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Inspired by different conceptualizations of temporal neural coding
schemes, there has been recent interest in the search for signs of pre-
cisely synchronized neural activity in the cortex. One method developed
for this task is unitary-event analysis. This method tests multiple single-
neuron recordings for short epochs with signi�cantly more coincident
spikes than expected from independen t neurons. We reformulated the
statistical test underlying this method using a coincidence count distri-
bution based on empirical spike counts rather than on estimated spike
probabilities. In the case of two neurons, the requirement of stationary
�ring rates, originally imposed on both neurons, can be relaxed; only the
rate of one neuron needs to be stationary, while the other may follow an
arbitrary time course. By analytical calculations of the test power curves of
the original and the revised method, we demonstrate that the test power
can be increased by a factor of two or more in physiologically realistic
regimes. In addition, we analyze the effective signi�cance levels of both
methods for neural �ring rates ranging between 0.2 Hz and 30 Hz.

1 Introduction

Thanks to advances in neurophysiological recording technology, it is now
feasible to experimentally test biological hypotheses about cortical informa-
tion processing and neuronal cooperativity on the basis of multiple single-
neuron recordings (Aertsen, Bonhoeffer, & Krüger, 1987; Nicolelis, 1998).
However, due to the stochastic appearance of neural response patterns in
the cortex (Palm, Aertsen, & Gerstein, 1988), the neurobiological concepts in
question must be translated into precise statistical hypotheses to be veri�ed
by speci�cally designed statistical tests.

Inspired by a number of different conceptualizations of temporal neural
coding schemes, such as correlational cell assemblies (Aertsen & Gerstein,
1991; Gerstein, Bedenbaugh, & Aertsen, 1989; von der Malsburg, 1981), co-
herent oscillations (Singer, 1993), and precise �ring patterns (Abeles, 1982,
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1991), there has been particular emphasis on the search for synchronized
neural activity (Abeles & Gerstein, 1988; Abeles, Bergman, Margalit, & Vaa-
dia, 1993; Kreiter & Singer, 1996; Prut et al., 1998; Singer, 1999). One of
the methods developed for this task is unitary-event analysis (Grün, 1996;
Grün, Diesmann, Grammont, Riehle, & Aertsen, 1999; Grün, Diesmann, &
Aertsen, in press-a; Grün, Diesmann, & Aertsen, in press-b; Riehle, Grün,
Diesmann, & Aertsen, 1997). This method searches recordings from multi-
ple single neurons for epochs with distinctly more (near-)coincident spikes
than expected from independent neurons obeying Poissonian spike statis-
tics. The core of unitary-event analysis consists of computing the prob-
abilities (joint-p-values) for the occurrence of a given minimum number
of coincident spikes in short time segments, under the null hypothesis of
independence. Segments with a joint-p-value below a �xed level of signif-
icance a are identi�ed as signi�cant epochs where the null hypothesis is
rejected.

Here we demonstrate that by revising the original testing procedure,
more speci�cally, by implementing a different coincidence count distribu-
tion, we can substantially increase the power of the method. Figure 1 com-
pares the behavior of the original and the modi�ed versions of the method
on an empirically motivated, simulated data set of two neurons, stretching
over epochs of correlated activity. Figure 1D depicts all epochs marked as
signi�cant by either of the two methods. The plot shows that the original
version (Bin) misses epochs of synchronous neural activity that are detected
by the modi�ed version (Hyp).

The primary goal of this article is to investigate and compare two central
properties—the power and the effective signi�cance level—of the statistical
test underlying the original and the revised versions of unitary-event anal-
ysis. Our investigation focuses on the identi�cation of signi�cant epochs;
we will not treat statistical problems of interdependent testing, arising when

Figure 1: Facing page. Comparison of the original and the modi�ed version of
the statistical test underlying unitary-event analysis applied to simulated data.
Matching the data of Riehle, Grün, Diesmann, and Aertsen (1997), we simulated
36 trials of two dependent neurons over 1300 bins (each of 5 ms duration) with
the spike event probabilities p1 D 0.15 and p2 D 0.05, corresponding to the
mean �ring rates of 30 Hz and 10 Hz. (A, B) Raster plots of neurons 1 and 2.
(C) The spike event and coincidence counts for 65 nonoverlapping analysis
windows of 100 ms duration (n D 36 ¢ 100ms

5 ms D 720). (D) The upper part shows
the correlation of spike counts r of the two neurons that was controlled through
the stochastic model underlying the simulation of the data (see section 2 for
details). The lower part depicts the epochs that were marked as signi�cant by
the original test (upper row) and the modi�ed test (lower row) at a signi�cance
level of a D 0.01 (dotted line in E). (E) The corresponding joint-p-values for both
versions of the test, calculated in each of the analysis windows.
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analysis windows overlap. Preliminary results have been presented in ab-
stract form (Gütig, Rotter, Grün, & Aertsen, 2000).

