate. Special emphasis will be put on the width of the analysis
time window, which sets detectability limits. After introducing a common
theoretical framework, we discuss stationary and nonstationary rates. We
�rst formulate a thought experiment in which we analytically describe the
variables of the processes as expectation values. This will serve as a de-
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scription of the average realization. Theoretical results will be illustrated by
actual realizations in the form of simulated data.

3.1 Description of the Performance Test. For convenience we will re-
strict our considerations to two processes, both having the same rates. The
results, however, are easily extended for N > 2 processes and for differing
rates. Dependencies between the two processes and their consequences on
our measures are studied by injecting coincident Poisson events at a given
rate level lc(t) into two independent Poisson processes with (background)
rates l(t) (for a detailed discussion, see Grün, Diesmann, Grammont, Riehle,
& Aertsen, 1999). Temporal resolution h is assumed to be 1 ms. Let us now
derive expectation values for the empirical number of coincidences nemp

in time interval Tw and for the number of coincidences npred we expect to
�nd on the basis of the rates. The probability of �nding a coincidence at
time t is lc(t)h C (l(t)h)2. Therefore, the expectation value for the empirical
coincidence count in Tw is

nemp (t) D M ¢
tC 1

2
(Tw¡1)X

t Dt¡ 1
2

(Tw ¡1)

[lc(t )h C (l(t )h)2]. (3.1)

Knowing only the rate of the processes (lc(t) C l(t)), the expected number
of coincidences in a window Tw centered at t is

npred
¤ (t) D M ¢

tC 1
2

(Tw¡1)X

t Dt¡ 1
2
(Tw ¡1)

[(lc(t ) C l(t ))h]2. (3.2)

However, given experimental data, the �ring rates are not known and have
to be estimated from the data. Assuming that the rates are stationary over
the duration of a time window Tw, the rate can be estimated by the ratio of
the spike count and the number of time steps. (The effect of rate estimation
on stationary unitary events analysis is discussed in the companion article.)
Having available only an estimate of the average �ring rate, equation 3.2
reads

npred(t) D MTw ¢

2

4 1
Tw

tC 1
2

(Tw ¡1)X

t Dt¡ 1
2
(Tw¡1)

(lc(t ) C l(t ))h

3

5
2

. (3.3)

Comparing equation 3.3 with equation 3.2, we have, using theassumption of
stationarity, effectively exchanged the sum and the squaring. The difference

between npred(t) and npred
¤ (t) determines the error made when nonstation-

ary processes are analyzed with an averaging window of width Tw. (See
appendix B for a parametric study of this deviation in terms of false posi-
tives.) However, conceptually, rate estimation and coincidence statistics can
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be separated and performed using different methods (see section 5). The fol-
lowing measures will be analyzed and illustrated for different time courses
of the background rates l(t) and the injected rate lc(t):

� The number of coincidences expected to occur in the course of time.
Both the number of occurrences assuming independence (npred; equa-
tion 3.3) and the empirical number of coincidences (nemp; equation 3.1)
will be evaluated.

� The joint-surprise S as a function of time, resulting from the compar-
ison of npred and nemp . The �rst characterizes the underlying distri-
bution under the null-hypothesis of independence, and the second
describes the deviation from independence.

Data and results will be displayed as sequences of three sub�gures (col-
umns in Figures 2 and 4): at the top empirical (solid line) and expected
coincidence rates (dotted line), in the middle the number of coincidences
(empirical [solid] and expected [dotted]), at the bottom the joint-surprise
(gray) including the upper and lower signi�cance levels for a D 0.01
(dashed). All measures are shown as functions of time over the duration
of the trial.

3.2 Stationary Background Rates

3.2.1 Stationary Coincidence Rate. The simplest “experimental” situation
is given if both background rates and the injected coincidence rate are sta-

Figure 2: Facing page. Stationary background rates: relevance of window size.
(A) Stationary coincidence rate. Three examples of sliding window analysis for
different window widths (columns from left to right, Tw D 50, 220, 400;M D 100,
h D 1 ms). (Top) Coincident rate (dotted line) and compound rates (solid line).
(Middle) Number of coincidences empirical (solid line) and expected (dotted
line). (Bottom) Joint-surprise (gray curve) and upper and lower signi�cance
threshold (dash-dot lines) for signi�cance level a D 0.01. In the left column,
Tw is smaller than the minimal window size Ta; the number of detected coinci-
dences is not signi�cant. In the middle column, Tw equals Ta and thus is at the
border of signi�cance. Only when Tw > Ta (right column) is the detected num-
ber of coincidences signi�cant. All measures are independent of time because of
stationarity of the underlying rates. (B) Nonstationary coincidence rate. Three
examples of sliding window analysis for different window widths (columns
from left to right Tw D 30, 100, 500). Graphs as in A. In the left column, Tw is
narrower than the minimal window size Tmin; the number of detected coinci-
dences is not signi�cant. In the middle column, Tw equals Tc and, hence, S has
a triangular shape. Since Tw is larger than Tmin , signi�cance is reached for more
than one window position. In the right column, Tw > Tmax; the hot region is not
detected as signi�cant.
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tionary, that is, independent of time (see Figure 2A). As shown in section C.1,
for each combination of l and lc, there is a minimal analysis window width
Ta needed to detect coincidences as signi�cant events. If the window is
chosen too narrow, the number of excess coincidences is too small to de-
viate signi�cantly from the expected number. In the stationary case, detec-
tion of excess coincident events can always be ensured by increasing the
analysis window, since the larger the analysis window is, the more excess
coincidences are detected. The examples in Figure 2A demonstrate the de-
pendence of the signi�cance on the size of the analysis window (columns:
Tw < Ta, Tw D Ta, Tw > Ta) for a �xed combination of l and lc. Observe
that in the left column, Tw is clearly too small to detect the injected coinci-
dences, just on the border for detection in the middle column, and clearly
large enough in the right column.
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3.2.2 Nonstationary Coincidence Rate. We now discuss the case where
coincidences occur clustered in time (i.e., form “hot regions”) on top of a
constant background rate (see Figure 2B). In that case, the detection of excess
coincidences is constrained to a range between a minimal and a maximal
analysis window size.

Consider a situation where we place the analysis window in the mid-
dle of a hot region of width Tc, and gradually increase the width of the
analysis window Tw (details are in section C.2; cf. Figure 10B). As long
as Tw · Tc, we face the situation of stationary injected events, discussed
in the preceding paragraph (cf. Figure 10A). Hence, we need a minimum
width of the analysis window (Ta) to detect the cluster of injected events.
Ta depends only on the combination of l and lc; its value can be obtained
from the calibration graph for the stationary situation (see Figure 10A, bot-
tom). When the analysis window exceeds the hot region (Tw > Tc), the total
number of coincidences increases further; now, however, due only to coinci-
dences occurring by chance on the basis of the background activity. Thus, by
increasing the analysis window further, excess coincidences are averaged
with independent coincidences, and at some window size, Tmax will not
be detected as signi�cant anymore. Tmax de�nes the maximal window for
detecting excess coincidences as signi�cant.

If Tc < Ta, the cluster cannot be detected, even with arbitrarily large
analysis windows (assuming the number of trials to be �xed). Thus, in
contrast to the stationary condition, the existence of a Tmin depends on the
width of the hot region Tc. A cluster of excess coincidences is not detectable
if its duration Tc remains below the critical time span Ta. If the cluster is
detectable (Tc ¸ Ta, Tmin D Ta), it may still go undetected if the analysis
window is too small, Tw < Tmin, or too wide, Tw > Tmax . The range of
appropriate window sizes can be obtained from calibration graphs as in
Figure 10B in appendix C. Examples for analysis windows that are too
narrow, appropriate, and too wide are presented in Figure 2B.

Let us now discuss the case where the analysis window is shifted gradu-
ally into a hot region. Once the window has overlap with the hot region, the
injected coincidences contribute to the coincidence count. With increasing
overlap, the number of contributed coincidences grows linearly, and the
joint-surprise increases accordingly (see Figure 2B). A plateau is reached
when the analysis window is completely inside the hot region (Tw < Tc)
or when the hot region is completely covered by the analysis window
(Tw > Tc). Further shifting eventually leads to a decrease in overlap and to
a time course of the joint-surprise S, which is symmetrical around the center
of the hot region. The trapezoidal shape of S degenerates to a triangle in the
special case Tw D Tc.

