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Abstract

The occurrence of spatio-temporal spike patterns in the cortex is explained by models of
divergent=convergent feed-forward subnetworks—syn.re chains. Their excited mode is charac-
terized by spike volleys propagating from one neuron group to the next. We demonstrate the
existence of an upper bound for group size: above a critical value synchronous activity develops
spontaneously from random 1uctuations. Stability of the ground state, in which neurons indepen-
dently .re at low rates, is lost. Comparison of an analytic rate model with network simulations
shows that the transition from the asynchronous into the synchronous regime is driven by an
instability in rate dynamics. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Cortical neurons in vivo exhibit ongoing spiking activity at rates of a few Hertz. In
the presence of this background “noise” subnetworks are able to process relevant infor-
mation [3]. The syn.re model [1] was introduced to explain the task-related occurrence
of precise spatio-temporal spike patterns [7]. A syn.re chain consists of groups of w
neurons which are linked by divergent=convergent connections in feed-forward manner.
In a completely connected chain each neuron in group i receives w inputs from the
preceding group i − 1 and projects to all w neurons of the succeeding group i + 1.
We assume coupling to be purely excitatory (in contrast, [6]). The chain is regarded
to constitute a subgraph embedded into a large cortical network. The excited mode
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Fig. 1. Synchronous activity in syn.re chains of group sizes w = 100 (A) and w = 400 (B) arising from
asynchronous states. Each box represents the activity of a speci.c group. Each vertical position in a box
is reserved for the spikes (marked by dots) of a particular neuron. (A) Synchronous activity following
the injection of a slowly increasing current (curve) into the neurons of the .rst group. (B) Pulse packets
developing from spontaneous discharges.

of a syn.re chain is characterized by propagating volleys of synchronized spikes (e.g.
Fig. 1A). Stable propagation of such “pulse packets” requires a minimal number of
neurons per group [5]. The functionality of syn.re chains [1] requires a clear separation
between the excited state and the ground state, in which neurons independently .re at
low rates: Pulse packets should not be evoked by random 1uctuations of background
activity. Though the synchronous state is well described [4], little is known about the
transition from the asynchronous into the synchronous regime. Fig. 1A shows a net-
work simulation in which this transition is initiated by injection of a slowly increasing
subthreshold current, leading to an increase of .ring rate in the stimulated .rst group.
From this elevated asynchronous state, pulse packets self-organize in consecutive neu-
ron groups. In contrast, no stimulus is applied in Fig. 1B. However, even though the
spike rate in the .rst few groups is at ground state level, pulse packets spontaneously
develop. Apart from the stimulus, the two cases (Fig. 1) di%er in a single parameter:
while neuron groups consist of w= 100 neurons in Fig. 1A, this value is increased to
w=400 in Fig. 1B. Obviously, there is an upper bound for group size above which syn-
chronous activity is spontaneously ignited. In the following, we develop a rate model
that provides a common framework for the two situations in Fig. 1 and allows us to
predict the point of transition, leading from the asynchronous into the synchronous
regime, in dependence of single neuron properties and background activity.

2. Methods

Analytical and numerical work is based on a leaky-integrate-and-.re neuron model
with �-function-shaped synaptic currents [5]. Amplitudes of excitatory and inhibitory
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post-synaptic potentials (PSPs) di%er only in sign. Thus, mean �m and variance �2m of
the membrane potential can be calculated as

�m = (KE�E − KI�I)
∫
u(t) dt; �2m = (KE�E + KI�I)

∫
u2(t) dt; (1)

where u(t) denotes the PSP and �E the (Poisson) input rate arriving at KE excitatory
synapses, �I; KI, respectively. With reset potential V0, spike threshold 
, and membrane
time constant �m the output spike rate �out can be approximated by

1
�out

= �r + �m
√
�
∫ (
−�m)=

√
2�m

(V0−�m)=
√
2�m

ex
2
[1 + erf (x)] dx: (2)

The r.h.s. is the sum of absolute refractory period �r and mean .rst-passage-time
(e.g. [8]). Combining (1) and (2) yields a rate transmission function

�out = �(KE�E; KI�I) (3)

for stationary inputs. In a stable network state characterized by rates �∗E and �∗I each
excitatory neuron reproduces �∗E

�∗E = �(KE�∗E; KI�∗I ); (4)

inhibitory units �∗I , respectively. It has been shown that in random networks such
attractor states can indeed exist (e.g. [2]). Here, we consider a given state (�∗E; �

∗
I )

ful.lling (4) as the ground state of the network. In an embedded syn.re chain the
total excitatory input of each neuron in group i+1 is composed of w channels arriving
from the preceding group i .ring at rates �i and contributions �∗E from the excitatory
background. In a basic type of embedding the chain is assumed to represent a structure
on top of a random network

�i+1 = �(w�i + KE�∗E; KI�∗I ) (Model I): (5)

Thus, the total number of excitatory inputs of each neuron increases with w. In a more
realistic model intra-chain connections are assumed to be taken from the embedding
network

�i+1 = �(w�i + [KE − w]�∗E; KI�∗I ) (Model II): (6)

Here, the total number of inputs remains constant. Eqs. (5) and (6) describe the relation
between spike rates in consecutive groups in a stationary situation.

