
LETTER Communicated by George Gerstein

Unitary Events in Multiple Single-Neuron Spiking Activity:
I. Detection and Signi�cance

Sonja Grün
gruen@mpih-frankfurt.mpg.de
Department of Neurophysiology, Max-Planck Institute for Brain Research, D-60528
Frankfurt/Main, Germany

Markus Diesmann
diesmann@chaos.gwdg.de
Department of Nonlinear Dynamics, Max-Planck Institut für Strömungsforschung,
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It has been proposed that cortical neurons organize dynamically into func-
tional groups (cell assemblies) by the temporal structure of their joint
spiking activity. Here, we describe a novel method to detect conspicuous
patterns of coincident joint spike activity among simultaneously recorded
single neurons. The statistical signi�cance of these unitary events of coin-
cident joint spike activity is evaluated by the joint-surprise. The method
is tested and calibrated on the basis of simulated, stationary spike trains
of independent ly �ring neurons, into which coincident joint spike events
were inserted under controlled conditions. The sensitivity and speci�city
of the method are investigated for their dependence on physiological pa-
rameters (�ring rate, coincidence precision, coincidence pattern complex-
ity) and temporal resolution of the analysis. In the companion article in
this issue, we describe an extension of the method, designed to deal with
nonstationary �ring rates.

1 Introduction

In the classical view, �ring rates play a central role in neural coding (Bar-
low, 1972, 1992). This approach indeed led to fundamental insights into the
neuronal mechanisms of brain function (Georgopoulos, Taira, & Lukashin,
1993; Hubel & Wiesel, 1977; Newsome, Britten, & Movshon, 1989). In paral-
lel, however, a different concept was developed, in which the temporal
organization of spike discharges within functional groups of neurons—
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so-called neuronal assemblies (Hebb, 1949)—contribute to neural coding
(von der Malsburg, 1981; Abeles, 1982b, 1991; Gerstein, Bedenbaugh, &
Aertsen, 1989; Palm, 1990; Singer, 1993). It was argued that the biophysics
of synaptic integration favors coincident presynaptic events over asyn-
chronous ones (Abeles, 1982c; Softky & Koch, 1993). Accordingly, synchro-
nized spikes are considered a property of neuronal signals that can be de-
tected and propagated by other neurons (Diesmann, Gewaltig, & Aertsen,
1999). In addition, these spike correlations should be dynamic, re�ecting
varying af�liations of the neurons, depending on stimulus and behavioral
context. Thereby, synchrony of �ring would be directly available to the brain
as a potential neural code (Perkel & Bullock, 1968; Johannesma, Aertsen, van
den Boogaard, Eggermont, & Epping, 1986).

Dynamic modulations of spike correlation at various levels of precision
have in fact been observed in different cortical areas: visual (Eckhorn et al.,
1988; Gray & Singer, 1989; for reviews, see (Engel, König, Schillen, & Singer,
1992; Aertsen & Arndt, 1993; Singer & Gray, 1995; Roelfsema, Engel, König,
& Singer, 1996; Singer et al., 1997; Singer, 1999), auditory (Ahissar, Bergman,
& Vaadia, 1992; Eggermont, 1992; DeCharms & Merzenich, 1996; Sakurai,
1996), somatosensory (Laubach, Wessberg, & Nicolelis, 2000; Nicolelis, Bac-
cala, Lin, & Chapin, 1995;Steinmetz et al., 2000), motor (Murthy & Fetz, 1992;
Sanes & Donoghue, 1993; Hatsopoulos, Ojakangas, Paninski, & Donoghue,
1998), and frontal (Aertsen et al., 1991; Abeles, Vaadia, Prut, Haalman, &
Slovin, 1993; Abeles, Bergman, Margalit, & Vaadia, 1993; Vaadia et al., 1995;
Prut et al., 1998). Little is known, however, about the functional role of
temporal organization in such signals. First hints toward the importance
of accurate spike patterns came from the work of Abeles and colleagues
(Abeles, Vaadia, et al., 1993; Abeles, Bergman, et al., 1993; Prut et al., 1998).
They observed that multiple single-neuron recordings from the frontal cor-
tex of awake, behaving monkeys contain an abundance of recurring precise
spike patterns. These patterns had a duration of up to several hundred mil-
liseconds, repeated with a precision of §1 ms, and occurred in systematic
relation to sensory stimuli and behavioral events.

To test the hypothesis that cortical neurons coordinate their spiking ac-
tivity into volleys of precise synchrony, we developed a method to detect
the presence of conspicuous spike coincidences in simultaneously recorded
multiple single-unit spike trains and to evaluate their statistical signi�cance.
We refer to such conspicuous coincidences as unitary events and de�ne them
as those joint spike constellations that recur more often than expected by
chance (Grün, Aertsen, Abeles, Gerstein, & Palm, 1994; Grün, 1996). Brie�y,
the algorithm works as follows: The simultaneous observation of spiking
events fromN neurons isdescribed mathematicallyby the jointprocess com-
posed of N parallel point processes. By appropriate binning, this is trans-
formed into an N-fold (0, 1)-process, the statistics of which are described by
the set of activity vectors re�ecting the various (0, 1)-constellations occur-
ring across the neurons. Under the null hypothesis of independent �ring,
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the expected number of occurrences of any activity vector and its probability
distribution can be calculated analytically on the basis of the single-neuron
�ring rates. The degree of deviation from independence is derived by com-
paring these theoretically derived values with their empirical counterparts.
Those activity vectors that violate the null-hypothesis of independence de-
�ne potentially interesting occurrences of joint-events; their composition
de�nes the set of neurons that are momentarily engaged in synchronous
activity.

To test the signi�cance of such unitary coincident events, we developed
a new statistical measure: the joint-surprise. For any particular activity vec-
tor, the joint-surprise measures the cumulative probability of �nding the
observed number of coincidences or an even larger one by chance. To ac-
count for nonstationarities in the discharge rates, modulations in spike rates
and coincidence rates are determined on the basis of short data segments
by sliding a �xed time window (typically 100 ms wide) along the data in
steps of the coincidence bin width. This segmentation is applied to each
trial, and the data of corresponding segments in all trials are analyzed
as one quasi-stationary data set, using the appropriate rate approxima-
tion.

Having �rst ascertained the statistical signi�cance of brief epochs of
synchronous spiking, the functional signi�cance of such unitary coinci-
dent events is then tested by investigating the times of their occurrence
and their composition in relation to sensory stimuli and behavioral events.
Thus, Riehle, Grün, Diesmann, and Aertsen (1997) found that simultane-
ously recorded activities of neurons in monkey primary motor cortex exhib-
ited context-dependent, rapid changes in the patterns of coincident action
potentials during performance of a delayed-pointing task. Accurate spike
synchronization occurred in relation to external events (visual stimuli, hand
movements), commonly accompanied by discharge rate modulations, how-
ever, without precise time locking of the spikes to these external events.
Accurate spike synchronization also occurred in relation to purely internal
events (stimulus expectancy), where �ring-rate modulations were distinctly
absent. These �ndings indicate that internally generated synchronization of
individual spike discharges may subserve the cortical organization of cogni-
tive motor processes. The clear correlation of the precise spike coincidences
with behavioral events was interpreted as evidence for their functional rel-
evance (Riehle et al., 1997; Fetz, 1997).

Thus, unitary event analysis evoked a considerable amount of interest in
the ongoing debate on spike synchronization (Shadlen & Newsome, 1998;
Diesmann et al., 1999) and its detectability in experimental data (Pauluis
& Baker, 2000; Roy, Steinmetz, & Niebur, 2000; Gütig, Aertsen, & Rotter, in
press). It is currently used in a number of laboratories (Pauluis, 1999; Gram-
mont & Riehle, 1999; Riehle, Grammont, Diesmann, & Grün, 2000). Here
we provide for the �rst time a full account of the unitary event method
and discuss its underlying principles in detail. In this article, we describe
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the theory and statistical background of the analysis method for stationary
conditions—when the �ring rates of the neurons under observation do not
change as a function of time. Simulated spike trains, consisting of parallel,
independent Poisson processes into which we inserted particular coinci-
dent spike constellations under controlled conditions, were used to test and
calibrate the method. In the companion article in this issue, we extend the
method to deal with nonstationary �ring rates and to illustrate its poten-
tial by analyzing multiple single-neuron recordings from frontal and motor
cortical areas in awake, behaving monkeys. Preliminary descriptions of the
method have been presented in abstract form (Grün, Aertsen, Abeles, &
Gerstein, 1993; Grün et al., 1994; Grün & Aertsen, 1998) and in Riehle et al.,
(1997).