The argument just given shows that S can pass the signi�cance threshold
(i.e., the plateau surpasses threshold) only if the analysis window Tw has the
appropriate size Tmin · Tw · Tmax . The duration of the plateau is given by
Tp D |Tc ¡Tw |. Table 1 summarizes the relationships between the observable
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Table 1: Relationships of the Plateau Duration Tp, Width of the Analysis Win-
dow Tw, and Extent of the Hot Region Tc.

Tw < Tc Tw D Tc Tw > Tc

Tp D 0 — Tc D Tw —
Tp < Tw Tc D Tw C Tp — Tc D Tw ¡ Tp

Tp ¸ Tw Tc D Tw C Tp — —

Notes: Tw is compared to Tp (rows) and to Tc (columns).
Table entries marked by a dash represent nonexisting
(Tp ,Tw,Tc) combinations.The trapezoidal shape of the joint-
surprise S reaches signi�cance if Tmin exists (Tc ¸ Ta) and
Tmin · Tw · Tmax.

variables Tw, Tp and the variables generating the trapezoid Tw, Tc. Using
these relationships, one can determine the extent of the hot region Tc by
measuring the size of the plateau and systematic variation of the analysis
window (see section C.2 for a detailed derivation). Figure 3 summarizes the
possible interactions of the width of an excess interval Tc and the width of
the analysis window Tw.

If the signi�cance threshold is reached at all, typically more than one
window is signi�cant. Only in the special case of Tw D Tc D Ta is the
maximum of S exactly at threshold level and for a single window only. For
a given combination Tc, Tw, we can compute the minimal overlap of the
two windows needed to detect the injected coincidences as signi�cant by
the use of Tmax and can construct the extent of the region Ts in which injected
coincidences are marked as signi�cant (see section C.2)—that is, the time
span between the two intersections of S with the signi�cance threshold.
According to the unitary event analysis, all coincidences in a signi�cant
window are marked as “special.” Thus, only in thecase of minimal Ts exactly
the coincidences in the region Tc are marked as special. The smaller Tw, the
better the extent of the marked coincidences approximates Tc.

3.3 Nonstationary Background Rates

3.3.1 Stationary Coincidence Rates. We consider two different cases of
nonstationary background rates: stepwise and gradual increase of l(t), both
in combination with a stationary rate of injected coincidences lc (see Fig-
ures 4A and 4B). A stepwise increase in rate does not lead to a discontin-
uous change in the coincidence counts and the signi�cance measure, due
to the smoothing effect of the moving window (see Figure 4A). On a larger
timescale, npred and nemp increase parabolically because of their quadratic
dependence on the background rate (see Figure 4A, middle graph). The dif-
ference between npred and nemp is constant throughout the trial. However,
due to the absolute increase in background rate, the signi�cance decreases
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Figure 3: Detectability of short epochs of excess coincidences. The �gure illus-
trates the in�uence of the choice of Tw for the detectability of a hot region Tc .
l and lc are constant, and Tc ¸ Ta (detectability in principle) is assumed. Each
individual graph shows the time course of lc (solid) in its top part (width of
analysis window Tw indicated by the dashed line) and the time course of the
signi�cance measure (solid) relative to the signi�cance threshold (the dotted
line) in the bottom part. The ordinates of the signi�cance measure are individu-
ally scaled for better visibility. The �rst column covers the constellations where
Tw < Tc, the second Tw D Tc, and the third Tw > Tc. The rows are organized by
the size of Tw relative to the interval [Tmin , Tmax] for which detection is possible.
The �rst row depicts cases where injected coincidences are not detected as sig-
ni�cant because Tw is outside the interval [Tmin , Tmax]. The second row shows
cases where injected coincidences are just at the border of detectability, because
Tw equals either Tmin or Tmax. For the case of Tw D Tc and Tw equal to one of the
detection boundaries, Tmin and Tmax are identical. The third row illustrates cases
where Tw is inside the interval [Tmin , Tmax]. Here, coincidences are detected as
signi�cant for a range of window positions.

(see the companion article for an extended discussion of this issue). A linear
increase of background rate (see Figure 4B) basically gives the same result.
In both examples, the injected coincidences (lc D 2 s¡1) do not reach signi�-
cance (a D 0.01) at a background rate of l D 50 s¡1. Above this rate, injected
coincidences can be detected only with a larger analysis window Tw.

3.3.2 Nonstationary Coincidence Rates. Finally,we investigate the general
case where the neuronal processes have time-dependent rates and the excess
coincident activity occurs in a short interval, triggered by some external or
internal event. When the neuronal processes are observed over repeated
trials, the coincident activity appears to some degree locked to certain points
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in time. For the purpose of this article, the situation described above is
our model for the composition of neuronal spike trains. Firing rates and
coincidence rates vary independently and consistently over the time course
of a trial. Regions of increased coincidence rate may be accompanied with
elevated �ringrates, with suppressedactivity, or without noticeable changes
in �ring rate. Such data are optimally suited for UEMWA. Reproducibility
over trials allows for reliable estimates of �ring rates and coincidence rate
in relatively narrow time windows.

Consider a data set where several hot regions appear during the trial,
while the �ring rate is increasing with time. As in the preceding section, two
types of increase (stepwise in Figure 4C and a constant slope in Figure 4D)
are compared. The width of the analysis window is chosen as Tw D Tc.
We again analyze the situation using the theory for the expectation values
worked out insection 3.1. Figures 4C and 4D show the results of this analysis.
Overall, npred and nemp are increasing over time; in addition, nemp exhibits
strong peaks in the hot regions. S re�ects the transients in the hot regions
while staying at naught in between. This clearly demonstrates the rate-
normalizing property of the joint-surprise measure. The triangular shape
of the peaks is explained by the condition Tw D Tc (cf. Figure 2B, center
column). Since lc is the same for each hot region, the peaks in nemp relative
to baseline are of equal height (see equation 3.1). With a constant number
of excess coincidences and increasing background level, the signi�cance
decreases (cf. Figure 4 in the companion article and Figure 4A here). Thus,
inour example, theheightof thepeaks in S (see Figures 4C and 4D) decreases
over time. The last hot region is just on the border of detectability.Apart from
differences in the �uctuations of S, caused by the discretization inherent in
the joint-surprise measure (cf. Figure 10), the two types of rate variations are
practically indistinguishable at the level of S. In case Tw 6D Tc (not shown
here), the time course of S would exhibit plateau-like shapes around the hot
regions. For the case of linearly increasing background rates, the plateaus
would be oblique instead of �at. The slope of the plateau would then be
comparable to the situation of stationary coincidences rates (cf. Figure 4B).

Before we apply UEMWA to experimental data, we will leave the the-
ory for the expectation values and illustrate the procedure using simulated
point processes with a realistic number of repetitions. Figure 5A shows sim-
ulations of two parallel processes in repeated trials. Both spike trains are
simulated as independent Poisson processes (see the companion article for
details). The �rst one has a nonstationarity in �ring rate: at a certain point
in time, the �ring rate raises stepwise. The second process is stationary.
Clusters of coincident events were injected around two points in time. In
Figure 5A, all coincidences found (irrespective of their signi�cance, termed
“raw”) are marked by squares. The two clusters can clearly be seen. How-
ever, as expected, coincidences also occur outside the hot regions—more of
them in the regime where the �ring rate of one of the neurons is elevated.
In Figure 5B, only those coincidences are marked that occur in windows
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where S exceeds the signi�cance threshold. The time course of the joint-
surprise is shown in Figure 5C. As expected from our considerations above,
the joint-surprise remains at baseline outside the hot regions. Thus, only
coincidences in the hot regions and, because of the limited temporal resolu-
tion of UEMWA, in a small region around them are marked. The triangular
shape of the peaks in S indicates that Tw was close to Tc. Only the top of
the triangle is above threshold, meaning that Tw is not much larger than
Tmin. Consequently, the region of marked coincidences in Figure 5B gives a
good estimate of the width of the cluster Tc. The �uctuations of S in repeti-
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tions of the same experiment are illustrated in Figure 5D. The time course of
the boundaries enclosing at least 70% of the realizations (dark gray curves)
shows that the coincidences in the �rst hot region are detected with a prob-
ability exceeding 85% (already the lower boundary is above signi�cance
threshold). Sensitivity is lower for the second hot region because of a higher
background rate. The behavior of the lower boundaries in the regime of low
�ring rates (the analysis window being outside the hot region) exempli�es
the problem of detecting a lack in the number of coincidences. The size of the
analysis window and the given number of trials does not allow for the de-
tection of lacking coincidences at a reasonable signi�cance level because the
probability of �nding no coincidences already is ¼14% (compare Aertsen &
Gerstein, 1985).