3. Results

The results of a stability analysis of iterative maps (5) and (6) with respect to w
are summarized in the bifurcation diagrams in Fig. 2. For both embedding schemes the
system exhibits a stable .xed point at low rates for small group sizes (w¡ 130). At
moderate w an additional attractor at high rates is created. While the lower attractor in
Model I is .nally annihilated by collision with the unstable .xed point, bifurcation is
transcritical in Model II. Thus, the requirement of a stable ground state in both cases
implies an upper bound for w. This approach is only valid as long as all involved
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Fig. 2. Fixed points of stationary rate in a syn.re chain as a function of group size w and rate pertur-
bation � (log-scaled). (A) Constant number of synapses from background (Model I). (B) Constant to-
tal number of inputs (Model II). Background activity �∗E = 2 Hz; �∗I = 12:6 Hz, with number of inputs
K = KE + KI = 20 000; KE=K = 0:88. Leaky-integrate-and-.re model: 
 − V0 = 15 mV, PSP amplitude:
0:14 mV, PSP rise time: 1:7 ms, membrane time constant �m = 10 ms, membrane capacity C = 250 pF,
absolute refractory time �r = 2 ms (cf. [5]).

processes are stationary, i.e. as long as rates remain constant in time. The model must
fail as soon as the system switches into the synchronous mode. To check the relevance
of our considerations we perform a set of network simulations (Model II) in which sta-
tionary rate perturbations are applied to the neurons of the .rst group. For perturbations
relaxing to the ground state in the rate model, the output rates of the 10th group are
in good agreement with predictions. However, at a critical rate perturbation the system
enters the synchronous regime where spike packets travel through the network. Spike
rate obtained by averaging over time is no longer a useful measure. The measured rate
of pulse packet occurrence in the 10th group is visualized in Fig. 3A as a function of
rate perturbation � and group size w. Fixed points of the rate model are shown superim-
posed. Panels (A), (D) and (E) refer to di%erent background states (�∗E; �

∗
I ). Inhibitory

background rates �∗I were adjusted in order to ful.ll the self-consistency condition (4).
The three cases are distinguished by di%erent membrane potential characteristics (1).
Surprisingly, the transition from the asynchronous into the synchronous state coincides
with the unstable .xed point of the rate model (cf. Fig. 3B and C). Furthermore,
Fig. 3 reveals that the critical group size, at which the ground state looses its stability,
decreases with increasing background rate. At high background rates the available range
between the lower and the upper group size shrinks to zero (not shown), rendering
background rate an additional bifurcation parameter.

4. Discussion

The .ndings summarized in Fig. 3 suggest that asynchronous stimulation of syn.re
activity is caused by an instability in rate dynamics. Note that the rate model correctly
predicts the basin of attraction of the ground state. However, the nature of the high-rate
regime di%ers dramatically from an asynchronous state. Ignition of synchronous activ-
ity in syn.re chains does not necessarily require rate instability if correlations are
large enough [4]. Therefore, we suggest that in our network model rate instability
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Fig. 3. Pulse packet rate � (gray-coded contours, measured in 10th group) as a function of group size w and
rate perturbation � (log-scaled) applied to the .rst group. Background activity: (A) �∗E =2 Hz; �∗I = 12:6 Hz,
(D) �∗E=1 Hz; �∗I =4:8 Hz, (E) �∗E=10 Hz; �∗I =72:2 Hz (other parameters as in Fig. 2). Stable (solid curves)
and unstable .xed points (dashed curve) of the corresponding rate model (Model II) are superimposed. White
area indicates regime in which no simulations were performed. (B) Vertical cross-section of (A) at w=200.
(C) Horizontal cross-section of (A) at � = 3 Hz. In both panels simulation results (dots) are connected by
gray lines, vertical dashed line indicates position of the unstable .xed point of the rate model.

occurs before correlations due to shared input are large enough to elicit syn.re activ-
ity. Synchronous activity arises as the result of a rate induced increase of correlation:
a rapid rate increase in successive groups (following rate instability) eventually leads
to correlations large enough to ignite syn.re activity. For parameters ensuring rate
stability of the ground state correlations seem to be negligible. Stability of the asyn-
chronous ground state imposes an upper bound on group size. In the present analysis we
have assumed stationary background activity. Future work has to address feedback of
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activity from the chain into the embedding network. Feedback to inhibitory populations
may stabilize the systems ground state leading to a predominant role of correlations.
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