2 Detecting Unitary Events in Joint Spiking Activity

2.1 Representation of Joint Spiking Activity. By introducing a tempo-
ral resolution D , the spike train of a single neuron i recorded over a time
interval of length T can be represented by a binary process vi(t), that is, as
a (0, 1)-sequence. With T D bT /Dc denoting the total number of time steps,
we de�ne

vi(t) D

(
1, if spike in [t, t C D )

0, if no spike in [t, t C D ),

t D 0, 1D , 2D , . . . , (T ¡ 1)D . (2.1)

The minimal D is set by the spike time resolution h (in the data we analyzed,
typically 1 ms). In our analysis, we used integer multiples of the data reso-
lution D D bh for the binning grid, with b serving as a control parameter for
the analysis precision (D is called analysis bin size). Thus, each point in time
is assigned to a unique bin, which we refer to as exclusive binning. A single
bin, however, may contain more than one spike. Equation 2.1 guarantees
that vi (t) is restricted to 1, even if the corresponding bin contains more than
one spike, which we refer to as clipping.

The simultaneous observation of spike events from N neurons can now
be represented in this binary framework. The activities of the individual
neurons i are described by parallel binary sequences vi(t). Alternatively,
we can describe the N sequences as a single sequence of a vector-valued
function v(t), the components of which are formed by the vi(t):

v (t) D

2

6666664

v1 (t)
...

vi (t)
...

vN (t)

3

7777775
, i D 1, . . . , NI vi 2 f0, 1g . (2.2)
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Figure 1: N parallel binary processes, lasting for T time steps. Each horizontal
row, consisting of a sequence of 0s and 1s, represents a realization of a single
process vi. The 1s mark the occurrences of spike events. The joint activity across
the processes at each instant in time can beexpressed bya vector v(t), as indicated
for one example. The empirical �ring probability per bin pi of each single process
is evaluated as the marginal probability: the number of spikes in the observation
time interval, divided by the number of time steps.

This scheme is illustrated in Figure 1. At each time step, v(t) equals one of
the m D 2N possible constellations of 0s and 1s (coincidence patterns). The
m possible constellations vk are identi�ed by a (for now) arbitrary index
function k (e.g., let vk be mapped to an integer k 2 f1, . . . , mg by interpret-
ing vk as the binary representation of an integer (vk

N . . . vk
1)2 and de�ning

k D (vk
N . . . vk

1)2 C 1). The empirical number of occurrences of a coincidence
pattern vk in data recorded over an interval T is called nk.

2.2 The Null-Hypothesis of Independent Firing. We are interested in
detecting the (sub)groups of neurons jointly involved in a cell assembly—the
neurons that act in an interdependent manner. To distinguish these neurons
from those that are not involved, we develop a statistical tool to test the null
hypothesis (H0) of independent neurons.

Under this null-hypothesis, the joint-probability Pk D P(vk) of a coinci-
dence pattern vk (a particular constellation of spikes and nonspikes across
the observed neurons) equals the product of the probabilities of the indi-
vidual events:

H0: Pk D
NY

iD1

P
±
vk

i

²
,

with P
±
vk

i

²
D

(
P (vi D 1) , if vk

i D 1

1 ¡ P (vi D 1) , if vk
i D 0.

(2.3)

Equation 2.3 assumes independence of the N neuronal processes. In addi-
tion, we now make the assumption that the binary sequence describing the
activity of a single neuron (equation 2.1) represents a sequence of Bernoulli
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trials (Feller, 1968). The probability of a speci�c outcome vi(t) does not de-
pend on the value of vi at any other point in time. A Poisson process, often
used to model neuronal spike trains (see section 5), leads to a binary se-
quence in accordance with the above assumption. Equation 2.3 is based on
precise knowledge of the single-neuron �ring probabilities pi D P (vi D 1).
However, in the experimental situation, the �ring probabilities are typically
unknown and have to be estimated from the data. The simplest scheme is
to adopt the frequency interpretation (e.g., Feller, 1968) and use the number
of spike events ci in the observation interval T containing T time steps to
calculate the probability pi D ci/T as an estimate for the �ring probability
of neuron i (for an alternative approach, see Gütig et al., in press).

The task now is to develop a tool that enables us to judge whether the
empirical number of occurrences nemp

k of a particular coincidence pattern

vk deviates signi�cantly from the expected number npred
k .

2.3 Describing Independently Spiking Neurons by Multiple Bernoulli
Trials. Consider a set of parallel realizations of the N binary processes with
duration T. The N resulting T-dimensional row vectors can be combined to
a matrix of 0s and 1s with N rows and T columns (see Figure 1). According to
the assumptions made in the previous section, the probability of a particular
outcome in a speci�c matrix element does not depend on the outcome in any
of the other matrix elements. Equivalently, we can describe the realization as
a succession of T N-dimensional column vectors (coincidence patterns). A
process generating such N-dimensional events is called a multiple Bernoulli
trial (Feller, 1968). Following Feller (1968), we can write the probability of
�nding each pattern vk exactly nk times in the observation interval directly
in terms of the Pk:

y (n1, n2, . . . , nmI P1, P2, . . . , PmI T) D
T!Qm

kD1 nk!
¢

mY

kD1

Pnk
k . (2.4)

This expression represents a generalization of the binomial distribution to a
process with more than two possible outcomes and is called a multinomial
distribution. The Pk and nk are subject to the normalizing conditions

mX

kD1

Pk D 1 (2.5)

mX

kD1

nk D T. (2.6)

For any particular spike constellation vk (de�ning that particular vk as
“the” outcome and all the rest as “the others”), the probability distribution
in equation 2.4 can be reduced to the binomial distribution. For such selected
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Figure 2: (A) Three examples of Poisson distributions, for parameters npred D
5, 15, and 50 (from left to right). (B) The black shaded area under the Poisson
distribution (npred D 15), ranging from nemp D 25 to in�nity, indicates the joint-
p-value Y as the cumulative probability. For this example, the joint-p-value
equals 0.0112. (C) The joint-surprise S shown as a logarithmic scaling function
of the joint-p-value. The dash-dotted line equals the surprise measure as de�ned
by Palm (1981), and the solid line shows the continuous, differentiable version
used here: the joint-surprise (see equation 2.10). The value of the joint-surprise
corresponding to the joint-p-value in the example in B is 1.9459.

constellation vk, we obtain

y (nkI PkI T) D
T!

nk! ¢ (T ¡ nk)!

¢ Pnk
k ¢ (1 ¡ Pk)T¡nk , k D 1, . . . , m. (2.7)

Since the number of time steps T (or Tb D T/b for a binning grid b) is
usually large for bh in the order of 1 ms and the associated probabilities Pk
are small, while their product Pk ¢ T remains moderate, equation 2.7 can be
approximated by the Poisson distribution (Feller, 1968; see Figure 2A):

y (nkI PkI T) D
(Pk ¢ T)nk

nk!
¢ exp (¡Pk ¢ T) , k D 1, . . . , m. (2.8)

Here, Pk ¢ T is the rate parameter of the Poisson distribution, de�ning the

expected number of occurrences npred
k D Pk ¢T of the joint spike constellation

vk.

2.4 Signi�cance of Joint-Events: The Joint-Surprise. For each of the
m constellations vk in the observation set, equation 2.7 describes the null-
hypothesis of independent component processes. The expected number of

occurrences npred
k D Pk ¢ T de�nes the center of mass of the distribution.
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Thus, for each empirical number of occurrences nemp
k , we can now com-

pute the statistical signi�cance of the deviation from independence. It is
de�ned as the cumulative probability of �nding the observed number of
occurrences nemp

k or an even larger one (an alternative approach of mea-
suring deviation from independence using the framework of information
theory is discussed in appendix C). We call this cumulative probability the
joint-p-value Y, de�ned by

Y
±
nemp

k | npred
k

²

D
1X

nkDnemp
k

y
±
nk, npred

k

²

D
1X

nkDnemp
k

±
npred

k

²nk

nk!
¢ exp

±
¡npred

k

²
, k D 1, . . . , m. (2.9)

It can ef�ciently be evaluated numerically using the connection to the reg-
ularized incomplete gamma function (Press, Teukolsky, Vetterling, & Flan-
nery, 1992). Figure 2B shows Y as the black area under the distribution. The
smaller this area is, the higher is the signi�cance of the corresponding count:

if nemp
k > npred

k then 0 · Y < 0.5

if nemp
k ’ npred

k then Y ’ 0.5

if nemp
k < npred

k then 0.5 < Y · 1.

Thus, the larger the number of excessive coincidences, the closer Y is to 0.
By similar reasoning, we can de�ne the statistical signi�cance for coinci-

dence patterns occurring at an unexpectedly low rate (i.e., “lacking” coin-
cidences). The statistical signi�cance of �nding at most nemp

k repetitions of
pattern vk is obtained as the complementary part of the sum in equation 2.9
(nk D 0, . . . , nemp

k ). In that case, the lower the number of coincidences is (or,
the larger the number of lacking ones), the closer Y is to 1 and the closer its
complement 1 ¡ Y is to 0.