4 Unitary Events in Cortical Activity

In the following, we present results from the analysis of simultaneously
recorded multiple single-neuron spike trains from frontal and motor cortex
in awake, behaving monkeys.

Figure 4: Facing page. Nonstationary background rates (graphs as in Figure 2;
in all graphs the analysis window is Tw D 50, M D 100, h D 1 ms). Station-
ary coincidence rates combined with (A) stepwise increasing background rates
(l D 20, 30, 40, 50, 60 s¡1) and (B) continuously increasing background rates
(l D 20 to 60 s¡1). Coincidences are injected at rate lc D 2 s¡1 (dotted line).
Compound rates are shown as solid curves. In A, coincidence counts (middle
panel) re�ect rate changes, with some smoothing due to the moving window
(dotted: expected; solid: empirical). Above a certain background rate, injected
coincidences are masked by coincidences expected from independent rates and
are no longer signi�cant (bottom panel, gray curve). For continuously increasing
background rates (B, top panel, solid line), signi�cance is lost for �ring rates that
are too high, as in A (bottom panel, gray curve). Nonstationary coincidence rates
combined with (C) stepwise increasing background rates (as in A) and (D) con-
tinuously increasing background rates (as in B). Coincidences are injected in
three “hot regions” (width 50 ms, lc D 2 s¡1). Coincidence counts (middle panel)
re�ect increasing rates and injected coincidences in the hot regions (solid:empir-
ical; dotted: expected). The triangular shape of coincidence counts results from
smoothing by the moving analysis window, its width being equal to the widths
of the hot regions (cf. Figure 3). In the bottom panels, joint-surprise remains at
zero in regions where no coincidences are injected; signi�cant excursions occur
in the hot regions. Typically, several consecutive windows detect coincidences
as signi�cant. In the last hot region, only a single window is signi�cant, because
the size of the hot region matches the size of the analysis window, which is the
minimal window for detectability at this combination of rates. Results in C and
D are comparable. Dash-dotted lines indicate signi�cance threshold (a D 0.01)
for excess (upper) and lacking (lower) coincidences.
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4.1 Motor Cortical Activity. In order to investigate the possible relation
between the dynamics of neuronal interactions in the motor cortex and the
behavioral reaction time (RT), a task was designed in which RT can be
experimentally manipulated (Riehle, Seal, Requin, Grün, & Aertsen, 1995;
Riehle, Grün, Diesmann, & Aertsen, 1997). Brie�y, monkeys were trained
to touch a target on a video display after a preparatory period (PP) of vari-
able duration. To start a trial, the animal had to push down a lever. The
preparatory signal (PS) was given by an open circle on the video display.
After a delay of variable duration, during which the animal had to continue
to press the lever, the response signal (RS) was indicated by a �lling circle.
Four durations of the PP, lasting 600, 900, 1200, and 1500 ms, occurred with
equal probability and in random order. RT is de�ned as the period between
the occurrence of the RS and the release of the lever, whereas movement
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time (MT) is de�ned as the period between releasing the lever and touching
the screen. After training, the monkeys were prepared for multiple single-
unit recording. A multielectrode microdrive (Reitböck, 1983; Mountcastle,
Reitböck, Poggio, & Steinmetz, 1991) was used to insert transdurally seven
independently driven microelectrodes, spaced 330 m m apart, into the pri-
mary motor cortex (MI) (for details see Riehle et al., 1995; Riehle, Grün,
Aertsen, & Requin, 1996; Riehle et al., 1997).

Figure 6 presents an example of modulation of coincident spiking activ-
ity during the preparation for movement. The �rst observation is that the
number of coincidences marked as signi�cant coincidences (see Figure 6C)
is considerably reducedas compared to the raw coincidences (see Figure6B).
Second, unitary events show a distinct timing structure, with two phases
of synchronized activity: about 100 ms after PS (lasting for about 200 ms)
and after ES1 (lasting also about 200 ms). The composition of unitary events
within these phases is the same: for a �rst short period, neurons 2 and
3 are synchronized; then neuron 3 switches its partner and is successively
synchronized with neuron 1. Taking into account the condition under which

Figure 5: Facing page. Simulated nonstationarities . (A) Spike times (dots) of two
parallel processes, simulated for 1000 ms (h D 1 ms) over 100 trials (upper
panel process 1, lower panel process 2, trials displayed in consecutive rows).
Process 1 has a nonstationarity in �ring rate at 300 ms from trial start. Firing rate
increases stepwise from 20 s¡1 to 60 s¡1 . Process 2 is stationary at 20 s¡1 . Centered
at 175 ms and 775 ms from trial onset, two hot regions (Tc D 50) are generated by
injecting additional coincidences at rate 2 s¡1. All coincidences occurring in the
simulation are marked by squares (“raw coincidences”). (B) Same data as in A.
Here, only coincidences are marked by squares that occur in analysis windows
passing the signi�cance threshold: unitary events (analysis parameters: Tw D
50, a D 0.01). (C) Joint surprise corresponding to the data shown in A and
B as a function of time (thick curve), representing at each instant in time the
signi�cance resulting from the analysis window centered around this point in
time. Thin lines: a D 0.01 for excess (upper) and lacking (lower) coincidences.
At around 175 ms and 775 ms, the joint-surprise function passes the signi�cance
level for excessive coincidences. (D) Variance of the joint-surprise functions
estimated from 1000 repetitions of the simulation experiment shown in A–C.
Signi�cance level indicated as in C for orientation. Gray curves represent the
width of the distribution as a function of time (dark gray: minimum 70%; light
gray: 95% area). In the regime where both background rates are 20 Hz, the
probability of �nding no coincidences is ¼ 14%. Therefore, no lower boundary
for the minimum 95% area region can be drawn. No coincidence count does
exist such that the cumulative probability of lower counts is less than 2.5%. For
the 70% area region, the lower boundary is at coincidence count 1. In some time
steps, probability to obtain no coincidences exceeded 15% because of the �nite
number of repetitions.
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Figure 6: Time structure of coincident spiking activity. The three panels of dot
displays show the same spike data from three simultaneously recorded neurons
in the primary motor cortex of a monkey involved in a delayed-response task.
(A) Spiking activity of three neurons (1, 2, 3) organized in separate displays
showing 96 trials. Data are pooled from three types of trials (PP 900, 1200, and
1500 ms and aligned on the preparatory signal (PS, vertical line at time 0). Only
the �rst 800 ms after PS are shown; this includes the end of the �rst potential
end of the waiting period ES1 (“expected signal”; vertical line at time 600 ms).
In the data analyzed here, no movement instruction occurred at ES1. (B) Same
spike data as in A. All “raw” coincidences are marked by squares (bin width
5 ms). (C) Same spike data as in A and B. Unitary events are marked by squares
(UEMWA, window width 100 ms, a D 0.05). (Modi�ed from Riehle et al., 1997).
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these unitary events occur, one may speculate that the occurrence of unitary
events can be interpreted as activation of a cell assembly that is involved
with the initiation (or reinitiation) of a waiting period.

4.2 Frontal Cortical Activity. In the second experimental study we dis-
cuss, rhesus monkeys were trained to perform a “delayed localization task”
with two basic paradigms (localizing and nonlocalizing; an example of the
latter is shown Figure 7). In both paradigms, the monkey receives a se-
quence of two stimuli (visual and auditory) out of �ve possible locations.
After a waiting period, a “GO” signal instructs the monkey to move its arm
in the direction of the stimulus relevant in the current trial. In the localizing
paradigm, the relevant spatial cue was selected by the color of the GO signal.
In the nonlocalizing paradigm, an indicator light between blocks of trials in-
formed the monkey about the reinforced direction for arm movement. Thus,
in the latter case, the animal had to ignore the spatial cues given before the
GO signal. In the behavioral paradigm analyzed here (nonlocalizing), nei-
ther the spatial cues before the GO signal nor the GO signal itself could be
used to determine the correct behavioral response (see Vaadia, Bergman,
& Abeles, 1989; Vaadia, Ahissar, Bergman, & Lavner, 1991; Aertsen et al.,
1991, for further details). The activity of several (up to 16) neurons from the
frontal cortex was recorded simultaneously by six microelectrodes during
performance of the task. In each recording session, the microelectrodes were
inserted into the cortex with interelectrode distances of 300 to 600 m m. Isola-
tion of single units was aided by six spike sorters that could isolate activity
of two or three single units, based on their spike shape (Abeles & Goldstein,
1977). The spike sorting procedure introduced a dead time of 600 m s for the
spike detection.