2 Stochastic Model

First, we sketch the mathematical framework underlying our statistical as-
sessment of the signi�cance of coincident spiking of two neurons. Based on
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this framework, in section 3 we summarize the statistical test underlying
the original unitary-event analysis (Grün, 1996) and describe our revised
version of the analysis method. One key element of our approach is to pa-
rameterize the stochastic dependence of the two neurons in terms of their
spike correlation. This will be used in section 4 to calculate and compare
the power of both statistical tests. The extension of this new approach to
the case of three or more neurons is conceptually straightforward but nu-
merically demanding. For clarity, most mathematical details are deferred to
appendix A.

We assume the analysis to extend over a time window composed of n
pairs of corresponding time bins (one for each neuron) of width D t. Each
bin can take either the value 1, denoting the observation of at least one spike
in that time bin (we refer to this as a spike event), or the value 0, denoting
the absence of spikes. Our treatment will refer only to joint observations
of all n bins in the analysis window and disregard any information about
the �ne structure of the data in individual trials. Hence, an application of
our results to pooled data from a multiple-trial design needs to assume
stationarity across trials.

Two main assumptions will be made in the following:

A1: The spike probabilities and the binwise spike correlations of the two
neurons are the same for all n pairs of bins of the analysis window
(“stationarity”).

A2: All bins, except for those in a pair, are stochastically independent
(“serial independence”).

Note that assumption A1 is conceptually not essential to our framework,
which is suited to treat a neural system with nonstationary spike probabil-
ities. Doing so, however, would give rise to probability distributions with
many parameters (cf. appendix C), greatly complicating the calculations.
By contrast, assumption A2 clearly imposes severe restrictions on the gen-
erality of the approach. Although it was not always explicitly stated, this
assumption also underlies previous treatments of the topic (Grün, 1996; Roy,
Steinmetz, & Niebur, 2000). The important task of overcoming the dif�cul-
ties introduced by serially correlated spike trains is the subject of ongoing
research.

As shown in appendix A, assumptions A1 and A2 allow us to completely
characterize the probability space describing the realization of two neu-
ral spike trains by specifying the individual spike probabilities of the two
neurons, p1 and p2, and their spike correlation r . We will abbreviate this
parameter triplet throughout by j :D (p1, p2, r ). The correlation r param-
eterizes the stochastic dependence of the two neurons, with the case of
independently spiking neurons corresponding to r D 0. Note that for bi-
nary variables as used here, the notion of stochastic (in)dependence and the
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Table 1: 2 £ 2 Table of Counts for Analysis Windows Comprising n Bins.

Spike from No Spike from

Neuron 1 Neuron 1

Spike from Neuron 2 k c2 ¡ k c2

No Spike from Neuron 2 c1 ¡ k n ¡ c1 ¡ c2 C k n ¡ c2

c1 n ¡ c1 n

Note: The counts c1 and c2 denote the number of spike events from neu-
rons 1 and 2, respectively, and k denotes the number of coincident spike
events, in one particular observation

notion of correlation coincide. Thus, in our treatment of the test power in
section 4, we will use nonvanishing values of r to quantify violations of the
null hypothesis of independent �ring. We will indicate the case of stochastic
independence by writing j0 instead of j .

The central statistics of the following treatment will be the individual
spike counts, C1 and C2, and the coincidence count K, all derived from an
observation of the two neurons in the analysis window. Since, according
to our de�nition of spike events, each bin can hold at most one count, the
total number of spike events observed from each neuron in a given analysis
window is restricted to the integers between 0 and n. And the number of
coincident spike events K cannot exceed either one of the corresponding
spike counts C1 and C2. As shown in Table 1, the statistics C1, C2, and K give
rise to a 2 £2 table of counts for each realization of the analysis window. We
note in passing that because of assumption A1, the correlation r between
spike events in coincident bins (see equation A.3) equals the correlation of
the spike event counts of the two neurons, independently of the number of
bins n.

Both tests for independence discussed in the following use the coinci-
dence count K as their test statistic; they de�ne statistical signi�cance based
on the number of coincident spikes observed within the analysis window.
Thus, the probability distribution of this random variable, Pj (K D k), di-
rectly enters the computation of the joint-p-values in each of the tests and
therefore affects their statistical properties. The two methods, however, dif-
fer in the amount of information they draw from the data. To make this
distinction clear, we discuss here both probability distributions for the case
of independent neurons, that is, Pj0 (K D k) where r D 0. The general forms
of these distributions for arbitrary r 2 [¡1, 1] and their derivations are
given in appendix B. We emphasize that while the distributions for r D 0
suf�ce for the de�nition of the statistical tests in the next section, the calcu-
lation of test power in section 4 will rely on the general expressions from
appendix B.