To enhance thevisual resolutionat the relevant low values for Y (or 1¡Y),
one may choose a logarithmic scaling as was done for the surprise measure
(Legendy, 1975; Palm, 1981; Legendy & Salcman, 1985; Palm, Aertsen, &
Gerstein, 1988; Aertsen, Gerstein, Habib, & Palm, 1989). This is a straight-
forward scale transformation, de�ned as ¡ log(Y) for Y larger than 0.5 and
as ¡ log(1¡Y) for Y smaller than 0.5. However, since this function is discon-
tinuous at Y D 0.5 (see Figure 2C, dotted line) it leads to wildly �uctuating
values when considering Y-values close to chance level. To overcome this
problem, we de�ne a new transformation, the joint-surprise, which approx-
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imates the conventional surprise measure for the relevant values of Y and
yields a continuous and differentiable function around Y D 0.5:

S(Y) D log
1 ¡ Y

Y
. (2.10)

For excessive coincidences, this function is dominated by the numerator Y;
for lacking coincidences, it is dominated by the denominator 1 ¡ Y (see
Figure 2C, solid line). It turns out that the expression for the joint-surprise
(equation 2.10) is equivalent (apart from minor details) to the difference of
the surprise for excitation and surprise for inhibition used in Palm et al.
(1988) and Aertsen et al. (1989). Equation 2.10 is comparable to measure
signi�cance on a dB scale and yields positive numbers for excessive coinci-
dences (e.g., S D 1 for Y D 0.1, or S D 2 for Y D 0.01), negative numbers
for lacking ones, while changing sign at chance level Y D 0.5:

if nemp
k > npred

k then S > 0

if nemp
k ’ npred

k then S ’ 0

if nemp
k < npred

k then S < 0.

2.5 Unitary Events: De�nition and Detection. On the basis of the joint-
surprise as a measure of signi�cance, we now de�ne unitary events as those
joint spike events vk in a given interval T that occur much more often than
expected by chance. To that end, we set a threshold Sa on the joint-surprise
measure and denote the occurrences of those vk for which

S
±

nemp
k | npred

k

²
¸ Sa (2.11)

as unitary events. The arguments of S(nemp
k | npred

k ) remind us that this test
is performed separately for each coincidence pattern vk in the interval T .

The raster display (or dot display) is the standard tool used by the elec-
trophysiologist to look for temporal structure in the “raw” spike data (see
Figure 3). Since we are interested in the dynamics of assembly activation,
we want to detect the joint spike constellations that possibly express assem-
bly activity as they occur in time. To visualize occurrences of potentially
interesting coincidence patterns in relation to other instances of itself, other
patterns, or other events (e.g., behavioral, stimuli), we mark all spikes in
all instantiations of a signi�cant pattern vk by squares (see Figure 3, lower
row). For any Sa, there is necessarily a certain probability of detecting a vk as
signi�cant in a realization of independent processes (false positive). Given
a realization of dependent processes generating a surplus of vk, there is a
certain probability not to detect the pattern as signi�cant (false negative).
To obtain maximum sensitivity while maintaining a minimum level of false
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Figure 3: Dot displays in the two top panels show the simultaneous activity of
six simulated neurons: independent (A) and dependent (B) �ring. Firing rates
are:neuron 1:10s¡1;2:20s¡1;3:15 s¡1;4:30s¡1;5:25 s¡1; 6:15 s¡1. The spike trains
in B are generated by �rst copying the spike trains of A. Dependencies between
neurons are then introduced by injecting coincident events, consisting of neuron
pairs 1,3 and 2,5 (both at coincidence rate of 1 s¡1), randomly distributed in
time over all the trials. Each box contains the spike activity of a single neuron
over 100 trials of 1000 ms duration. Each dot represents a spike at the time of
its occurrence. Trials are organized in rows. Bottom panels: Spikes belonging
to statistically signi�cant constellations (unitary events) are marked by squares.
Observe the different numbers of occurrences of unitary events in A and B due to
the injected coincidences. In addition, in B, some of the constellations containing
the injected spikes as subpatterns are also detected as signi�cant events.
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positives (see elaboration in section 4), we set the threshold Sa to a level
between 1.28 and 2. This corresponds to a signi�cance level a between 0.05
and 0.01, a commonly used threshold level in statistical signi�cance tests
(e.g., Hays, 1994, “p-value”).

The coincidence patterns vk contain different numbers of spikes ranging
from 0 to N. We call the number of spikes in a pattern complexity:

j (vk) D
NX

iD1

vk
i . (2.12)

There are
¡N

j

¢
patterns of complexity j . Because each of the patterns is as-

signed a complexity j 2 f0, . . . , Ng, we recover the total number of patterns
by the binomial theorem,

NX

j D0

³
N
j

´
D 2N .

The single pattern of complexity 0 (no spike) and the N patterns of com-
plexity 1 (spike from one neuron) do not represent joint spiking activity
in the natural sense. Therefore, we typically concentrate on patterns with
j (vk) > 1. For a signi�cant vk with j > 1, each square in a dot display has
a counterpart in at least one other box of the dot display at the same time
instant.

The procedure is illustrated in Figure 3A for simulated realizations of
six independent processes and in Figure 3B for six dependent parallel pro-
cesses. Here, all patterns with j (vk) > 1 are tested independently using
equation 2.11, and all signi�cant occurrences are marked according to the
convention. However, there is no need to visualize all patterns simulta-
neously. In an application of the method to experimental data, it might be
useful to generate separate raster displays for individual patterns or subsets
of patterns.

The simulation, like all further simulations, was performed as follows.
Several (here N D 6) spike trains of 100s duration were generated using
independent homogeneous Poisson processes, each with a particular rate
parameter li. The single spike trains were then combined, as if they had
been recorded simultaneously from as many neurons. For visualization,
spike data are organized in 100 consecutive trials of 1s duration (see Fig-
ure 3). Time resolution was set to h D 1 ms. In addition, into one of the
data sets (see Figure 3B) we introduced statistical dependencies by injecting
pairs of simultaneous spikes into the spike trains of neuron pairs 1, 3 and
2, 5, respectively. Both coincidences occurred at a rate of 1 s¡1 and were ran-
domly distributed in time, such that on average, each trial contained one
injected coincident event. In the context of this article, it is important to note
that spike trains were generated by stationary processes and that the anal-
ysis was performed once, taking into account the entire data set. “Trials”
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are introduced here only for visualization. An equivalent description is that
each box in Figure 3 displays the activity of a neuron as a page of text (i.e.,
written left to right and top to bottom). The concept of a trial becomes im-
portant only when treating nonstationary data (see the companion article).
When data are organized in trials, T is understood to specify the duration
of a trial (in time steps) and M ¢ T is the duration of the full data set, with M
indicating the number of trials.

As expected, the raster displays of the two data sets look very similar
(Figure 3, top row). Since the rate of injected coincident spikes (1 s¡1) is
low compared to the baseline �ring rates, comparison of corresponding �r-
ing rates in the two data sets does not reveal any noticeable difference (not
shown here). The analysis for unitary events was performed with the thresh-
old level set at a D 0.05. With 2N ¡

¡N
1

¢
¡

¡N
0

¢
D 57 patterns independently

tested at a D 0.05, we expect to �nd 2.85 patterns to be marked as signif-
icant. Observe that the dependent data set in Figure 3B (bottom) exhibits
many unitary events, whereas the independent data in Figure 3A (bottom)
set has almost none. Moreover, the few unitary events in the independent
data set consist of spike patterns of complexity 3 and 4, appearing three and
one times, respectively. Their signi�cance is due to statistical �uctuations
(we will return to this dependence on pattern complexity). In the depen-
dent data set, however, almost all signi�cant constellations correspond to
the injected coincidences (between neurons 1 and 3, and neurons 2 and 5).
In addition, some higher-order constellations containing the injected spikes
as subpatterns also appear as unitary events, leading to the few squares
in the raster display of neuron 6. As was to be expected from the random
insertion times of the injected coincidences, the unitary events appear ran-
domly distributed over time and trials. In real neuronal data, however, their
times of occurrence may provide information concerning the dynamics of
these potentially interesting constellations and their relation to stimuli or
behavioral events (Riehle et al., 1997).

3 Dependence of Joint-Surprise on Physiological Parameters

Having derived the joint-surprise as a measure for statistical signi�cance
of joint spiking events, we now investigate its performance with respect to
various physiologically relevant parameters: the �ring rates of the neurons
under consideration, the time resolution (bin size) chosen for the analysis,
the rate of spike coincidences, their coincidence accuracy (allowing the bio-
logical system some degree of noise), and the number of neurons involved.
To this end, we calibrate the performance of the joint-surprise by applying it
to appropriately designed sets of simulated data. As before, the control data
sets consist of independently generated Poisson trains of varying base rates.
These are compared to different data sets, containing additionally injected
coincidences of varying complexities and coincidence rates. Typically, the
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simulated data consisted of M D 100 trials of 1000 ms each and a time res-
olution of h D 1 ms. The rates of the random Poisson trains were chosen
to cover a physiologically realistic range for cortical neurons—between 10
and 100 s¡1.