Usingdata from this study, we found that coincident activity in the frontal
cortex can be speci�c to movement direction. We parsed the data of �ve
neurons according to the movement direction and analyzed each of these
subsets separately. Figure 7 shows the analysis results for two movement
directions (A: to the left; B: to the front); for the three other movement direc-
tions, there was no signi�cant activity. For each of the two movement direc-
tions, there is mainly one cluster of unitary events (besides some sparsely
spread individual ones), occurring at the onset of the movement. The clus-
ters of unitary events differ, however, in both their neuronal composition
and their timing. During movement to the left, signi�cant coincidences oc-
cur between neurons 6 and 9; for movement to the front, they occur between
neurons 6 and 10. The timing of the unitary events differs when measured
in absolute time after the GO signal (to the left: 355 ms; to the front: 400 ms);
however, both occur shortly after LEAVE. Thus, unitary events appear to
be locked better to the behavioral event (LEAVE) than to the external event
(GO). The analysis of the same �ve neurons during the localizing task, where
the color of the GO signal contained the information about the reinforced
type of stimulus (data not shown), did not reveal any indications for unitary
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Figure 7: Task dependence of coincident spiking activity. The dot displays show
the spiking activity of �ve simultaneously recorded neurons (labeled 6 to 10)
from the frontal cortex of a monkey involved in a delayed localization task(28 tri-
als). The two columns represent two different behavioral conditions: (A) move-
ment to the left, (B) movement to the front. Organization of the columns (A, B) is
the same as in Figure 5, with bin width of 3 ms for coincidence detection and an
analysis window width of 60 ms, and 0.01 signi�cance level for UEMWA. Data
are taken from segments starting 500 ms before and ending 700 ms after the GO
signal (vertical line at time 0 ms). The top row dot displays include two behav-
ioral events, LEAVE (monkey leaves central key) and HIT (monkey hits target),
marked by diamonds and triangles, respectively. Average times of behavioral
events are indicated by vertical lines labeled LEAVE (A: 329 ms; B: 364 ms) and
HIT (A: 557 ms; B: 562 ms).
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events related to movement direction. Note that neuron 6 is participating in
signi�cant coincident activity in both movement directions, however, with
another coincidence partner in each. This is indicative of a common mem-
bership of neuron 6 in two different cell assemblies, one of which is activated
depending on the movement direction.

5 Discussion

We developed the unitary events analysis method to detect excess coin-
cidences in multiple single-neuron spike trains. In the companion arti-
cle, we evaluated the method for the case of stationary rates and cali-
brated the method for physiological relevant parameters: �ring rates, co-
incidence rates, and number of neurons analyzed in parallel. The method
was shown to be very sensitive to excess coincidences; their signi�cance
can be evaluated using the joint-surprise measure. In this article, we ex-
tended the method to incorporate nonstationary �ring rates by introducing
the UEMWA. This method performs the analysis for unitary events within
analysis windows of �xed length, which are slid in small steps along the
data, in order to follow the dynamic changes of �ring rates. Within each
window, we assume stationarity and apply unitary event analysis as in
the stationary case. The resulting time-dependent joint-surprise function
provides a convenient measure for the probability that the number of coin-
cident spiking events in a certain observation interval represents a chance
event. By imposing a threshold level on the joint-surprise function, certain
time segments of the data are highlighted as potentially interesting regard-
ing the presence of excess coincident spiking events, referred to as unitary
events. Their neuronal composition, as well as the moments they occur in
time, may give us information about the underlying dynamics of assembly
activation.

5.1 Appropriate Size of Analysis Window. The width of the moving
window is clearly an important parameter and may be adjusted according
to the data. In the calibration study described in this article, (see section 3),
we analyzed a model in which excess coincidences were injected into inde-
pendent background activity. In a �rst step (see section 3.2.1), we studied the
sensitivity under stationary conditions and in dependence of background
and coincidence rate levels, using analytical descriptions for coincidence
counts. For a given rate constellation, an increase of the analysis window
leads to a linear increase of the coincidence count. In order to reach signi�-
cance, a certain level of excess coincidences needs to be present to pop out
from the chance coincidences due to background activity. This requires a
minimum size of the analysis window, speci�c for the given background
and coincidence rates. The larger the coincidence rate is, the smaller is the
minimal window size. By contrast, the larger the background rate is, the
larger is the minimal window size.
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In a second step (in section 3.2.2), we explored the detectability of non-
stationary coincidence rates. We studied the case that excess coincidences
occurred only within a restricted time interval (“hot regions”), motivated by
experimental observations (Riehle et al., 1997). Such hot regions may be the
result of loose time-locking of synchronous spiking to an (external) trigger
event. By studying the detectability in the symmetrical case (the analysis
window is centered in the hot region), we found that there is not only a
minimal window size as discussed in the stationary condition but also a
maximal window size. By increasing the analysis window (starting from a
window size smaller than the width of the hot region), more and more excess
coincidences are “seen,” which, upon reaching the minimal window size,
are detected as unitary events. If the analysis window covers exactly the
hot region, all injected coincidences are detected, and maximal detectability
is reached, that is, the joint-surprise reaches its maximum. When further
increasing the window, the number of excess coincidences no longer grows;
however, the contribution of chance coincidences will increase, leading to
a decrease of detectability until the joint-surprise �nally drops below sig-
ni�cance. Thus, if the analysis window is too large or too small, the hot
region is not detected, although the hot region would be detectable with the
appropriate choice of analysis time window.

Using the results from the symmetrical case, we analyzed the situation
when the analysis window is gradually shifted into the hot region. Once the
two start to overlap, the injected coincidences contribute to the coincidence
count. With increasing overlap, the joint-surprise increases accordingly, un-
til it reaches its maximum at maximal overlap. When the analysis window
leaves the hot region, the overlap decreases again, and so does the joint-
surprise. For symmetrical shape of the hot region (including spike densities
and coincidence densities, as is assumed here), the joint-surprise is symmet-
rical around the center of the hot region. Injected coincidences are detected
as unitary events if the size of the analysis window is between Tmin and
Tmax . Only in the special case that Tw is equal to or narrower than the width
of the hot region and the joint surprise just reaches threshold at its peak,
unitary events are restricted to the extent of the hot region. Generally, how-
ever, the epoch over which unitary events are detected does not coincide
with the extent of the hot region: it may be narrower but also wider, depend-
ing on the size of the various windows. Figure 3 summarizes the possible
combinations. The time course of the joint-surprise function indicates how
the width of the analysis window can be optimized. From the extent of the
plateau, we can derive the width of the hot region. Table 1 summarizes the
necessary relationships.

By shifting the time window Tw in smaller time steps than the width of the
analysis window (usually we shift by one bin), we introduce dependencies
between the time windows, since the analysis is applied to partly overlap-
ping time segments. When shifting the window in single bin steps, each
single joint-event will be considered in Tw analyses, although in slightly
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differing contexts. As a result, a single event may be evaluated with differ-
ing signi�cance values in the various analyses. Assuming continuity of the
processes, the signi�cance does not change drastically from one window
to the next. One possibility for dealing with these dependencies is to give
“bonus points” each time a joint-event surpasses a certain signi�cance level.
Thus, an individual spike constellation would collect bonus points as the
window is shifted along the data, indicating that its accumulated signi�-
cance “counts.” This procedure would lead to a gradual evaluation of the
“unitarity” of those events. The decision for the �nal selection of unitary
events could be based on a threshold on bonus points. For reasons of sim-
plicity, however, we chose a simpler version: we de�ne an event as unitary
once it ful�lls a certain signi�cance criterion (usually a D 0.05 or 0.01) in at
least one window. In terms of bonus points, this implies a selection on the
basis of a threshold set to 1. A practical evaluation of the performance of a
more elaborate bonus point rule is currently under study.

Nonstationary coincidence rates (e.g., a hot region) may be the result of
loose locking of assembly activation to an (external) trigger event. In this
situation, the optimal window for UEMWA is determined by the degree of
temporal locking. In physiological data, however, several internal triggers
that we do not know of may lead to hot regions of different temporal widths,
which cannot optimally be captured by one sliding window size. Thus, an
interesting perspective would be to develop an algorithm that dynamically
adapts the width of the analysis window to the varying width of the hot
regions.