We �rst consider the situation where only the (constant) spike probabili-
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ties p1 and p2 of both neurons are known. In particular, no further knowledge
of the spike counts c1 and c2 is assumed. Then, based on assumptions A1
and A2, the probability distribution of K for independent neurons is given
by the binomial distribution,

Pj0
(K D k) D

³
n

k

´
(p1p2)k(1 ¡ p1p2)(n¡k). (2.1)

Note that this distribution of coincidence counts was used in the original
de�nition of unitary-event analysis (Grün, 1996), as well as in several recent
contributions about the method (Grün et al., 1999; Roy et al., 2000).

In the second case, which is conceptually different, we consider the co-
incidence count distribution, making explicit use of the knowledge of the
individual spike counts c1 and c2. In this case, we formulate the probability
distribution conditional on the speci�c realization of the spike counts, that
is, Pj (K D k | c1, c2). Unlike the spike probabilities, these counts are readily
accessible in any empirical spike train. It can be shown (cf. appendix B) that
the conditional distribution of K for independent neurons is described by
the hypergeometric distribution (cf. Palm et al., 1988):

Pj0 (K D k | C1 D c1, C2 D c2) D

³
c1

k

´³
n ¡ c1

c2 ¡ k

´

³
n

c2

´ . (2.2)

Note that this distribution does not refer to the spike probabilities p1 and
p2 anymore. Moreover, it can easily be veri�ed that it is symmetric with
respect to c1 and c2. The general form of the conditional distribution for
r 2 [¡1, 1] is much more complicated, though. Its explicit form is derived
in appendix B.

3 Count-Based Versus Rate-Based Statistics

Typically, the test of a statistical hypothesis on the grounds of empirical
data is based on a specially designed random variable, the so-called test
statistic. In order to control the probability that the test fails, certain aspects
of the distribution of the test statistic under the null hypothesis must be
known. The probability that the null hypothesis is rejected, even if it is
correct (type I error, or a-error), is usually �xed at some small value (e.g.,
5 %). Essentially, this is achieved by adjusting the critical region of the test
through the choice of an appropriate threshold of the test statistic (Mood,
Graybill, & Boes, 1974). Similarly, the case where the null hypothesis is not
rejected, even if it is false, is referred to as a type II error, or b-error. Given
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a parametric model of deviations from the null hypothesis, which speci�es
the probability distribution of the test statistic under a given deviation, it
is possible to calculate the b-error probability of the test. Based on this
probability, one can directly assess the power of the test—the probability of
correctly detecting a given violation of the null hypothesis.

Within the framework of the stochastic model de�ned in the previous
section, including the assumptions A1 and A2, the null hypothesis underly-
ing the detection of signi�cant epochs comprises the following additional
assumption for each analysis window:

H0: The activity of the two neurons is stochastically independent, r D 0.

The original version of unitary-event analysis is based on the binomial
coincidence countdistribution (seeequation 2.1). In this approach, empirical
estimates for the parameters p1 and p2 on the basis of the spike counts c1
and c2,

Opi D
ci

n
(i D 1, 2), (3.1)

are used to calculate the probability that Qk or more coincident events are
observed under the given conditions. This probability, here denoted by
Jbin
j0

( Qk, c1, c2), is refered to as the joint-p-value (Grün, 1996)

Jbin
j0

( Qk, c1, c2) :D
nX

kD Qk

³
n

k

´± c1c2

n2

²k ±
1 ¡ c1c2

n2

²(n¡k)
. (3.2)

We emphasize that this procedure uses the observed spike counts solely
for the estimation of the spike probabilities. One effect of this is that the
binomial distribution gives nonvanishing probabilities for the impossible
outcome k > min(c1, c2). In addition, the binomial coincidence count distri-
bution does not take into account the stochastic nature of the rate estimation
procedure itself.

To make better use of the information contained in the spike counts, we
propose to compute the joint-p-values from the conditional probabilities
Pj0 (k | c1, c2) instead. Given assumption H0, together with the empirically
accessible spike counts c1 and c2, these probabilities are determined by the
hypergeometric distribution (see equation 2.2; Palm et al., 1988; Aertsen,
Gerstein, Habib, & Palm, 1989; Lehmann, 1997). Thus, by using the em-
pirical spike counts to specify the conditional distribution of coincidence
counts (see equation 2.2), we can completely eliminate the rate estimation
(see equation 3.1) from the testing procedure. Accordingly, the joint-p-value
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Jhyp
j0

( Qk, c1, c2) of an epoch with Qk coincident spikes, based on the hypergeo-
metric distribution, is given by