3.1 In�uence of the Firing Rate. To investigate the in�uence of the neu-
rons’ �ring rates, we studied two parallel spike trains generated as inde-
pendent Poisson processes, with both the same and constant rate. We varied
this rate from l D 10 to 100 s¡1 in steps of 10 s¡1, in the presence of different
constant injection rates lc. Expectation values for the number of coinci-
dences in the data set nemp and the number of coincidences expected to
occur assuming independence npred are:

nemp D
h
lch C (lh)2

i
¢ MT

npred D [(lc C l)h]2 ¢ MT. (3.1)

The probability per time step for a coincidence in the presence of injected
coincidences is the sum of the probability of seeing an injected coincidence
lch and seeing a chance coincidence (lh)2. For experimental data, we have to
estimate the �ring rates from the data set. The marginal probabilities (spike
count divided by time interval) cannot distinguish between the base rate
and the injection rate. Therefore, we obtain lc C l as the expectation value
for the �ring rate and [(lc C l)h]2 as the expectation value for the proba-
bility to �nd a coincidence assuming independence. Further corrections for
the speci�c injection process are discussed in Grün, Diesmann, Grammont,
Riehle, and Aertsen (1999). Values obtained for nemp and npred in different
realizations �uctuate around their expectation values. To visualize the ef-
fect of statistical �uctuations, we generated 10 data sets for each rate level.
Figure 4A (top) shows that the empirical numbers of coincidences nemp (di-
amonds) indeed match the number expected assuming independence npred

(solid lines), apart from small statistical �uctuations. The number of co-
incidences exhibits a convex dependence on background �ring rate. From
equation 3.1, we know that the increase is quadratic, (h2 ¢ MT) being the
coef�cient of the leading power. At l D 0, that is, only injected spikes
in both situations, the expectation values nemp and npred are (lch) ¢ MT and
(lch)2 ¢MT, respectively. Comparison of the expressions for nemp and npred in
equation 3.1 shows that in the regime (lc C 2l)h < 1, the difference decreases
linearly with l. Variability in counts increases with �ring rate because of the
well-known property of the Poisson distribution (see equation 2.8) that the
count variance equals the mean. Figure 4 (top row) demonstrates that also
the expected number of coincidences assuming independence npred exhibits
�uctuations. These �uctuations are caused by the fact that the �ring rates
have to be estimated from the data. The variance is given by

s2
npred D [(l C lc)h]2 (2l C 4lc)h ¢ MT, (3.2)
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Figure 4: Detection of coincident events under different �ring-rate conditions.
Simulated data from two parallel processes were analyzed for the presence of
coincident events. Realizations consisting of 100 trials, each of duration 1000 ms,
were generated with a time resolution of 1 ms. Rates of both processes were var-
ied from 10 to 100 s¡1 in steps of 10 s¡1. The experiment was repeated 10 times
at each rate, to visualize statistical variations. Coincident events, also generated
by Poisson processes, were injected into each of the 10 data sets at one of two
coincidence rates (B: 0.5s¡1, C: 1s¡1). The results of the control experiments
without injected events are shown in A. Data were analyzed for the number of
empirical occurrences (top row, diamonds) versus expected level (top row, solid
lines, theoretical curve in gray), estimated from the marginal probabilities. The
corresponding joint-surprise is shown in the bottom panels (diamonds, theo-
retical curve in gray). Results for the 10 realizations per �ring rate are grouped
together, giving rise to the stairway-like appearance of the plots. Horizontal
lines in the bottom panels indicate the signi�cance threshold (a D 0.01).

which, with lc < l, is bounded by

3 [(l C lc)h]3 ¢ MT. (3.3)

This dependence on the third power in lh renders it much smaller than the
variance of nemp in the parameter range of interest (say, lh < 1

6 , lc < l).
Closely related to the probability of obtaining false positives (signi�cant

outcome in the absence of excess coincidences; see section 4) is the question
of how precisely npred can be estimated when no coincidences are injected.
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Comparing the variance of the coincidence counts when no coincidences are
injected (lh)2 ¢ MT with equation 3.2 for lc D 0 suggests that above lh D 1

2 ,
the variance of npred exceeds the variance of nemp . However, at this high
probability, the Poisson distribution is no longer a good approximation.
Using the binomial distribution (see equation 2.7) in the argument above,
it turns out that the variance of npred is always smaller than the variance
of nemp. The insight gained by analyzing the variances of npred and nemp

to understand the �uctuations of S is limited, because the two measures
are not completely independent: a high spike count for one of the neurons
simultaneously leads to high values for npred and nemp. We present an anal-
ysis of the relation of signi�cance level a to the percentage of false positives
obtained in independent data sets in section 4.

Figure 4 (bottom row) shows the joint-surprise values corresponding
to the (npred, nemp) pairs (top row). Without injected coincidences, the joint-
surprise �uctuates around 0, independent of the rate, due to the �uctuations
in nemp and npred. Because we necessarily have �uctuations in npred, the
percentage of experiments in which the coincidence count is signi�cant may
differ from the theoretical value (assuming a known npred) determined by
Sa (see section 4). In the case of injected coincident events, the measured and
expected coincidence counts deviate from each other, and the more so the
higher the injection rate (for Figure4B, 0.5 s¡1; for Figure 4C,1 s¡1). The joint-
surprise declines hyperbolically with increasing background rate due to the
decreasing ratio (nemp ¡ npred)/npred. At vanishing background �ring rate,
the expected number of coincidences assuming independence (lch)2 ¢ MT is
practically 0, while the number of measured coincidences (lch)¢MT remains
considerable. Therefore, the joint surprise obtains a large, �nite value (not
shown).

For the injected coincident rate of lc D 0.5s¡1 (Figure 4B), the joint-
surprise falls below the signi�cance level of 0.01 (horizontal line in bottom
graph) at a rate of about 60 s¡1 (in total, 30 trials below signi�cance level).
For the injected rate of lc D 1.0s¡1 (Figure 4C), this occurs only at a con-
siderably higher background rate (about 100 s¡1). At higher �ring rates,
more excess coincident events are needed to escape from the statistically
expected �uctuation range. Clearly, this behavior imposes a severe limit on
the detectability of excess coincidences at high �ring rates. Before the expec-
tation of the joint-surprise falls below the signi�cance threshold, the cloud
of joint-surprise values obtained in the individual experiments has already
reached it (in Figures 4B and 4C, 40 s¡1 and 70 s¡1, respectively).

However, there is a large regime where �uctuations in the joint-surprise
are well separated from the signi�cance threshold, and, hence, excess coinci-
dences can reliably be detected. When injected coincidences are present, the
difference between nemp and npred increases linearly with T, while the width
(standard deviation) of the joint-p-value Y increases with

p
T. Therefore,

given enough data, excess coincidences can always be detected.
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3.2 In�uence of Binning. The time resolution of data acquisition in ex-
tracellular spike recordings is typically 1 ms or better. There is recent exper-
imental evidence from cross-correlation, joint peristimulus time histogram
(JPSTH), and, particularly, from spike pattern analysis, that the timing ac-
curacy of spiking events that might be relevant for brain function can be as
precise as 1–5 ms (Abeles, Bergman, et al., 1993; Riehle et al., 1997). Simi-
lar suggestions come from modeling studies (Diesmann et al., 1999). Here,
we want to investigate whether, by choosing a binning grid D D bh (see
equation 2.1) in that time range, we may be able to detect coincidences with
corresponding accuracy. Therefore, we will �rst study the general in�u-
ence of binning on the outcome of joint-surprise analysis and then address
the effect of varying bin size on the detection of coincidences with a �nite
temporal jitter.

We generated a set of simulated data as before. While the rate of the
independent processes was maintained constant (20 s¡1), we injected addi-
tional coincident events at various rates. Two examples for coincident rates
of 0.5 s¡1 and 1.0 s¡1 are shown in Figures 5B and 5C; the control set is
shown in Figure 5A. In the analysis, we gradually increased the binning
grid from b D 1 to b D 10. If there were more than one spike per bin, the
result was set to one (clipping). This newly generated process formed the
basis of our investigation.

Binning has two opposite effects on the coincidence counts: it reduces
the number of time steps, Tb D T/b, while increasing the probability pb to
observe an event in a time step, compared to the original probability p D lh.
The net effect of binning is therefore comparable to that of increasing the
rate while reducing the number of observation time steps. Within a single
analysis bin of size bh, the probability of �nding exactly k of the b possible
positions occupied by a spike is given by the binomial distribution. Thus,
the probability of �nding one or more events P (k ¸ 1) D 1 ¡P (k D 0) equals

pb D
bX

kD1

³
b
k

´
pk(1 ¡ p)b¡k D 1 ¡ (1 ¡ lh)b. (3.4)

For p ¿ 1, it can be approximated by pb D b ¢ p. Following equation 3.1, the
expectation values for the number of coincidences are now

nemp
b D

µ
lcbh C

±
1 ¡ (1 ¡ lh)b

²2
¶

¢ M ¢ Tb

npred
b D

h
1 ¡

¡
1 ¡ (lch C lh)

¢b
i2

¢ M ¢ Tb. (3.5)

Improvements of expressions 3.5, not relevant in this context, can be made
by taking into account interactions of thebackground spikes and the injected
spikes in the binning process (Grün et al., 1999).
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Figure 5: Detection of coincident events using different analysis bin sizes bh.
Simulated data from two parallel processes were analyzed for the presence of
coincident events. Realizations consisting of 100 trials, each of duration 1000 ms,
were generated with a time resolution of 1 ms. Rates of both processes were
kept constant at 20 s¡1. Coincident events were injected at different rates: (A) no
injected events, (B) 0.5 s¡1 , (C) 1.0 s¡1. The experiment was repeated 10 times
at each bin size, to visualize statistical variations. The bin width bh was varied
from 1 to 10 ms. Data were analyzed for the number of coincidences (top row,
diamonds) and compared to the expected number of coincidences assuming
independence (top row, solid lines, theoretical curve in gray). The corresponding
joint-surprise is shown in the bottom panels (diamonds, theoretical curve in
gray). Further details as in Figure 4.