5.2 An Alternative Method of Unitary Event Detection: Cluster Anal-
ysis. UEMWA deals with nonstationary �ring rates by sliding an analysis
window that is narrow enough to obtain �ring rates that are approximately
stationary over the extent of the window for all positions, along the trial.
There is a second approach to obtain segments of data with joint-stationary
rates, based on cluster analysis. In the following, we discuss this option
brie�y, because some cortical data indeed exhibit joint rate states and the
approach has interesting relationships to other methods of analyzing mul-
tiple single-neuron spiking activity (e.g., hidden Markov models (HMM);
Abeles et al., 1995; Seidemann, Meilijson, Abeles, Bergman, & Vaadia, 1996;
Gat, Tishby, & Abeles, 1997). The idea is to segment the data into (exclusive)
joint-stationary subintervals, using a standard cluster algorithm (e.g., Harti-
gan, 1975). Subsequently the data are analyzed for unitary events in the time
segments, de�ned by the joint stationary rate states. We call this method uni-
tary event by cluster analysis method (UECA) (a detailed description is given
in appendix D). In this method, the width of the analysis window is de�ned
by the covariations of the �ring rates of single neurons. However, from our
theoretical results about the detectability of hot regions, we know that the
optimal width of the analysis window is given by the width of the hot re-
gion or, in more general terms, the time course of the coincidence rate. Thus,
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a clustering approach is useful if the occurrence of excess coincidences is
connected to the rate state. This, however, is not in agreement with experi-
mental data (Riehle et al., 1997). Moreover, in UECA, the data are analyzed
in exclusive regions. This implies transitions in signi�cance from one time
step to the next. Moreover, if a segment is detected by UECA as signi�cant,
that entire segment is marked as containing unitary events, even if a hot
region covers only part of the segment. In the case of UEMWA, the analysis
window positions are independent from rate transitions. They cover the
entire data set step by step, resulting in a measure that is at the same time
more localized (only data from a connected time interval enter the analysis)
and smoother (a single event is weighed in several consecutive windows)
than UECA. Taken together, for the experimental data we have analyzed so
far, UEMWA provides a more differentiated picture of the presence of uni-
tary events. We cannot exclude, however, that experimental settings may
arise in which UECA, with its variable window size and the property that
the counting statistics are not limited by the local window size, might be a
promising alternative.

5.3 False Positives. Various sources of false positives can be distin-
guished. Here, we discuss only those that arise in direct connection to the
nonstationarity extension presented in this article. For a more general dis-
cussion of the topic of false positives in unitary event analysis, we refer to
the companion article.

First, there are sources for false positives speci�c to the moving window
analysis. The signi�cance level a, which we demand for events to be quali-
�ed as unitary, implies by de�nition a certain number of false positives. For
example, if a is set to 0.01, we expect in 1% of the experiments a detection of
signi�cant events by chance. In the case of UEMWA, we undertake, in fact,
many of such experiments by analyzing step by step successive parts of a
single data set. However, these experiments are not independent due to the
overlap of the time windows. For a rough estimate of the number of win-
dows that is expected to give rise to false positives, one has to calculate the
number of nonoverlapping windows that would �t within the total length
of the data segment and take a fraction a of it. In our calibration experiments
on simulated data, accidental crossings of signi�cance threshold were ex-
tremely rare—typically, one window per data set at most, and mostly none.
As a rule of thumb, we have developed the criterion that only those cases
in which the number of windows that passes the signi�cance threshold is
clearly larger than this lower bound are considered as potentially interest-
ing. A more systematic treatment of this issue is under development.

Important sources of false positives are nonstationarities of different �a-
vors that give rise to signi�cant results, although the processes observed
actually do not violate the null-hypothesis of independence. The obvious
source is a remaining nonstationarity of rate in the analysis window. In ap-
pendix B, we show that unitary event analysis is robust against moderate
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violations of the assumption of rate stationarity and quantify the effect on
the number of false positives. Speci�c types of nonstationarity across trials
discussed in the literature are variations of “excitability” and of “latency
variability” (e.g. Brody, 1999a, 1999b). Knowledge (or “educated guesses”)
of the type of nonstationarity in the data is important, because it may al-
low for a compensation of its effects in the analysis. Variation of excitability
describes a nonstationarity in which the time course of the �ring rate is iden-
tical in each trial, although the amplitude is modulated (e.g. Arieli, Sterkin,
Grinvald, & Aertsen, 1996). Latency variability describes a nonstationarity
in which shape and amplitude of the �ring rate are identical in each trial,
but the position in time shifts from trial to trial. In both cases, the �ring-rate
estimation obtained by averaging across trials, as performed in the PSTH
and the unitary event analysis, leads to a value that is not representative
for a single trial. In the case of excitability variations, the rate is underesti-
mated for some trials and overestimated for others. In the case of latency
variability, the rate estimate will generally present a blurred picture of the
rate dynamics in an individual trial due to the convolution with the latency
distribution. Thus, “misalignment” of trials may lead to falsely detected uni-
tary events (see the example in Figure 8A, bottom panel). A solution to this
problem is to realign the data to an external or behavioral event, to which
the single trial rate functions of the observed neurons have a more proper
locking. In case no such events are available, one can try to �nd a consistent
realignment directly based on the single trial rate functions themselves (as
shown in Nawrot, Rotter, Riehle, & Aertsen, 1999; Nawrot, Aertsen, & Rot-
ter, 1999; see also Baker & Gerstein, 2000). Figure 8 illustrates how proper
realigmnment of trials is able to discard false positives (unitary events after
RS in A).

Note that in order to maintain a common reference time frame, the
same realignment should be performed for all neurons under considera-
tion. This implies, however, that when the latency variabilities of (some of)
the observed neurons do not co-vary, such joint realignment is not possi-
ble (Nawrot, Rotter, et al., 1999). In such a case, one needs an alternative
method to estimate the �ring probabilities and the associated coincidence
expectancy on the basis of single-trial data. Several such methods have been
proposed recently, including convolution-based methods (Nawrot, Rotter,
et al., 1999; Nawrot, Aertsen, & Rotter, 1999) and inverse-interval-based
methods (Nawrot, Rotter, & Aertsen, 1997; Pauluis & Baker, 2000). The in-
corporation of these methods into the unitary event analysis is in progress.

To ultimately demonstrate the consistent occurrence of unitary events,
one may apply an additional test on a meta-level. This can be done by relat-
ing the unitary events to behavioral or external events or by an additional
statistical test (Prut et al., 1998). An example where unitary events occurred
in relation to behaviorally relevant events is shown in Figure 6. On the basis
of a meta-analysis over many data sets, Riehle et al. (1997) demonstrated
that unitary events occur in relation to stimulus and expected events.
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Figure 8: False positives due to nonstationarity across trials. (A, B) Identical
spiking activities of two neurons (4,7) recorded from primary motor cortex while
the monkey performed a delayed reaching task (1 direction out of 6; Grammont
& Riehle, 1999). Columnar organization of the dot displays is the same as in Fig-
ure 6. In A, trials are aligned to the reaction signal (RS). In B, trials are aligned
to the onset of movement (MVT). Trials are sorted according to increasing reac-
tion time (time difference between RS and MVT) in both cases. All external and
behavioral events are marked by �lled circles. The events at the beginning of
the data segments are the GO signals; the events late in the trials are the ends of
movements. The unitary events in A about 250 ms before RS correspond to the
ones in B at about 500 ms before MVT. Note, however, that the unitary events
in A after the RS have vanished in B. These unitary events were due to nonsta-
tionarity across trials: an abrupt decrease in �ring shortly before and locked to
MVT dispersed to a different position in each trial by the incorrect alignment to
RS. This misalignment of rate functions is removed in B, thereby discarding the
falsely detected unitary events.

5.4 Guidelines for Application to Experimental Data. Based on the
foregoing, we suggest the following procedure for unitary events analysis.
First, inspect the data critically for across-trial nonstationarities (e.g., ex-
citability and/or latency variability) by the use of the raster displays. For
checking excitability variations, one may useas a roughestimate the number
of spikes per trial. If necessary, eliminate the outlier trials. Latency variabil-
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ity has to be eliminated by realignment of the trials, by either alignment of
the data to another behavioral event or estimating the instantaneous rates
per single trial and realigning the data by matching the shape of the rate
functions (Nawrot, Aertsen, & Rotter, 1999).

Since generally we do not have prior knowledge about the time structure
of the coincident events, we may get some qualitative information about
their composition, their distribution in time, and whether there are obvious
deviations from the �ring rates by inspecting the raw coincident events.