Jhyp
j0

( Qk, c1, c2) :D
min(c1 ,c2 )X

kD Qk

³
c1

k

´³
n ¡ c1

c2 ¡ k

´

³
n

c2

´ . (3.3)

To illustrate the difference between the two approaches, Figure 2A shows
that for large enough values of the coincidence count k, the joint-p-values
according to the binomial distribution exceed the corresponding proba-
bilities based on the hypergeometric distribution. Thus, although the two
distributions have equal mean, the binomial distribution overestimates the
probability for the occurrence of large coincidence counts, for certain com-
binations of individual spike counts. The effect is that for the parameter
values in Figure 2A, a statistical test using the hypergeometric distribu-
tion would classify an observation of Qk ¸ 12 as signi�cant (a D 0.05;
dotted line), whereas the corresponding test based on the binomial dis-
tribution would need at least Qk D 13 coincident spikes. Figure 2B shows
the corresponding differences in these critical coincidence counts for all
count combinations c1, c2 2 f0, . . . , 100g. Light areas depict count combi-
nations where the critical coincidence count for the binomial distribution
exceeds the critical count of the modi�ed test by one; for dark areas, the
difference is zero. This example suggests that the use of the conditional
coincidence count distribution may effectively lead to an increase in sen-
sitivity of the test in certain parameter regimes. In fact, it is a result from
mathematical statistics that the randomized version of the proposed test,
called Fisher’s exact test in the nonrandomized form presented here, is uni-
formly most powerful unbiased (Lehmann, 1997). A brief discussion of the
randomized test is given in appendix E. Figure 2A also illustrates that in
general, the joint-p-values of the critical coincidence counts do not equal
the nominal signi�cance threshold a. Moreover, for a given a-level, both
tests will in general not operate on the same effective signi�cance level.

Figure 2: Facing page. Comparison of binomial and hypergeometric distribu-
tions. (A) Joint-p-value: cumulative binomial and hypergeometric probability
distributions for observing k or more coincidence counts for n D 720, c1 D 100,
and c2 D 51. (B) Difference between the critical coincidence counts kcrit of both
distributions for n D 720 and a D 0.05. Light areas depict count combinations
where the critical coincidence count of the binomial distribution exceeds the
critical coincidence count of the hypergeometric distribution by one. For count
combinations in the dark areas, the difference is zero.
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Next to the issue of sensitivity of the two tests that will be addressed in the
following section, we note one further important implication of using the
hypergeometric coincidence count distribution. As shown in appendix C,
the modi�ed version of the test does not require that both neurons have con-
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stant �ring rates. Rather, it suf�ces if the spike probability of only one of the
two neurons (either one) remains constant throughout the analysis window.
Since the original method had to assume stationarity of both neural �ring
rates, this relaxation of the stationarity requirement A1 implies an important
extension of the class of empirical data that qualify for the statistical anal-
ysis described here. Note, however, that this relaxation concerns only the
inferential statistical testing of H0 as implemented by our revised method.
The following investigation of the statistical properties of the method when
applied to neurons that violate the hypothesis of independence still relies
on stationarity in both neurons.

4 Test Power

To obtain a thorough understanding of the properties of the statistical sig-
ni�cance tests de�ned above, we calculated the power function (Mood et
al., 1974) of the tests for both coincidence count distributions. Speci�cally,
this will allow us to quantify the advantage of using the hypergeometric
count distribution concerning its test performance. For a given set of alter-
native hypotheses, the power of the statistical tests investigated here is the
probability of obtaining a coincident count that yields a signi�cant �nding
when tested against the null hypothesis. Loosely speaking, the power of the
test measures the probability that the test will detect a given violation of the
null hypothesis. According to the stochastic model de�ned in section 2, we
use r to parameterize the set of alternative hypotheses. We emphasize that
the power curves we will compute only characterize the sensitivity of the
methods regarding violations of the null hypothesis of independent �ring
(H0). Our treatment does not include violations of the other assumptions
A1 and A2. We also note that the power curves will be calculated with re-
spect to identical nominal signi�cance levels a. Hence, the resulting values
describe the more common nonrandomized application of the methods, as
discussed in recent contributions (Grün, 1996; Grün et al., 1999; Pauluis &
Baker, 2000; Roy et al., 2000). The effective signi�cance levels of the tests,
however, generally differ, and, hence, differences in test power will depend
on differences in effective signi�cance levels.