npred
b is concave with positive slope for small b, reaches a maximum, and

after passing a point of in�ection approaches the curve T/b from below.
The latter represents an upper bound for the expectation value, reached
when each bin is occupied. The initial concave increase can be observed

in the simulated data for npred
b as well as for nemp

b (Figure 5, top row). As
in the case of increasing background rate (see Figure 4), the difference be-
tween the measured and the expected coincidence counts assuming inde-
pendence decreases with increasing bin size. The effect can clearly be seen
at the high coincidence rate (1 s¡1; Figure 5C, top), less so at the lower one
(0.5 s¡1; Figure 5B, top). In the regime shown, binning increases occupa-
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tion probability (somewhat stronger for npred
b than for nemp

b ), and clipping
is not dominant yet. In Figure 5C (top), we can clearly observe the �uc-

tuations in npred
b increasing with b. Here, we simply estimated npred

b from
the binned data. However, �uctuations can be reduced by estimating �ring
rates on the original resolution h and using equation 3.4 to obtain the occu-
pation probability at bin size bh. The dependence of the joint-surprise (see
Figure 5, bottom row) on the bin size is similar to the above-described de-
pendence on the rate (cf. Figure 4). In the absence of injected coincidences,
S �uctuates around 0 (see Figure 5A). For injected coincidences, S decreases
with increasing bin size. The lower the injection rate is, the sooner S starts
to decrease and the faster it decays: for lc D 0.5s¡1, joint-surprise values
start to fall below the 0.01 signi�cance level at b D 3 (see Figure 5B), while
for lc D 1.0s¡1, signi�cance is maintained up to about b D 6 to 10 (see
Figure 5C). Again, the decline in S is controlled by the decreasing ratio
(nemp

b ¡ npred
b )/npred

b . The similarity between the dependences of S on spike
rate and on bin size is not surprising, considering that binning has the net
effect of an apparent increase in �ring probability, limited by the additional
effect of clipping.

3.3 Detection of Near-Coincidences. In a next step, we investigate
whether it is also possible to detect noisy (i.e., imprecise) coincidences. This
question arises naturally, since neurons are usually considered to exhibit
some degree of “noise” or uncertainty in the timing of their action poten-
tials. Note, however, that the degree of this temporal noise has long been
questioned (e.g., Abeles, 1983) and is still under debate, (e.g., Mainen &
Sejnowski, 1995; Shadlen & Newsome, 1998; Diesmann et al., 1999). While
keeping both the independent background rate and the injection rate con-
stant, we increase the temporal jitter of the injected near-coincident events
stepwise from 0 to 5 ms, such that in each case, the difference in spike
times is uniformly distributed within the chosen jitter range. The question
is whether, by choosing an appropriate binning grid, we can improve the de-
tection of such near-coincident events. To this end, we analyze the simulated
data with varying bin sizes and for each bin size compute the joint-surprise.

Figure 6 shows the results for a background rate of l D 30s¡1 and a rate
of injected near-coincidences lc D 2s¡1. Each of the curves in Figure 6A
represents data with a particular temporal jitter s, analyzed with a bin size
bh increasing from 1 ms to 10 ms. Values of S are averages of 100 repetitions
of the simulation experiment at constant parameters. Each curve exhibits
a global maximum (marked by an asterisk) at a bin size b¤ close to the
magnitude of the jitter of the injected coincidences; b¤ is shown as a function
of temporal jitter in Figure6B. Indeed, themaxima occur at thebinsize that in
a given simulation just covers the maximal jitter (e.g., spikes with a maximal
time difference of s D 1 are covered by a bin size spanning two time steps
of the original time resolution: b D 2). Numerical analysis of an analytical
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Figure 6: Detection of near-coincidences for different degrees of coincidence
precision. Two parallel spike trains were generated with background rates l D
30s¡1 the rate of the injected coincidences was lc D 2s¡1 , for T D 105 time steps,
h D 1 ms. The temporal jitter of coincident events was varied from s D 0 to s D 5
time steps. Each simulation was repeated 100 times, and data were analyzed
for the number of observed coincidences by varying the analysis bin size from
b D 1 to b D 10, and compared to the expected coincidence count assuming
independence. (A) Each curve shows the resulting average joint-surprise as
a function of the analysis bin size for a given temporal jitter. The top curve
shows the results for s D 0, the bottom curve for s D 5, intermediate scatters
in between (using the maxima as reference). Maxima of the curves are marked
by an asterisk. (B) Optimal bin width b¤ for detecting excess coincidences as a
function of temporal jitter, theoretical curve indicated by dashed line.

description of the situation (Grün et al., 1999) shows that maxima are located
at b¤ D s ¡1. The fact that in the simulation results in Figure 6B, the maxima
for s D 4 and 5 occur at a larger binsize is due to �uctuations remaining in the
averaged S. For bin sizes smaller than the scatter width, S increases with bin
size since for more and more near-coincidences, the constituting spikes fall
into a common bin. At bin sizes larger than the coincidence accuracy, the rate
at which the number of excess coincidences grows drops, and the probability
that an injected coincidence is detected slowly reaches saturation. Thus, S is
bound to decrease again, because the expected coincidence count assuming
independence continues to grow approximately linearly. The joint-surprise
curves for �nite temporal jitter s approach the curve for perfect coincidences
s D 0 from below. The comparison of different joint-surprise curves shows
that the higher the temporal jitter (i.e., the lower the coincidence accuracy)
is, the lower the joint-surprise is. Hence, for a given b, the number of near-
coincidences that can be detected increases with decreasing temporal jitter.

3.4 Multiple Parallel Processes. When the number of simultaneously
observed neurons N is increased, the variety of coincidence patterns grows
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strongly, due to the nonlinear increase in combinatorial possibilities. Each
complexity j (i.e., a spike pattern with j 1s, N ¡ j 0s) can in principle oc-
cur in

¡N
j

¢
variations. On the other hand, the occurrence of higher-order

constellations depends in a nonlinear fashion on the rates. The probability
for a pattern with complexity j to occur among N neurons, all �ring in-
dependently with probability p, is given by pj ¢ (1 ¡ p)N¡j . For low �ring
probabilities (p ¿ 1), this can be approximated by pj . By the combination
of these two effects, constellations of high complexity are actually expected
to occur rarely. For low �ring probabilities, such as p D 2 ¢ 10¡2, the ex-
pected count for a coincidence pattern of complexity j D 3 (assuming a
total number of observation time steps T D 105) is of the order of 1 or
less, and even less for higher complexities (see Figure 7B, top). For higher
�ring probabilities, this expectation is shifted to larger values. Consider a
pattern of complexity 4, with other parameters as above. The expected co-
incidence count now is npred D 0.016; the probabilities of �nding 0, 1, or 2
coincidences are approximately y (0, npred) D 0.9841, y (1, npred) D 0.0157,
and y (2, npred) D 0.0001. Here, the discrete nature of the Poisson distri-
bution is fully exhibited. Almost all the mass is at a single outcome (0).
The joint probabilities of outcomes 1 and 2 are Y(1 | npred) D 0.0159 and
Y(2 | npred) D 0.0001, respectively. Thus, at an a-level of 0.01, the occur-
rence of two coincidences is already signi�cant and would still be signi�cant
for much lower a values. If the occurrence of 2 or more coincidences than
expected is signi�cant for almost any signi�cance level, our measure is obvi-
ously susceptible to �uctuations. The signi�cance of the spike constellation
in a particular experiment cannot be determined precisely. The obvious and
standard cure to this problem is to collect more data for such an experimen-
tal situation, shifting the distribution of the coincidence counts for patterns
of high complexity to larger expectation values, where the discrete nature
of the distribution is of less importance.

As a result of the above discussion, high j constellations, if occurring at
all, are typically accompanied by high joint-surprise values (cf. Figure 7B,
bottom). It is therefore not surprising that in simulations where we varied
the complexity of the injected coincidence patterns from j D 2 to 6 (while
keeping the number of processes (N D 6), the background rate (l D 20s¡1)
and the injection rate (lc D 1s¡1) constant), all coincidences of complexity
¸ 3 were detected with high signi�cance (see Figure 7B, bottom). Moreover,
the measured coincidence counts for j ¸ 3 are close to the expectation for
the injected coincidence lchT D 100 (see Figure 7B, top). For complexity
2, the coincidence count is higher, because we get contributions from the
background rate (lh)2T D 40. This contribution is rapidly vanishing for
higher complexities (e.g., j D 3, (lh)3T D 0.8).