Theappropriate sizeof the analysis window cannotbe knowninadvance.
It has to be adjusted according to two aspects: rate changes and coincidence
rate changes. In order to capture rate changes such that stationarity of rate
within a window can be assumed, the window has to be adjusted to the
timescale of the rate dynamics. Since we have no prior knowledge about
the timescales of the coincidence rate dynamics, we have to scan the data
with different window sizes. If we have an indication for a speci�c time
structure from the raw data, we may start with a size in that range. In
general, however, we found it best to start with a narrow analysis window
and gradually increase its size. If the underlying time structure of coincident
�ring is clustered, the unitary events will appear at a certain minimum size
of the analysis window and will be detected over a certain range of window
widths beyond it. If the detected time structure is stable but only broadens
due to the increased size of the analysis window, a hot region is detected.
For an indication of the best analysis window size, the shape of the joint-
surprise function may be used. Plateaus indicate a window size that is either
too small or too large. A peaky shape indicates that the optimal window for
a hot region size has been found.

False positives may be identi�ed by evaluating whether the structure is
stable for different alignments to external events. We are aware that this is
time-consuming. In further work we intend to develop additional statistical
tests on a meta-level, to �lter out false positives automatically. However,
to improve the analysis method further, we need to gain experience from
applications of the unitary events analysis method to physiological data. In
addition, we have found it useful to compare the outcome of our analyses
to the result of other techniques (e.g. cross-correlation or joint peristimulus
time histogram, JPSTH).

An additional parameter is the coincidence width. In order to determine
the coincidence width of the experimental data, additional manipulations
maybe performed, for example, changing the binwidthbeforeanalyzing the
data for unitary events (see the companion article) or applying the multiple
shift method (Grün et al., 1999; Riehle, Grammont, Diesmann, & Grün,
2000).

5.5 Unitary Events in Cortical Activity. We have analyzed simultane-
ously recorded multiple single-neuron spike trains from frontal and motor
cortices in awake, behaving monkeys for the occurrence of signi�cant co-
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incident events. Our �ndings indicate that highly precise (1–5 ms) unitary
events occur in these data. Their joint-surprise may be well above 2; that
is, they are statistically highly signi�cant. The composition and frequency
of such patterns appear to be related to behavioral parameters. These re-
sults, together with results from other multi-neuron studies, are interpreted
as expressions of cell assembly activity (for reviews, see Gerstein, Beden-
baugh, & Aertsen, 1989; Singer et al., 1997; Singer, 1999). The composition
of unitary events is interpreted to re�ect the common membership in a cell
assembly. If the composition of the unitary events changes depending on
the stimulus or the behavioral conditions, a different group and, hence, a
different cell assembly may be activated in relation to the external event. In
the example in Figure 7, we showed that the occurrence of unitary events
was locked to the onset of the movement, but the composition of them was
different for the different movement directions. Similar �ndings were made
in visual and frontal areas in cross-correlation studies, when neurons were
found to be correlated for one stimulus or behavioral condition but not for
another (e.g., Vaadia et al., 1991; Aertsen et al., 1991; Vaadia et al., 1995;
Freiwald, Kreiter, & Singer, 1995; Kreiter & Singer, 1996; Fries, Roelfsmema,
Engel, König, & Singer, 1997; Castelo-Branco, Goebel, Neuenschwander, &
Singer, 2000). Moreover, JPSTH results from frontal cortex show that the
correlation between two neurons may dynamically change depending on
the behavioral context, suggesting that the neurons rapidly change their
associations into different functional groups (Aertsen et al., 1991; Vaadia
et al., 1995).

We demonstrated that unitary events show a marked increase in tempo-
ral structure as compared to the spiking events of the participating neurons,
including cases where the single neurons did not show any discernible re-
sponse, as judged from the absence of systematic modulations of their �ring
rates. This may indicate that neuronal computation uses different kinds of
timescales, usually referred to as rate coding and temporal coding (see also
Abeles, 1982b; Neven & Aertsen, 1992; Koenig, Engel, & Singer, 1996; Riehle
et al., 1997; Shadlen & Newsome, 1998). We have begun to investigate if
and how these concepts are implemented in the cortical network. It would
seem possible that both coding mechanisms—rate coding and precise time
coding—are used in the brain, and that depending on the cortical area, either
one might dominate (see Vaadia & Aertsen, 1992, for a detailed discussion
on this issue). We hope that the unitary event method presented here may
help to decipher the mechanisms of neuronal information processing in the
brain.

Appendix A: Notation

h time resolution of data, [h] D unit of time
Tw size of the moving window, integer valued, odd
M number of trials
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l background �ring rate, [l] D 1/unit of time
lc coincidence rate, [lc] D 1/unit of time
npred expected coincidence count
nemp empirical coincidence count
S joint surprise
a signi�cance level
na number of coincidences needed for signi�cance
Tc duration of the “hot region”
Ta minimum analysis window width required by na

Tmin minimum analysis window width to reach signi�cance
Tmax maximum analysis window width to still reach signi�cance
Tp duration of the plateau of the joint-surprise function
Ts duration of interval showing unitary events
fmin minimal overlap of analysis window Tw and hot region for detec-

tion of unitary events in the sliding situation

All capital “T” variables specify time intervals in units of h, [T] D 1.

Appendix B: False Positives Induced by Nonstationarity

In order to estimate the error made by assuming stationarity of rates within
the analysis window, we consider the worst-case scenario (with respect to
mean count). It can be shown that the maximal error is given if the rate
changes in stepwise fashion (in comparison to, say, a linear change of rate),
if both neurons change their rates in parallel, and, if the analysis window is
centered at the time of rate change. Thus, in the following we consider the
situation where two neurons change their rate at the same time from the
same rate level l1 to l2. The analysis window is centered at the rate change;
that is, the window Tw is divided into two regions of duration Tw

2 , where the
rates are stationary at level l1 and l2, respectively. The equations used in
the following correspond to equations 3.3 and equation 3.2, however here
with lc D 0 s¡1, and adjusted to the special case sketched here.

The mean rate within Tw is

Nl D
(l1 ¢ Tw

2 C l2 ¢ Tw
2 )

Tw
. (B.1)

Using the averaged rate, the number of expected coincidences is (cf. equa-
tion 3.3)

Qn D ( Nl ¢ h)2 ¢ Tw ¢ M. (B.2)

The exact number of expected coincidences is given by calculating the num-
ber of coincidences in each time segment separately and taking the sum of
the two:

n¤ D ((l1 ¢ h)2 C (l2 ¢ h)2) ¢
Tw

2
¢ M, (B.3)
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expressing a special caseof equation 3.2.Theerror innumber ofcoincidences
is

Qn ¡ n¤ D ¡Twh2 1
4

(l1 ¡ l2)2. (B.4)

The larger the difference of the rate levels is, the larger is the error. The exact
number of expected coincidences is larger than the approximated number
Qn. Thus, if we estimate the number of coincidences by averaging the rates
within the analysis window, we tend to overestimate the signi�cance.

The relevant parameter for the signi�cance test, the number of expected
coincidences, de�nes the mean of the assumed Poisson distribution. This
number, however, is determined by the rates, the size of the analysis win-
dow, and the number of trials. For simplicity, we assume a constant Tw.
Different rate combinations of l1 and l2 can lead to the same number of
expected coincidences. Thus, in order to study false positives, we derive
the dependence of the exact number of coincidences n¤ as a function of the
approximated number of coincidences Qn by eliminating the rates. We de�ne

r D
l2

l1
(B.5)

as the ratio of the rates. n¤ D n¤,1 C n¤,2 is the total number of expected
coincidences, with

n¤, i D
1
2

TwM(li)2h2 (B.6)

the expected number of coincidences in each segment. Using equations B.5
and B.6, we yield

n¤ D
2(1 C r2)
(1 C r)2 ¢ Qn. (B.7)

The slope of n¤ ( Qn) is always ¸ 1, that is, for all values of r, n¤, Qn ¸ 1.
In order to calculate the critical rate relation that leads to a signi�cant

outcome in expectation, we systematically vary n¤ by varying r and compute
the minimal number of coincidences needed for signi�cance Qna, given a
signi�cance level a D 0.01. The intersection of n¤(r, Qn) and Qna(r, Qn) gives the
critical rate relation r. The larger r is, the steeper the slope of n¤(r, Qn) and
thus the smaller the minimal Qn for which false positives are obtained.

Interestingly, the mapping of (l1, l2) to ( Qn, r) is invertible. The critical
rate relation and the corresponding rates are shown as functions of Qn in
Figure 9A.

