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Abstract

Correlation of neuronal activities is widely observed in the central nervous system and is likely
to play a key role in its functioning. It is, thus, essential to understand the e ects of correlated
synaptic input on the response of neurons. Here, we model neuronal input as correlated Poisson
processes, and assess their impact on the leaky integrate-and-$re neuron. We found that neuronal
output $ring rate typically is a non-monotonic function of the input correlation, and propose that
the response of neurons is critically dependent on the input ensemble statistics. c© 2002 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Correlation of neuronal activities is ubiquitous in the central nervous system and is
likely to play a central role in its functioning [4]. Also, it is known that correlated
synaptic inputs can have a tremendous e ect on the output $ring rate and variability
of model neurons [1,2,6,9,11]. Thus, an insight into the impact of input spike train
statistics on the output $ring rate is essential to understand potential neural codes.
Here, we propose a simple model of correlated spike trains, and use it to assess the
e ect of correlation on the response rate of the leaky integrate-and-$re (I&F) neuron.
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Fig. 1. A model of correlated spike trains: a realization of a Poisson point process (top) is thinned to give
rise to N correlated processes (bottom).

2. A model of correlated spike trains

We modeled correlated spike trains as Poisson point processes, with homogeneous
pairwise (zero-delay) correlations. A set of correlated spike trains was produced as
follows: a realization of a Poisson process of rate � was used as “generating process”
(Fig. 1, top). The correlated spike trains were obtained by thinning [3] the generating
process, i.e. by deleting spikes with a $xed probability (Fig. 1, bottom). It can be
shown that the diluted processes are again Poisson. If the probability of deletion is
1 − �, each process generated in this manner has a rate r = ��, and each pair of
processes has a correlation coeEcient �.

3. Neuron model and background activity

In this study, we used the leaky I&F model (see [11]) to assess the impact of corre-
lated input on neuronal output. The neuronal parameter values were set to: C=500 pF,
1=gleak =40 MG, Urest =−70 mV (see [8]). The time constant 	=RC of the membrane
was thus 20 ms. The fast conductances responsible for the action potential generation
were not modeled explicitly. Instead, when the membrane potential reached a thresh-
old (Uthresh = −50 mV), it was temporarily clamped (trefr = 1:75 ms) to a reset value
(Ureset = −60 mV) to model the refractory period. Synaptic inputs were modeled as
conductance changes [7,12]. For excitatory (resp. inhibitory) synapses, the reversal po-
tential was set to 0 mV (resp. −70 mV). The synaptic conductances were parametrized
by an alpha function [7,10] with a time constant of 1 ms for both excitatory and in-
hibitory synapses. The peak conductance for excitatory (inhibitory) synapses was set
to 1 nS (3:4 nS). EPSPs and IPSPs had equal amplitude (0:30 mV) at a membrane
potential of −54 mV.
Membrane potential Iuctuations as observed in vivo [5] were reproduced by using a

synaptic background of independent excitatory and inhibitory spike trains. It consisted
of 9000 (5500) independent excitatory (inhibitory) neurons, both modeled as Poisson
processes with a rate of 1 spike=s. This resulted in a mean membrane potential of
−54:3 mV (standard deviation 1:4 mV) and a spontaneous $ring rate of 1:2 spike=s.
An average of 26 synchronous EPSPs was needed for the membrane potential to reach
spike threshold.
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Fig. 2. Output $ring rate is a non-monotonic function of input correlation. (A) Response rate of the model
neuron as a function of the input correlation for di erent input rates (r = 5; 20; 50 spike=s). The size of
the populations N = 250. (B) Same as in (A) but for di erent input sizes (N = 50, 150, 250, 450), with
r = 10 spike=s.

In addition to this background activity, we stimulated the neuron with a pool of
N excitatory and N inhibitory spike trains. Excitatory and inhibitory spike trains had
identical $ring rates r. We varied the correlation among the excitatory input population,
while keeping the inhibitory inputs independent.