Similar results were obtained when we increased the number of inde-
pendent processes N (from 2 to 12), while keeping the complexity of in-
jected coincidences constant (j D 2, Figure 7A). Here, injection means that
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Figure 7: Complexity of joint spike patterns. (A) The number of processes into
which a pair of coincidences (complexity j D 2) was injected was varied from
2 to 12. The rate of the independent processes was l D 20s¡1 , and the injection
rate was 1 s¡1 (T D 105 , 10 repetitions). The diamonds in the upper graph show
the number of occurrences of the coincidence patterns [110], [1100], [11000], and
so on, with the number of zeros depending on the number of processes. The ex-
pected counts are shown as solid lines. The lower graph shows the joint-surprise
for the corresponding pairs of measured and expected counts; the horizontal line
marks the signi�cance level of 0.01. (B) The number of processes was kept con-
stant (N D 6), as were their rates (parameters as in A), but the complexity of
the injected coincidences was varied from 2 to 6. Thus, the pattern looked for
was [110000], [111000], and so on, respectively. The measured counts of the co-
incidence pattern are displayed as diamonds, the expected counts as solid lines.
The latter values cannot be distinguished from 0 forj > 3 in this graph, because
values become very small. The corresponding joint-surprise (bottom panel) was
therefore very high (clipped here to an arbitrary value of 400 for visualization).

simultaneous spikes are added to j of the N parallel spike trains, with-
out affecting the N ¡ j remaining ones. It turns out that the joint-surprise
of the j constellation (i.e., j 1s and N ¡ j 0s) at the given �ring rates is
practically independent of N. There is a small decrease in the number of
occurrences of this particular pattern, because with increasing N, more pat-
terns containing the two spikes as a subpattern become available. How-
ever, this effect does not seriously affect the detectability of the injected
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coincidences. The situation changes when massively parallel data are ex-
amined, and patterns of higher complexity become typical. Let the two
neurons under consideration be accompanied by 98 other neurons, other
parameters as above. The probability that at least 1 of the 98 neurons con-
tributes a spike to the coincidence is

P98
kD1

¡98
k

¢
(lh)k(1 ¡ lh)98¡k, which is

1 ¡ (1 ¡ lh)98 ¼ 0.86.
We conclude that to decide on the empirical relevance of coincidences of

higher complexities (j ¸ 3), given a moderate amount of data, it is advisable
to set additional criteria, for example, by requiring a minimum absolute
number of occurrences (see also Abeles, Bergman, et al., 1993; Martignon,
Laskey, Deco, & Vaadia, 1997; Martignon et al., 2000).

4 False Positives

Up to now, we have studied the sensitivity of our method by exploring
under which conditions excess coincident events are detectable. However,
while striving for high sensitivity (a low fraction of false negatives), we
simultaneously need to ensure an appropriately high degree of speci�city
(a low fraction of false positives). Such false positives are the result of in-
correctly assigning the label “excess coincidences” to an experiment where
they in fact are not in excess. Thus, we have to establish conditions under
which we reach a compromise between a suf�cient degree of sensitivity
and an acceptable degree of speci�city. Therefore, we now analyze various
sets of simulated data, with the combined requirement of attaining a high
level (90%) of detection (only 10% false negatives), while securing a low
level (10%) of false positives. As in the preceding sections, the simulations
are described by biologically relevant parameters, varied over a physiologi-
cally realistic regime.100independentexperiments wereperformed for each
parameter value; from these, the percentage of experiments that crossed a
certain threshold level on the joint-surprise was evaluated. This threshold
level a was varied in equidistant steps to cover the range of joint-surprise
values between ¡15 and C15.

4.1 In�uence of the Firing Rate. In the �rst step, we kept the number of
independent processes constant (N D 2) and varied the rate of the processes.
We found that for constellations of complexity 2, the percentage of false
positives is practically independent of the background rates (see Figure 8A,
left). This is not surprising, because if the rates of the underlying processes
were known, and therefore the expected number of coincidences assuming
independence npred could be determined without error, a would represent
the percentage of experiments passing Sa. The above result ensures that
for the parameter regime tested, determination of �ring rates from the data
does not cause dramatic deviations of the percentage of false positives from
the theoretical level a.
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By contrast, the sensitivity for detecting excess coincidences shows a
clear dependence on background rates. At low rates, it is very high, but it
decreases—rapidly at �rst, more slowly later—with increasing background
rate (see Figure 8A, middle). At background rates above l D 60s¡1, the
threshold for detecting the injected events has decayed to about a D 0.05.
Combining these two observations in a single graph, we obtain the inter-
section range of the joint-surprise, necessary to obtain both maximally 10%
false positives and minimally 90% sensitivity (the white area in Figure 8A,
right). For low a, this region is bounded by an approximately straight ver-
tical line at a D 0.05; the lower boundary of the permissible signi�cance
measure is approximately independent of the background rate. The upper
bound, however, is clearly curved: the threshold needed for reliable detec-
tion decreases with increasing background rate, reaching a level of only 0.05
at l D 60s¡1. Thus, the higher the rate is, the narrower is the bandwidth
of a-values permissible to detect excess coincident events selectively and
sensitively.

4.2 In�uence of the Number of Parallel Processes. Next, we varied the
number of independent processes (from 2 to 12) while keeping the rates
constant (l D 20s¡1). For each number of processes, the fractions of false
positives and false negatives wereevaluated at different threshold levels. We
found that the fraction of false positives increased with decreasing thresh-
old and in the given range was independent of the number of processes in-
volved (see Figure 8B, left). Moreover, the sensitivity for excess coincidences
(shown for complexity 2 at coincidence rate of 1 s¡1 in Figure 8B, middle)
was independent of the number of processes as well. The intersection range
of the joint-surprise, necessary to obtain maximally 10% false positives and
maximally 10% false negatives, is shown in white in Figure 8B (right panel).
Observe the wide parallel band for selective and sensitive detection, inde-
pendent of the number of observed processes. If more restrictive criteria
(fewer false positives and/or fewer false negatives) are adopted, the band
becomes accordingly smaller (not shown here).

4.3 In�uence of Pattern Complexity. Higher-order coincidences (coin-
cidences with high complexity j ) are rarely found in data with low �ring
rates and limited numbers of observation time steps (see also section 3.4).
Figure 8C (left) illustrates that there are hardly any false positives for com-
plexities 4 or higher, even for threshold levels of a > 0.5. Let na represent
the smallest n for which Y(na | npred) < a. Because of the discrete nature of
the distribution of coincidence counts y (see section 3.4), Y(na | npred) can
actually be much smaller than a (see the example in section 3.4). If npred is
exact, Y(na | npred) actually is the fraction of false positives expected. There-
fore, the percentage of false positives can be much smaller than a. This does
not contradict the fact that if such coincidences occurred, its joint-surprise
would indicate high signi�cance. False positives of lower complexity (up to
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3) do show up for threshold levels a below 0.5, but their fraction decreases
with pattern complexity. The situation is even more clear-cut for the case
of false negatives (see Figure 8C, middle). The detection of injected coinci-
dences is practically 100%. Thus, the intersection graph of the joint-surprise
for fewer than 10% false positives and fewer than 10% false negatives (see
Figure 8C, right) shows noncompliance for negative values of Sa and j < 4.

5 Discussion

We described a new method to analyze simultaneously recorded single-unit
spike trains for signs that (some of) the observed neurons are engaged in
a cell assembly. We adopted a widely used operational de�nition, de�n-
ing common assembly membership on the basis of near-simultaneity of the
joint spike activity of the observed neurons (Abeles, 1982a; Gerstein et al.,
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1989). The simultaneous observation of spiking events from N neurons was
described by the joint process of N parallel spike trains. By appropriate
binning, this was transformed to an N-fold (0,1)-process, a realization of
which is represented by a sequence of N-dimensional activity vectors (in-
stances of coincidence patterns) describing the various (0,1)-constellations
that occurred across the recorded neurons. Under the null hypothesis of
independently �ring neurons, the expected number of occurrences of any
coincidence pattern and its probability distribution could be calculated an-
alytically on the basis of the single-neuron �ring rates. The degree of devi-
ation from independence among the neurons was evaluated by comparing
the theoretically expected counts with their empirical counterparts. In or-
der to test the signi�cance of deviations from expectation, we developed a
new statistical measure: the joint-surprise. For any coincidence pattern, the
joint-surprise measures the probability of �nding the observed number of
occurrences (or an even larger one) by chance. Those coincidence patterns
that violate the null-hypothesis of independence de�ne potentially interest-
ing occurrences of unitary joint events. The neurons that contribute a spike
to the signi�cant coincidence pattern are considered a subset of the neurons
currently engaged in assembly activity.