Up to now, we have considered only the case where n¤ is above Qna, cor-
responding to a signi�cant outcome in expectation. Now we are interested
in the effective signi�cance level or, equivalently, the percentage of false
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Figure 9: False positives induced by a stepwise rate change. As the worst-case
scenario, two neurons are considered that change their rates in parallel stepwise
from rate level l1 to l2 , and the analysis window is centered at the time of rate
change. (A) Critical rate relation r D l2 /l1 (top) that leads to false positives at a
given number of coincidences Qn. The corresponding rate levels are shown in the
bottom panel. (B) Percentage of false positives. For each parameter constellation
( Qn,r), the contour plot shows the percentage of false positives for a signi�cance
level a D 0.01: contour lines at 1% (dashed) and 5%, 10%, . . . , 100% (solid).
Gray scale indicates the percentage of false positives. In the stationary situation
(r D 1), the percentage of false positives equals a.

positives at a given parameter constellation ( Qn, r). Therefore, we �rst calcu-
late for each Qn the minimal number of coincidences Qna at signi�cance level
a D 0.01 assuming a Poisson distribution with mean Qn. Then we determine
the signi�cance level for Qna, assuming now the exact mean number of coin-
cidences n¤ and the corresponding distribution. Note that the distribution
of coincidence counts is the convolution of the distributions for the two
segments. Figure 9B illustrates that the larger Qn is, the lower the rate ration
r that can be tolerated.

Appendix C: Size of the Analysis Window

C.1 Stationary Coincidence Rate. The need for a minimal window size
in order to be able to detect excess coincidences will be derived for the case
when both background rates and the injected coincidence rate are station-
ary. The minimal number of coincidences (na) that just ful�lls the condition
S(na, npred) D Sa depends nonlinearly on the number of occurrences ex-
pected at chance level (see Figure 4 in the companion article); for higher
npred, disproportionately more coincidences nc are needed to reach signi�-
cance. Moreover, the minimum number of coincidences to reach threshold
na can take only discrete values. This induces discrete jumps in na and in the
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joint-surprise function (see Figure 10). In the stationary case, equations 3.1
and 3.3 reduce to

nemp D [lch C (lh)2] ¢ MTw

npred D [(lc C l)h]2 ¢ MTw.

nemp and npred are both linearly dependent on Tw. As a result, we can express
nemp as a linear function of npred:

nemp(npred) D
(lh)2 C lch
(lh C lch)2 npred (C.1)

¼
³

1 C
lch

(lh)2

´
npred, (C.2)

where in the latter expression we have neglected second-order rate terms
involving lc. This linear function has a single intersection with the signif-
icance threshold na (assuming na to be a smooth function), yielding the
minimal number of coincidences considered to be signi�cant. na however,
is a function of the width of the analysis window. Hence, for each combi-
nation of l and lc, there is a minimal analysis window width Ta needed
to detect coincidences as signi�cant events. In the situation described here,
with coincidences injectedover an arbitrarily long time interval, theminimal
analysis window width can always be realized. The pair (l, lc) determines
the value of Ta (here: Ta ¼ 220 ms), while the amount of data available de-
termines whether an analysis window of this width can be realized. When
Ta can indeed be realized, we call Tmin D Ta; in section C.2 we will see that
this is not always the case in the nonstationary situation.
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As it is clear from C.2, the function nemp (npred) is steeper if the rate of the
injected coincident events is higher and hence crosses the curve of na at a
lower value of nemp and, consequently, of Ta. This behavior is summarized
in the bottom graph of Figure 10A. Thus, in the stationary case, detection of
excess coincident events can be ensured by increasing the analysis window.
In addition, enlarging the window decreases possible effects of the stepwise
behavior of the joint-surprise.

C.2 Nonstationary Coincidence Rate. We now derive the conditions for
the appropriate window size in the case when coincidences occur clustered
in time on top of a constant background rate. Consider �rst a situation where

Figure 10:Facing page. Minimal and maximal window size. (A) Minimal window
size. Existence and parameter dependence of the minimal analysis window size
Ta needed to detect injected coincidences as signi�cant. (Upper graph) Inde-
pendent from window size, the number of coincidences minimally needed (na)
to reach the signi�cance criterion is a function of the signi�cance level a and
the expected number of coincidences npred (gray curve, here for a D 0.01). With
increasing npred, na increasingly deviates from the diagonal. The solid line is the
number of coincidences nemp fornpred coincidences due to the rate of the indepen-
dent processes (l D 20 s¡1) and additional injected coincidences (lc D 0.4 s¡1).
At a certain npred (here nmin ¼ 9), nemp intersects na from below. The minimal size
of the analysis window is de�ned by the requirement that the expected number
of coincidences is at least nmin. (Lower graph) Assuming stationary rates, npred

is proportional to the size of the analysis window Tw. Thus, by proper scaling,
the abscissa can as well be expressed in Tw . The dashed-dotted line connecting
the two graphs indicates the minimal window size Tmin D Ta for the example
pair (l, lc). The contour plot (contour lines shown for S D 1, 2, . . . , 10) shows
the dependence of the joint-surprise S on Tw and lc for the �xed example value
of l. For lc D 0.4 s¡1 , a joint surprise value of 2 corresponding to a D 0.01 is
reached at a window size of about 220 ms. The sensitivity of the method de-
creases rapidly when windows narrower than 100 ms are used. For windows
wider than 220 ms, sensitivity increases only slowly. (B) Maximal window size.
Same analysis as in A for a nonstationary coincidence rate. Coincidences are
injected at rate lc D 0.9 s¡1 in a “hot region” of duration Tc D 100, centered on
t D 500, M D 100, h D 1 ms (background rate l D 20 s¡1). Detectability as a
function of the width of the analysis window, centered in the hot region. (Upper
graph) Dashed line is the diagonal, where as many coincidences occur as ex-
pected for independent rates; the gray curve describes the minimal number of
coincidences na needed to ful�ll the signi�cance criterion. For analysis windows
below Tc, the number of coincidences increases faster than the minimal number
and surpasses the minimal number at Tmin. For Tw wider than Tc , the number of
coincidences increases with unit slope, slower than na. There is a second inter-
section at Tmax, above which the number of coincidences is no longer signi�cant.
The lower graph illustrates the dependence of the joint-surprise on Tw.
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the analysis window is placed in the middle of a hot region of width Tc, and
the width of the analysis window Tw is gradually increased (see Figure 10B).
As long as Tw · Tc, we face the situation of stationary injected events, dis-
cussed in the preceding section (cf. Figure 10A). Hence, we need a minimum
width of the analysis window (Ta) to detect the cluster of injected events. Ta

depends on only the combination of l and lc; its value can be obtained from
the calibration graph for the stationary situation (see Figure 10A, bottom).
When the analysis window exceeds the hot region (Tw > Tc), the total num-
ber of coincidences increases further. However, the slope is now reduced to
(lh)2, since the contribution of the injected coincidences remains constant
(MTc ¢ lch).

If nemp (Tw) increases faster than na(Tw), nemp can intersect na from below,
yielding the minimal window size Ta (compare to section C.1). Since the
width of the hot region de�nes the size of the analysis window, from where
on nemp (Tw) shows a reduced slope, a cluster can be detected only if Tc ¸ Ta,
with Tmin equal to Ta. For Tc < Ta, nemp (Tw) bends before reaching na. As
a result, Tmin does not exist. If nemp (Tw) increases faster than na(Tw), there
is always a Ta, but in contrast to the stationary situation, the existence of
Tmin depends on the width of the hot region Tc.

When Tc < Ta, the cluster cannot be detected, even with arbitrarily
large analysis windows. The reason is that at Tw D Tc, we have nemp(Tw) <
na(Tw), and for Tw > Tc, the slope Pnemp(Tw) < Pna(Tw). As a result, nemp(Tw)
remains below na(Tw). This argument also implies that when the cluster can
be detected (nemp (Tw) ¸ na(Tw) for Ta · Tw · Tc), a second intersection
of nemp (Tw) and na(Tw) must exist for some Tw > Tc. Hence, in that case,
there is a Tmax ¸ Tc at which nemp (Tw) intersects na(Tw) from above. Two
conclusions can be drawn from this. First, a cluster of excess coincidences
is not detectable if its duration Tc remains below the critical time span Ta.
Second, even if the cluster is detectable (Tc ¸ Ta), it may still go undetected
if the analysis window is either too small Tw < Ta or too wide Tw > Tmax .
The range of appropriate window sizes can be obtained from calibration
graphs as in Figure 10B.