We introduce the auxiliary functions kcrit
bin and kcrit

hyp:

kbin
crit(c1, c2) :D minfk 2 N: Jbin

j0
(k, c1, c2) · ag (4.1)

khyp
crit (c1, c2) :D minfk 2 N: Jhyp

j0
(k, c1, c2) · ag. (4.2)

For any given combination of spike event counts c1 and c2, these k-values
give the minimum number of coincident spikes that leads to a rejection of
the null hypothesis at the signi�cance level a, when tested against the null
hypothesis underlying the corresponding coincidence count distribution.
The probability of rejecting the null hypothesis for given counts c1 and c2
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and j is then determined by

Pj (K ¸ kcrit(c1, c2) | C1 D c1, C2 D c2), (4.3)

which can be straightforwardly computed from equation B.7. It is important
to note that this rejection probability is a function of the individual spike
counts c1 and c2. This means that it is not an intrinsic property of the test
itself, but rather a property of the test in combination with a speci�c empir-
ical observation. Thus, to calculate the power of a test, we need to calculate
the expectation value of the rejection probability with respect to the joint
count distribution (see equation B.5), which is also speci�ed through the
parameter j of an alternative hypothesis. Thus, for a given j , the power pj

of the test is given by the expectation value of the rejection probability for
each of the two underlying coincidence count distributions:

p bin
j D Ej

h
Pj (K ¸ kbin

crit(c1, c2) | C1 D c1, C2 D c2)
i

D
nX

c1 ,c2 D0

Pj (C1 D c1, C2 D c2)

£ Pj (K ¸ kbin
crit(c1, c2) | C1 D c1, C2 D c2) (4.4)

p
hyp
j D Ej

h
Pj (K ¸ khyp

crit (c1, c2) | C1 D c1, C2 D c2)
i

D
nX

c1 ,c2 D0

Pj (C1 D c1, C2 D c2)

£ Pj (K ¸ khyp
crit (c1, c2) | C1 D c1, C2 D c2). (4.5)

We refer to appendix D for an account on the numerical evaluation of these
probabilities.

4.1 Difference in Test Power. In this section, we investigate the differ-
ences in power of the rate-based versus the count-based tests for signi�cance
of coincident spike activity. Speci�cally, we will discuss how this difference
depends on the signi�cance level a and the number of bins in the analysis
window n and how this difference is affected by the spike probabilities p1
and p2. Apart from comparing the performance of the two methods, our
analysis is also valuable for applications to empirical data. For a given set of
parameters, knowledge of the power function allows us to assess whether a
planned analysis is feasible or, vice versa, it can be used to guide the design
of experiments. As mentioned before, we will use the spike correlation r to
parameterize deviations from the null hypothesis of independent �ring. The
value of r will be varied over a physiologically realistic regime, as reviewed
by Abeles (1991; (see also Aertsen & Gerstein, 1985).
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We start the comparison by calculating the power curves of both anal-
ysis methods in a parameter regime that matches the empirical �ndings
published by Riehle et al. (1997). Accordingly, we let the analysis window
cover n D 720 bins of 5 ms each (originally collected from 36 trials) and
set the spike probabilities of the two neurons to p1 D 0.15 and p2 D 0.05,
corresponding to mean �ring rates of 30 Hz and 10 Hz, respectively. We
computed the power curves for the signi�cance levels a D 0.01, a D 0.05
(this value was used by Riehle et al., 1997), and a D 0.1.

Figure 3 shows that the tests based on the hypergeometric coincidence
count distribution clearly outperform the original tests in terms of their
power. Considering a spike correlation of r D 0.1, we see from Figure 3B
that for a D 0.01, the chance of rejecting the (false) null hypothesis of inde-
pendent neurons is increased by over 0.1 compared to the original method.
This corresponds to a relative increase in power of about 50% (see Fig-
ure 3).

From Figures 3A and 3B we also see that the difference between the tests
increases when they are chosen to operate at more conservative signi�cance
levels (i.e., lower a). The inset of Figure 3A shows that for large analysis
windows (here n D 720), the power decreases smoothly as a is decreased. It
is interesting to note that the relative difference in test power (see Figure 3C)
monotonically increases (up to 150%) as r approaches zero. Thus, other than
the difference in power, which follows a bell-shaped curve (see Figure 3B),
the relative difference in power becomes maximal for r D 0, that is, for
independent neurons. This means that, as already suggested by Figure 2, the
original method yields less signi�cant �ndings in a low-correlation regime.
In other words, for r ! 0, it effectively operates at a lower probability of
yielding a false-positive �nding than the count-based test. This is important,
since it implies that the neglect of count information leads to a conservative
behavior of the original test as applied in the past. However, as we will
see, this is not the case for small values of n ¼ 20 (i.e., for narrow analysis
windows and single trial applications) in connection with speci�c values
of a.