To calibrate the new method and test its performance, we applied it to
simulated data sets inwhich differentphysiological andanalysis parameters
were varied in systematic fashion. We used independent Poisson processes

Figure 8: Facing page. Selectivity and sensitivity as a function of �ring rate (A),
number of neurons (B), and pattern complexity (C). In the left column, the
percentage of false positives (fp), that is, 1 ¡ selectivity, is calculated using
independent data sets, without injected coincident events. The percentage of
false negatives (fn), that is, 1 ¡ sensitivity, for injected events as a function of
the threshold level Sa (abscissa) is shown in the middle column. The overlap
regions of maximally 10% false positives and maximally 10% false negatives are
indicated in white in the right column. (A) The percentage of false positives and
false negatives of pair coincidences within spike data of two parallel processes.
The rates of both independent processes l were identical and increased from
10 s¡1 to 100 s¡1 in steps of 10 s¡1 (ordinate). In the middle and right panels,
coincident events of complexity 2 were injected (1 s¡1) into the spike data. For
each rate, the experiment was repeated 100 times, T D 105 , h D 1 ms. The density
plots (gray-level coding as indicated) represent the percentage of experiments
that crossed the threshold level Sa (fp, left column) or remained below it (fn,
middle column), respectively. (B) The percentage of fp and fn for coincidences
of complexity 2 for varying numbers of processes N (ordinate), increasing from
2 to 12 (�ring rate held constant at 20 s¡1 , coincidences injected at rate 1 s¡1 into
2 of the N processes). Display and other parameters as in A. (C) The percentage
of fp and fn for coincidences of varying complexity (ordinate) in a �xed number
of processes (N D 6). Display and other parameters as in A. For orientation, the
threshold level for a D 0.05 is indicated by a dashed line in all plots.
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to generate control data at various �ring rates. The degree of interdepen-
dence of the surrogate data was controlled by injecting coincident spiking
events at different rates, timing precision, and neuron composition. Specif-
ically, we measured the sensitivity (the probability not to generate false
negatives) and the speci�city (the probability not to generate false posi-
tives) of the method and determined its dependence on various physio-
logical parameters. Overall, the method proved to be both highly sensitive
and highly speci�c to detect the presence of even weak signs of coincident
spiking. Moreover, the method is only moderately sensitive to wide-range
variations of the tested parameters, largely covering the physiologically
relevant regime encountered in cortical neuron recordings. Thus, unitary
event analysis provides a simple measure to test for the presence of excess
coincident spiking events in experimental data. Since the method takes into
account the �ring rates of the observed neurons, results from different ex-
periments and/or recordings may be compared. The principal ingredient
of the method is the joint-surprise. It provides a convenient measure of the
probability that the number of coincident spiking events represents a chance
constellation. One may stop at this point and use the resulting probabilities
(e.g., by comparing them across different experimental or behavioral condi-
tions) as a means to assess the functional relevance of synchronous spiking.
Another way to proceed, explored in this article, is to adopt a common
approach in statistics by imposing a threshold level on the joint-surprise
function and to focus on the data where this minimum signi�cance level
(e.g., a D 0.05 or 0.01) was surpassed. In doing so, selections from the data
are highlighted as potentially interesting regarding the presence of excess
coincident spiking events. We referred to these events as unitary events,
marking highly unexpected joint spike constellations. Their neuronal com-
position, as well as the moments at which they occur, may provide informa-
tion about the underlying dynamics of assembly activation. It is worthwhile
to point out that our method does not allow us to distinguish on an indi-
vidual spike basis which one is an excess event and which is not. Hence,
all instances of a signi�cant coincidence pattern are marked. Nevertheless,
unitary events may well occur inhomogeneously distributed over the time
interval studied, revealing a potentially interesting time structure in relation
to the experiment that is not present in the original stationary �ring rates.

We have formulated the null-hypothesis in terms of statistical indepen-
dence. In cases where a speci�c time structure within a single spike train
is of interest (e.g., Legendy & Salcman, 1985; Dayhoff & Gerstein, 1983),
independence is often formulated as the assumption that the neuronal
spike train is a realization of a Poisson process. In cases where parallel
processes are tested for spatio and/or temporal patterns (as in our case),
often independent Poisson processes are assumed—that is, both indepen-
dence within the spike trains and independence between them (Palm et
al., 1988; Abeles & Gerstein, 1988; Aertsen et al., 1989; Prut et al., 1998).
Physiological data, however, often violate the Poisson assumption, and it
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is not yet clear how to correct for that in a general (i.e., model-free) man-
ner. One option is to make different assumptions about the nature of the
underlying point process, for example, to assume that it is a renewal pro-
cess (Cox & Isham, 1980) or, more speci�cally, a c -process (e.g., Pauluis &
Baker, 2000; Baker & Lemon, 2000). We have tested the in�uence of vi-
olations of the Poisson assumption on the occurrence of false positives
using c -processes (see appendix B). Results from our parametric study,
where the structure of the point processes was varied from bursty to reg-
ular �ring, indicate that the unitary event analysis method is quite robust
against such violations. Another option, which we are currently exploring,
is a bootstrap-type method, shuf�ing the spike trains across trials to gen-
erate surrogate data from which one can estimate the expected numbers of
the various constellations quasi-empirically (Pipa, Singer, & Grün, 2001).
By this procedure, the temporal structure of the individual spike trains is
taken into account, and an explicit hypothesis about the generation pro-
cesses need not be made. Another aspect of extending the formulation of
the null-hypothesis is to take into account correlations among subsets of
neurons. In this context, a promising new approach proposed recently is
to extend the null-hypothesis of independence to incorporate interactions
among subsets of the neurons contributing spikes to a given coincidence
pattern (Martignon, von Hasseln, Grün, Aertsen, & Palm, 1995; Martignon
et al., 1997, 2000).

Constellations of complexity higher than 2 in independent multiple par-
allel processes are relatively rare. However, if they occur, they are very likely
to be detected as false positives in data sets of �nite length (see section 3.4;
Roy et al., 2000). In order to account for that, it is advisable to apply an ad-
ditional test at a meta-level, for example, by requiring a minimal absolute
number of occurrences of the high-complexity event or by applying an addi-
tional statistical test (Prut et al., 1998). Also here, bootstrap techniques may
be invoked (e.g., Nadasdy, Hirase, Czurko, Csicsvari, & Buzsaki, 1999) to
provide additional means to differentiate false positives from true positives
in such regimes of relatively rare occurrences.

Another source for false positives is the violation of the assumption of sta-
tionarity. The �ring rates, measured by averaging over time (and trials) and
serving as the basis to test the null-assumption, may not re�ect the instan-
taneous behavior. Particularly in regions with a higher-than-average rate,
unitary events may be detected by our method for incorrect reasons (for
related problems with cross-correlation measures, see, e.g., Brody, 1999a,
1999b). Unfortunately, however, a strict requirement of stationarity may
sometimes disqualify a large portion of the experimental data, especially
from awake, behaving animals. Therefore, a more promising approach is to
adopt techniques that enable us to make reliable estimates of the instanta-
neous �ring rates (Nawrot, Aertsen, & Rotter, 1999; Pauluis & Baker, 2000).
Giving up the concept that neuronal spiking is driven by a (potentially
time-dependent) intensity function, the signi�cance test can also be based
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on counting statistics, thereby removing the problem of rate estimation from
experimental data (Gütig et al., in press).

The method of unitary event analysis bears clear relations to the dy-
namic analysis of cross-correlation, as exempli�ed, for example, in the JP-
STH (Aertsen et al., 1989). It presents an extension, in that it enables us to
analyze more than two neurons at a time, and a restriction, by focusing on
coincident events only. In principle, the method could also accommodate
any speci�c arrangement of coincidence delays unequal to zero. However,
the combinatoric problems associated with exploring all possible such ar-
rangements are beyond our present capabilities. The syn�re model (Abeles,
1991) has prompted scientists to search speci�cally for spatiotemporal �r-
ing patterns in multiple single-neuron spike trains (Abeles & Gerstein, 1988;
Abeles, Bergman, et al., 1993; Villa & Abeles, 1990; Prut et al., 1998; Date,
Bienenstock, & Geman, 1998). However, in contrast to the method of Prut
et al. (1998), unitary event analysis focuses on spatial patterns. Binning pro-
vides a general and straightforward mechanism to control the amount of
temporal jitter allowed in the de�nition of a coincidence. It is applicable to N
parallel processes. Unfortunately, for coincidences with large temporal jitter,
sensitivity is reduced due to the �ssion of coincidences at the binning grid
(see section 3.2; Grün et al., 1999). For N D 2, methods have been developed
to detect near-coincidences without the need of binning (Grün et al., 1999;
Pauluis & Baker, 2000). However, no method currently exists for N > 2. We
are exploring the detection of near-coincidences in large numbers of parallel
processes without discretization of time (Grün & Diesmann, 2000).

One important issue remains to be solved before we can apply this frame-
work to physiological data and study neuronal assembly dynamics in rela-
tion to stimuli and behavioral events. Until now, we have considered only
the case of neurons �ring at a stationary rate and with stationary coincident
activity among them. Physiological data, however, are usually not station-
ary. Firing rates vary considerably as a function of time, particularly when
the animal is presented with adequate stimuli or is engaged in a behav-
ioral task. A second type of nonstationarity is that coincident �ring itself
may be nonstationary for example, by being time-locked to a stimulus or
behavioral event even if the rates of the neurons are constant (Vaadia et al.,
1995). Since our analysis so far derives its measures globally from the entire
observation interval, the time-locked occurrence of coincidences might be
overlooked. In the companion article in this issue, we address both types of
nonstationarities and extend our theoretical framework accordingly.