When the analysis window is shifted gradually across the hot region, the
time course of the joint-surprise S appears symmetrical around the center of
the hot region. S has a trapezoidal shape in case of Tw 6D Tc that degenerates
to a triangle in the special case that Tw D Tc. The duration of the plateau
as a function of the parameter pair Tc, Tw is summarized in Table 1. Note
that in two of the three possible outcomes regarding the observables Tp
and Tw (Tp D 0 and Tp ¸ Tw), we have a unique expression for Tc (in the
remaining case Tp < Tw, two possibilities exist for Tc). This uniqueness can
be exploited to determine the extent of the hot region from the size of the
plateau:

Tc D
»

Tw for Tp D 0
Tw C Tp for Tp ¸ Tw.

(C.3)
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Because we are free in choosing the size of the analysis window Tw, the
requirement of equation C.3 can always be met. However, even for the case
where the relationship is not unique (Tp < Tw), a small variation of Tw
immediately allows differentiating between the two possible values of Tc:

Tc D

8
>>><

>>>:

Tw for Tp D 0
Tw C Tp for Tp ¸ Tw

Tw C Tp for Tp < Tw and PTp(Tw) > 0

Tw ¡ Tp for Tp < Tw and PTp(Tw) < 0.

(C.4)

From the shape of the signi�cance curve and the relationships worked out
in equations C.3 and C.4, we can estimate Tc. If the signi�cance threshold
is reached at all, typically more than one window is signi�cant. Only in the
special case of Tw D Tc D Ta is the maximum of S exactly at threshold level
and for a single window only.

For a given combination Tc, Tw, we can compute the minimal overlap f
of the two windows needed to detect the injected coincidences as signi�cant.
The overlap f describes the part of Tc “seen” by Tw, expressed as a fraction
of Tw:

T0
c D

(
f ¢ Tw for f ¢ Tw < Tc

Tc, otherwise.
(C.5)

We can now use Tmax to compute the minimal f . To this end, we reverse the
question that originally led to the de�nition of Tmax:given a �xed Tw, what is
the minimal T0

c (and hence, fmin) needed to detect the injected coincidences
as signi�cant? Formally, this fmin can be computed as follows:

Tmax (T 0
c,min) D Tw (C.6)

Tmax ( fmin ¢ Tw) D Tw (C.7)

fmin(Tw) D
1

Tw
¢ T¡1

max (Tw). (C.8)

Having found the minimal overlap fmin, we can construct the extent of the
region Ts in which injected coincidences are marked as signi�cant (the time
span between the two intersections of S with the signi�cance threshold):

Ts D (Tw ¡ fmin ¢ Tw) C Tc C (Tw ¡ fmin ¢ Tw) (C.9)

D 2 ¢ Tw C Tc ¡ 2 ¢ fmin ¢ Tw (C.10)

D Tc C 2 ¢ (1 ¡ fmin) ¢ Tw. (C.11)

The minimal Ts is obtained for Tw D Ta: in that case, fmin D 1. Hence, it
follows that Ts D Tc.
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Figure 11: Multimodal rate amplitude histogram of a frontal cortex neuron, ob-
served over 58 trials of 1500 ms duration. The rate was estimated by calculating
a PSTH, smoothed with a window of 200 ms.

Appendix D: Detecting Unitary Events by Cluster Analysis

The approach in UECA is based on the assumption that the neurons’ �ring
rates observed in parallel can only be in one of a �nite number of joint rate
“states” (Abeles et al., 1995; Seidemann et al., 1996). Using a clustering al-
gorithm, segments of joint-stationary rates can be detected. In each of the
resulting time segments, the unitary events analysis for the stationary case
(see the companion article) is then performed separately. The amplitude
distributions of the neurons’ �ring rates in many cases show indications
of multimodality, suggesting that the �ring rates can be in any of a �nite
number of states (e.g., Figure 11). Accordingly, we try to separate the com-
bined rate activity of several simultaneously recorded neurons into joint
stationary regions, de�ned as the time segments in which all the �ring rates
of the N observed neurons are stationary in parallel. This is achieved on
the basis on estimates of the instantaneous �ring rates (e.g., PSTHs) of each
neuron. At each instant of discretized time, we derive a joint-rate vector, its
components being the rate of neuron i at time t:

¡!
l (t) D

2

6666664

l1(t)
...

li (t)
...

lN(t)

3

7777775
, i D 1, . . . , N. (D.1)

These vectors are grouped in N-dimensional l-space into clusters of sim-
ilar joint-rate vectors by the k-means clustering algorithm (Hartigan, 1975).
It clusters according to R centers of gravity ¡!m k . Since we usually do not know
the number of the underlying rate states of our data beforehand, we have



Unitary Events: II. Nonstationary Data 115

to vary the number of clusters and check the clustering result in each case.
The stopping criteria for the “correct” number of clusters are given by the
constraints that each potentially underlying joint state should be captured
and that states should not be split into arti�cial ones (“over�tting”). For this
purpose, we de�ned the following pairwise relative cluster distance:

dk, l D
|¡!m l ¡ ¡!m k |

|¡!sl | C |¡!sk |
, 8 k, l 2 1, . . . , R, k 6D l, (D.2)

¡!sk representing the vector of standard deviation in the kth cluster. The
stopping criteria are ful�lled if

dk, l ¸ 1, 8 k, l 2 1, . . . , R, k 6D l. (D.3)

We call the �nal set of cluster joint-stationary rate states. Estimates of the
�ring rates are obtained by identifying the membership of each joint-rate
vector

¡!
l with the cluster mean it belongs to. Projecting the cluster mean

back to the associated position on the time axis, we can observe the time
course of cluster membership (PSTHs in Figure 12). The set of time instances
identi�ed as belonging to the same cluster de�nes the time segmentation
of a state. Data from all segments belonging to one state are analyzed as
one single stationary data set. Note that the set of time steps belonging to a
single cluster is not necessarily compact and may in fact contain a number
of separate time intervals, over which the neurons have approximately the
same rates.

The performance of the clustering algorithm on a set of simulated, par-
allel Poisson processes is illustrated in Figure 12. Two extreme cases of
�ring-rate variations are chosen, covering the possible features of gradual
(Figure 12A) and stepwise (Figure 12B) changes. To avoid over�tting, that is,
�tting of states to variations that are due only to statistical �uctuations, we
smoothed the PSTHs by using a moving average (Abeles, 1982a; Kendall,
1976). The choice of the width of the smoothing window has to be a com-
promise between large enough to reduce the noise level and small enough
not to �atten out meaningful changes of the �ring rate (see also Nawrot,
Aertsen, et al., 1999). Observe that trajectories of the joint-rate vectors form
clouds in rate space, well separated for rapid changes of the �ring rates (see
Figure 12A). Clusters can clearly be identi�ed. By contrast, and not unex-
pectedly, gradual changes of �ring rates (see Figure 12B) give rise to less
well separated clouds or even smooth trajectories.
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Figure 12: Unitary events by cluster analysis. Dot displays (middle) show the
spiking activity of two parallel processes, the rates of which were varied in
stepwise (A) or gradual (B) fashion. (A) 100 trials on the basis of time-varying
rates in stepwise fashion: l1(i) D 30 s¡1 , for i 2 [1, 250); l1 (i) D 60 s¡1, for
i 2 [250, 500); l1(i) D 40s¡1 , for i 2 [500, 1000]I l2 (i) D 30 s¡1 , for i 2 [1, 250);
l2 (i) D 50 s¡1, for i 2 [250, 750); l2 (i) D 10 s¡1, for i 2 [750, 1000]. (B) 100
(out of the 1000) trials in which neuron 2 was simulated with a constant rate
of 30 s¡1, whereas the rate of neuron 1 is changing linearly throughout the trial
from l1 D 20 s¡1 to 90 s¡1. The PSTHs (bottom panels) represent the time course
of the instantaneous �ring rates (smoothing window of 20 ms). (Top panels)
Trajectories of the joint-rates in rate space. Each instance of a joint-rate vector is
represented by a small gray star (abscissa: rate of neuron 1, ordinate: neuron 2).
Members of different clusters are indicated by different gray levels. Cluster
means are indicated by black crosses and standard deviations by the length of the
cross-lines. Rates corresponding to the cluster means are superimposed on the
PSTHs in the bottom panels. Cluster means approximate the original stationary
rate levels; standard deviations (dashed lines) illustrate the variability of the
rates within each cluster. Stepwise changes of cluster means indicate the timing
segmentation used in further analysis. In B, clustering resulted in an average
width of a time segment of 75 ms.
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