While both tests, as expected, gain power with increasing n (see Fig-
ure 4A), there is no qualitative change in the difference in power for larger
analysis windows (n 2 f100, . . . , 700g, data not shown). The count-based
test outperforms the rate-based version with differences in power qualita-
tively corresponding to the curves shown in Figure 3B. However, because
of the overall increase in power, the peaks of the difference in power curves
move toward smaller correlations as n grows. Therefore, the revised test is
the method of choice when searching weak correlations in larger analysis
windows (n 100).

Another potentially interesting regime is given by small analysis win-
dows (n ¼ 20), as would be needed for time-resolved single-trial analy-
sis. Both tests suffer a considerable loss of power with decreasing n (see
Figure 4A). Moreover, for small n, both methods become dominated by
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Figure 3: Dependence of both tests on nominal signi�cance level. (A) Test power
curves of the two methods for n D 720, p1 D 0.15, p2 D 0.05, and a-levels of
0.01, 0.05, and 0.1. The inset shows the test power for a 2 f0.01, 0.011, . . . , 0.1g
at r ¼ 0.096. (B) Differences in test power—the power values of the modi�ed
test minus the power values of the original version. (C) Difference in test power
relative to the power of the original version of the test—the difference in power
divided by the power of the original version. The analytical results shown in
this �gure were checked by computer simulations based on the Ran2 and the
MT19937 random number generators (cf. Galassi et al., 1998).
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Figure 4: Dependence of both tests on analysis window size. (A, B) Test power
curves for a D 0.05, p D p1 D p2 D 0.1, r ¼ 0.19, and n 2 f20, 21, . . . 700g. (C)
Dependence of both tests on nominal signi�cance level for n D 20, p D p1 D
p2 D 0.05, r ¼ 0.26, and a 2 f0.01, 0.011, . . . , 0.1g. Arrows mark values of a

where p bin
j > p

hyp
j .
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discreteness effects of the underlying spike statistics (see Figure 4B). Thus,
the difference between the two methods becomes extremely sensitive to
the nominal level of signi�cance a, in a discontinuous way. For a small
number of speci�c combinations of n and a (e.g. n D 20 and a D 0.049),
the power of the rate-based test can be even greater than the power of
the count-based test (see Figure 4C). Thus, it would not, as was the case for
large n, miss signi�cant epochs but instead would indicateneural synchrony
in cases that are not judged signi�cant, once knowledge of the individual
spike counts is incorporated into the testing procedure. Due to this behav-
ior for small n, the original method should not be used in these parameter
regimes.

Turning to the dependence of both tests on varying spike probabilities p1
and p2, we �rst let p :D p1 D p2 and computed thepower curves for p ranging
from 0.01 to 0.15 (again, n D 720 and a D 0.05). The results are shown in
Figures 5A and 5B: as the power of both methods increases with growing
spike probability p, the difference in their power also becomes larger. Thus,
the advantage of the count-based method increases with higher neural �ring
rates. Also note that the power of both methods for low spike probabilities
becomes small: the chance to detect a spike correlation of 0.1 is only around
30%. Finally, Figure 5C shows the difference in power for asymmetric spike
probabilities p1 6D p2 with constant product p1p2 D 0.0075. Observe that
the difference between the two tests grows as the asymmetry in the spike
probabilities increases. This result indicates that the common assumption
of equal spike probabilities underlying other investigations of the method
(Grün et al., 1999; Roy et al., 2000) may shadow nontrivial properties of the
tests, which are enhanced in regimes with different spike probabilities.

5 Effective Signi�cance Level

Next to its power, the signi�cance level of a statistical method is another
important characteristic of its performance in practical applications. In this
section, we analyze and compare the signi�cance levels of the two tests.
Generally, the signi�cance level a of a statistical test denotes the probability
that it leads to a rejection of its null hypothesis, even if it were correct (i.e.,
the probability of making a type I error). In principle, this probability is
�xed before computing the test statistics. However, tests based on discrete
random variables can effectively operate only at levels that correspond to
p-values of actual realizations of the test statistic (cf. Figure 2; Mood et al.,
1974). It is therefore necessary to differentiate between the nominal signi�-
cance level (i.e., the value of a denoting the signi�cance threshold) and the
effective signi�cance level (i.e., the largest possible p-value that still falls
below the a threshold) (see also Roy et al., 2000). In principle, “random-
ized tests” provide the means to adjust the effective signi�cance level of a
test to its nominal level a by introducing an auxiliary random variable, not
related to the data under testing. However, due to conceptual objections
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Figure 5: Dependence of both tests on spike probabilities (n D 720, a D 0.05).
(A) Test power curves of the two methods for “symmetrical” spike probabilities
p D p1 D p2 2 f0.01, 0.02, . . . , 0.15g. (B) Differences in test power corresponding
to A. (C) Differences in test power for asymmetrical spike probabilities (p1, p2) 2
f(0.1, 0.075), (0.15, 0.05), (0.2, 0.0375), (0.25, 0.03), (0.03, 0.025)g.
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against this procedure, randomized tests are not commonly used in applied
statistics (Mood et al., 1974), in spite of their attractive theoretical proper-
ties (Lehmann, 1997). A brief discussion of the randomization of the test
investigated in this study is given in appendix E.