Appendix A: Notation

T temporal duration of observation interval, [T ] D unit of time
h time resolution of data, [h] D unit of time
T temporal duration of observation interval in units of h, [T] D 1
M number of trials
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vi (0,1)-sequence of neuron i
N number of simultaneously observed neurons
v(t) coincidence pattern at time step t, N-dimensional vector
vk coincidence pattern k, N-dimensional vector
m number of possible patterns
j (vk) complexity of vk

n general coincidence count
nemp

k empirical coincidence count of vk

npred
k expected coincidence count of vk

P general probability in expressions like P(k ¸ 1)
pi occupation probability for neuron i
Pk probability of coincidence pattern vk

y distribution of coincidence counts
Y joint-p-value
S joint-surprise
a signi�cance level
l background �ring rate, [l] D 1/unit of time
lc coincidence rate, [lc] D 1/unit of time
b bin size in units of h, [b] D 1
Tb number of time steps after binning, [Tb] D 1
pb occupation probability after binning
s temporal jitter of injected coincidences in units of h, [s] D 1
MDk mutual dependence of vk; see appendix C
MD(t) time-resolved mutual dependence

Appendix B: Violation of the Assumption of Poissonian Spike Trains

In order to test how sensitive the unitary event analysis method is to a viola-
tion of the assumption of Poisson spike trains, we conducted the following
experiment: Independent parallel spike trains (N D 2) were modeled as c -
processes and analyzed for the occurrence of signi�cant coincident events—
false positives (similar to section 4). A c -process allows us to vary the spike
train structure from “burstiness” to regular spiking by variation of a single
parameter only: the “shape” parameter c . c -processes belong to the class of
renewal processes and can be simulated by successively drawing interspike
intervals from the interval distribution

f (t ) D l ¢ e¡lt ¢
(lt )c ¡1

C (c )
. (B.1)

For c D 1 the spike train is Poissonian (coef�cient of variation (CV) D 1).
If c is chosen < 1, the resulting spike train exhibits clusters or bursts of
spikes, leading to a high variability of the interspike intervals (CV > 1).
By contrast, if c is chosen > 1, the spike train is more regular; the higher
the c is, the smaller is the variability of the interspike intervals (CV < 1).
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Figure 9: False positives in non-Poissonian spike trains. Twoparallel spike trains
of duration T D 100 s and time resolution h D 1 ms were simulated as indepen-
dent c -processes with parameters rate l and shape factor c . l was varied from
10 to 100 s¡1 in steps of 10 s¡1 , and the shape factorc was varied between 0.1 and
50, in steps of 0.1 between 0.1 and 1, up to 10 in steps of 1, and above in steps of
5. For each parameter constellation, the simulation was repeated 1000 times; the
percentage of cases showing signi�cant outcomes at given signi�cance levels
are derived as false positives (fp). (A) The matrix illustrates the percentage of
false positives in gray code as a function of shape factor (horizontal) and given
rate parameter (vertical) for a signi�cance level a D 0.01. Note that the resulting
rate may differ from the given rate parameter, since for shape factors c < 1, a
relatively large number of spikes occur with interspike intervals · h, which are
clipped to one spike per time resolution bin in the simulation process. The larger
the given rate and the smaller c , the larger the reduction in rate (at l D 100s¡1

and c D 0.1 about 50%). (B) Percentage of false positives as a function of c

averaged over all rate levels (top) and as a function of rate parameter l aver-
aged over all shape factors (bottom) displayed for various signi�cance levels
a D 0.01, 0.02, . . . , 0.05.

For c ! 1, the process approaches a clock process, with a �xed value for
the interspike interval. Thus, by varying the shape factor from 0.1 to 50, we
covered a wide range of variability of experimentally observed spike trains
(e.g., Softky & Koch, 1993; Baker & Lemon, 2000; Nawrot, Riehle, Aertsen,
& Rotter, 2000).

For the signi�cance test, the same procedure was used as introduced for
the Poissonian spike trains: a Poisson distribution with its mean set to the
expected number of coincidences (see equations 2.3 and 2.9). Two parame-
ters were systematically varied in the simulations: the rate parameter l of
the processes and the shape factor c . For each parameter constellation, the
simulation of duration T D 100s was repeated 1000 times, and the percent-
age of cases showing signi�cant outcomes was derived. Figure 9A illustrates
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the percentage of false positives in gray code as a function of shape factor
(horizontal) and rate parameter (vertical) for a signi�cance level a D 0.01.
Observe that the percentage of false positives varies between 0% and 2%—
in a range around the expected value given the applied signi�cance level of
1%. The matrix does not appear to be clearly structured but shows a weak
tendency for higher percentages of false positives (2%) with increasing rate
and shape factor.

The projections (and averages) of the results onto the shape axis (see
Figure 9B, top) and on the rate axis (see Figure 9B, bottom) show that an
increasing rate does not vary the number of false positives but with increas-
ing shape factor, the number of false positives increases slightly, which is
somewhat stronger for less strict signi�cance levels (a D 0.02 ¢ ¢ ¢ 0.05).

In summary, we conclude that the unitary event analysis method behaves
quite robustly with respect to the signi�cance level a against a violation of
the Poisson assumption, realized here as c -processes.

Appendix C: Mutual Dependence

A different approach to detect dependencies in parallel spike data is to
use a measure related to the general framework of information theory: mu-
tual dependence, derived from the mutual information and redundancy (for
details, see Grün, 1996). For each particular activity constellation vk, mu-

tual dependence MDk is de�ned in terms of the joint-probability Ppred
k ex-

pected under the null-hypothesis (see equation 2.3) and its empirical coun-
terpart,

Pemp
k D

nemp
k

T
, (C.1)

by

MDk D ln
Pemp

k

Ppred
k

. (C.2)

Thereby, we obtain:

if Pemp
k < Ppred

k then MDk < 0 : “negative” dependence

if Pemp
k D Ppred

k then MDk D 0 : independence

if Pemp
k > Ppred

k then MDk > 0 : “positive” dependence.

(C.3)

Hence, any deviation of MDk from 0 will indicate deviations from the
null-hypothesis of independence for the corresponding activity constella-
tion vk. Note that mutual dependence is a time-averaged measure over the
entire duration of the spike trains under observation. We can make this into
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Figure 10: Time-resolved mutual dependence. The dot display (top) and the
time-resolved mutual dependence (bottom) are shown for a simulated data set,
into which coincident spikes were injected (same data as in Figure 3B) . In
contrast to Figure 3B, spike data of the trials are concatenated and, individually
for each neuron, represented as a single continuous series of dots.

a “local” time measure, however, by replacing each individual vector vk

at the points in time where it occurs tk
j , j 2 f1, . . . , nemp

k g by the associated
mutual dependence value MDk. This leads to a time-varying function: the
time-resolved mutual dependence MD(t):

MD(t) D
mX

kD1

nemp
kX

jD1

MDk ¢d(t ¡ tk
j ). (C.4)

The delta function in equation C.4 selects the MD value correspond-
ing to the coincidence pattern occurring at the time of interest. The re-
sulting time series describes the individual contributions to the MD in the
course of time. The result is a discontinuous, “peaky” function of time,
as shown in Figure 10 for a simulated data set with injected coincident
events. The amplitudes, ranging from negative to positive values, typi-
cally vary strongly from one time step to the next. Positive amplitudes
tend to have higher values than negative ones and pop out from small
�uctuations around 0. Positive peaks “point” to spike constellations for
which the probability of occurrence is higher than expected, assuming in-
dependent processes. Negative peaks “point” to spike constellations with
probability of occurrence lower than expected. Thus, the time-resolved mu-
tual dependence may be interpreted as a “dynamic pointer” to instances of
joint spike constellations representing conspicuous deviations from inde-
pendence.

A comparison of the performance of MD to the joint-surprise with re-
gard to false positives and false negatives (cf. section 4) revealed that the



Unitary Events: I. Detection and Signi�cance 75

Figure 11: (A) Selectivity and sensitivity of the mutual dependence for pair
coincidences injected into two parallel processes as a function of �ring rates.
(B) Results for the joint-surprise for comparison. The percentage of false pos-
itives (fp: left column), false negatives (fn: middle column), and the resulting
overlap of maximum 10% fp and maximum 10% fn (right column). The thresh-
olds on the MD were varied from h D ¡2 to 2 in equidistant steps. The dashed
line indicates the MD-value corresponding to Sa (a D 0.05) for background rates
l D 10s¡1 . Further details as in Figure 8.

MD measure, in contrast to the joint-surprise, strongly depends on the �r-
ing rates of the neurons involved (see Figure 11). This dependence expresses
itself in the curved shape of the sensitivity-selectivity overlap region (the
white area in Figure 11A, right). As a result, different signi�cance thresh-
olds would be required for different �ring rates. Thus, to obtain an adequate
performance of the MD, the threshold needs to be adjusted, point by point,
to the associated rates. Evidently, this is unpractical, considering that the
observed processes typically have different individual �ring rates. In addi-
tion, rate dependence poses problems when comparing data from different
experiments. For the above reasons, we do not pursue this measure further
here; more details and results of application to neuronal data can be found
in Grün (1996).
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