4. Output �ring rate as a function of input correlation

A striking feature of the relation between input correlation and the neuron output
rate is its non-monotonicity (Fig. 2). The initial increase in correlation leads to a rapid
increase in output $ring rate. However, beyond a critical correlation value (depending
on the input rate and the input population size) additional input synchrony is detrimental
to the output rate.
This behavior could be a result of the speci$c input statistics, or of particular features

of the neuron model (e.g. the membrane potential threshold and reset mechanism), or
both. In order to disambiguate these di erent possibilities, we suppressed the spik-
ing and reset of the neuron model, and considered the process formed by the “free”
membrane potential (i.e without spiking).

5. Amplitude distribution of the membrane potential

We simulated the membrane potential U of a leaky integrator, i.e. a leaky I&F
model without thresholding the membrane potential. Fig. 3 shows membrane potential
traces and the corresponding amplitude distributions for independent input (Fig. 3A)
and two levels of correlated inputs (� = 0:3, Fig. 3B, and � = 0:8, Fig. 3C). For
increasing correlation, the membrane potential showed larger Iuctuations, due to the
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Fig. 3. The distribution of the free membrane potential with correlated synaptic input is asymmetric. (A) 1 s
run of the membrane potential (left). The input consists of 300 independent excitatory and 300 independent
inhibitory spike trains at 15 spike=s, in addition to the background input. The probability density function of
the amplitude distribution is plotted on the right. (B) same as in (A) with an input correlation coeEcient of
0.3. (C) same as in (A) with an input correlation coeEcient of 0.8. In all panels, the dotted lines indicate
the threshold level of the I&F neuron.

simultaneous occurrence of presynaptic spikes. Correspondingly, the variance of the
amplitude distribution increased and the distribution became asymmetric.
Obviously, the cumulative probability PU of the membrane potential being above

threshold is related to the $ring rate of the neuron model. Thus, we investigated
the dependence of PU on the input correlation. The input parameters were kept as
in the simulations of the spiking neuron. We found that, similar to the output $r-
ing rate, PU is a non-monotonic function of the input correlation (Fig. 4). Note
the (qualitative) similarity of the $ring rate response (Fig. 2) and the PU response
(Fig. 4).
Thus, the non-monotonicity observed in the spiking response is primarily due to

the input statistics. The average number of simultaneous presynaptic spikes (given by
�N ) increases with correlation. Concurrently, the rate of occurrence of these clusters
(given by � = r=�) decreases, resulting in a decreasing output rate. For an input cor-
relation of 1, the neuron model responds with a spike to almost every input cluster
and, thus, has an output rate approximatively equal to the individual input rate r (cf.
Fig. 2). Observe that, for large input rates, the output $ring rate can have more than
one maximum, again reIecting the statistical properties of the input (Kuhn et al., in
preparation).
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Fig. 4. The cumulative probability of the membrane potential above threshold decreases for larger input
correlation. (A) Impact of input correlation on PU for di erent input rates and (B) di erent sizes of the
input ensemble. The parameters are the same as in Fig. 2.

6. Discussion

We have shown that for our model of correlated excitatory inputs:

(1) the output $ring rate of the leaky I&F neuron increases for low input spike train
correlation, and decreases for larger input correlation, and

(2) this non-monotonic dependence on the correlation is predominantly governed by
the input statistics, and not by the threshold and reset mechanism of the leaky
I&F.

A detrimental e ect of synchrony, though under somewhat di erent input condi-
tions, had already been demonstrated by Murthy and Fetz [9]. Note that we modeled
zero-delay correlation only. A jitter in synchronization could modulate the e ects of
input correlation [1].
In conclusion, we propose that the response of the leaky I&F critically depends

on the input $ring statistics. As a corollary, drawing conclusions about the potential
e ect of input correlation in the working brain necessitates a better knowledge of the
statistical structure of spiking activity in large neuronal ensembles.
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