Given the critical coincidence counts kbin
crit(c1, c2) and khyp

crit (c1, c2) intro-
duced in the previous section (see equations 4.1 and 4.2), the effective sig-
ni�cance level of the tests investigated here is determined by the proba-
bility of obtaining a coincident count k ¸ kbin

crit(c1, c2), evaluated with re-
spect to the coincidence count distribution of the corresponding test, that is,

by Jbin
j0

(kbin
crit(c1, c2), c1, c2) and Jhyp

j0
(khyp

crit (c1, c2), c1, c2), respectively (cf. equa-
tions 3.2 and 3.3). However, it is important to note that these effective signif-
icance levels can be calculated only if speci�c values of c1 and c2 are given.
Only then is the coincident count distribution belonging to the correspond-
ing test suf�ciently speci�ed. Due to this dependence on the speci�c realiza-
tion of the counts C1 and C2, we will refer to these effective signi�cance levels
as count-dependent effective signi�cance levels. Figure 6 shows the count-
dependent effective signi�cance levels for tests with a nominal signi�cance
level of a D 0.05, for n D 20 and n D 720. The �gure clearly demonstrates
that the count-dependent effective signi�cance levels of both tests �uctuate
considerably between different realizations of the spike counts. In addition,
it is interesting to note the effect of the neglect of count information by the
original version of the test from the comparison of Figures 6A and 6C (see
the �gure caption for details).

We stress that the calculation of the count-dependent effective signif-
icance level does not take into account that the spike counts themselves
are random variables. Thus, it is without doubt the appropriate measure
to assess the effective signi�cance level for the inferential statistical test of
stretches of data with speci�c spike counts. However, one should be reluc-
tant in interpreting this probability as the overall type I error probability
of the method. This conceptual difference between the count-dependent ef-
fective signi�cance level and the unconditional effective signi�cance level
(i.e., independent of the speci�c realization of the spike counts) gains cru-
cial importance when interpreting the �ndings reported by Roy et al. (2000),
although these authors do not seem to make this distinction consistently.

Instead of characterizing the method by its count-dependent effective
signi�cance level, we introduce the expected effective signi�cance level aj0 .
The latter is de�ned as the expectation value of the count-dependent ef-
fective signi�cance level with respect to the joint count distribution of in-
dependent neurons characterized by j0. The interpretation of this measure
as the expectation value of the count-dependent effective signi�cance level
rests on the additional assumption that the parameters j0 D (p1, p2, r D 0)
of the joint count distribution are known. This assumption is not part of the
null hypotheses of the tests investigated here. Thus, aj0 has to be interpreted
as the expectation value of the count-dependent effective signi�cance level
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Figure 6: Count-dependent effective signi�cance levels for a D 0.05. (A,
C) Small analysis window, n D 20. The black regions correspond to count
combinations where the count-dependent effective signi�cance level is zero;
this occurs when either one of the counts is zero or when even the maximal
possible number of coincidences—k D 20 for the binomial distribution and
k D min(c1 , c2 ) for the hypergeometric distribution—does not yield a signi�-
cant p-value and, hence, the probability of rejecting the null hypothesis equals
zero. (B, D) Large analysis window, n D 720. (A, B) Binomial coincidence count
distribution. (C, D) Hypergeometric coincidence count distribution.

of the test when applied to neurons with spike probabilities p1 and p2. By
contrast, the landscapes of count-dependent effective signi�cance levels in
Figure 6 do not depend onj0, that is, on the values of p1 and p2. The param-
eter j0 enters the computation of the expectation value aj0 only through the
joint count distribution underlying its de�nition.

Averaging over the joint count distribution for independent neurons
(cf. appendix B), the expected effective signi�cance level aj0 is obtained
in straightforward fashion:

abin
j0

D Ej0

h
Jbin
j0

(kbin
crit(c1, c2), c1, c2)

i
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D
nX

c1,c2D0

Pj0 (c1, c2) Jbin
j0

(kbin
crit(c1, c2), c1, c2) (5.1)

a
hyp
j0

D Ej0

h
Jhyp
j0

(khyp
crit (c1, c2), c1, c2)

i

D
nX

c1,c2D0

Pj0
(c1, c2) Jhyp

j0
(khyp

crit (c1, c2), c1, c2). (5.2)

A discussion of a numerical evaluation of these expectation values is given
in appendix D.

Since the test based on the hypergeometric coincidence count distribu-
tion makes no reference to the spike probabilities p1 and p2, it is indepen-
dent of the “actual” spike probabilities of the investigated neurons. Thus,

its expected count-dependent effective signi�cance level a
hyp
j0

re�ects the
probability that the test will reject its correct null hypothesis when applied
to data from two independent neurons with spike probabilitiesj0. Note that
this is not the case for tests based on the binomial coincidence count dis-
tribution, where the testing procedure includes the estimation of the spike
event probabilities pi via Opi D ci/n (see equation 3.1). In general, the es-
timated probabilities Opi will deviate from the actual parameters for most
spike count combinations. Moreover, as pointed out in section 3, the bino-
mial coincidence count distribution neglects the information contained in
the actual spike counts. As a result, the count-dependent effective signi�-
cance level based on these estimators will generally not correctly describe
the probability of obtaining a coincident count k ¸ kbin

crit(c1, c2). Therefore,
the number abin

j0
is of purely theoretical interest and does not bear any op-

erational relevance.
Thus, to calculate the probability that a test based on the binomial co-

incidence count distribution will reject the null hypothesis when applied
to independent neurons with spike probabilities p1 and p2, we need to
compute the count-dependent probability to obtain a coincidence count
k ¸ kbin

crit(c1, c2) with respect to the hypergeometric distribution. Note, how-
ever, that kbin

crit(c1, c2) itself is calculated with respect to the binomial coinci-
dence count distribution. Thus, again forming the expectation value with
respect to the joint count distribution, we obtain

2 bin
j0

D Ej0

h
Jhyp
j0

(kbin
crit(c1, c2), c1, c2)

i

D
nX

c1 ,c2D0

Pj0 (c1, c2) Jhyp
j0

(kbin
crit(c1, c2), c1, c2), (5.3)

which we will refer to as a-error probability. It is clear from the above that
for the corresponding a-error probability for the test based on the hyperge-

ometric count distribution 2
hyp
j0

, we have 2
hyp
j0

D a
hyp
j0

.
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5.1 Dependence of the Effective Signi�cance Level on Spike Probabil-
ities. In this section we investigate the dependence of the a-error probabil-
ities on the spike probabilities p1 and p2, for both types of the test. Figure 7
shows the expected effective signi�cance levels aj0 and the a-error proba-
bility 2 bin

j0
for p D p1 D p2 ranging from 0.001 to 0.15. The surface plots in

Figures 7C and 7D display the dependence of these curves on the number
of bins n. Overall, Figure 7 shows that the curves for the a-error probability

of the modi�ed method a
hyp
j0

lie above the curves for the a-error probability
of the original method 2 bin

j0
. Thus, especially for higher �ring rates, where

the difference between the curves amounts to a considerable fraction of the
nominal signi�cance level (a D 0.05), the a-error probability of the modi�ed
method lies closer to the nominal signi�cance level.

In Figures 7A and 7B, we also display the count-dependent effective
signi�cance levels that would arise from the binomial coincidence count
distribution with coincidence probability p2 (indicated by diamonds), as
considered by Roy et al. (2000). Note that in order to obtain a continuous
sample of these count-dependent effective signi�cance levels, we did not
restrict the values of p2 to possible realizations of c1c2 /n2 but instead treated
p as a continuous variable. In contrast to the view expressed by Roy et al.
(2000), we emphasize that according to our formalism the interpretation of
the ensuing sawtooth function (cf. Figure 7A) has to take into account that
its independent variable p does not correspond to a neural spike probability,
as it does in the calculation of aj0 and 2 bin

j0
. Instead, this variable technically

corresponds to an estimator of the spike probability, which would be based
on realizations of the random variables C1 and C2 in applications of the
method to experimental data.

In this context, it is important to recall that the count-dependent effec-
tive signi�cance levels are different for different spike count combinations
(cf. Figure 6). Thus, because of the stochastic nature of the spike counts,
the tests will in general operate on different count-dependent effective sig-
ni�cance levels for different realizations of the analysis window. Since this
effect is due to the stochastic nature of the spike counts, it equally holds if the

Figure 7: Facing page. Dependence of expected effective signi�cance level and
a-error probability on analysis window size, for (A) n D 720 and (B) 20, 100,
500, and 1000, respectively. Diamonds depict corresponding count-dependent
effective signi�cance levels (cf. Roy et al., 2000; see text for details). (C, D) The
a-error probabilities for the binomial and hypergeometric coincidence count
distribution for n 2 f20, 40, . . . , 1000g. The oscillatory behavior of the curves
for n 100 at low values of p re�ects the periodic structure of the count-
dependent effective signi�cance level landscape (cf. Figure 6), which for small
p dominates the expectation values because of the increasing localization of
the joint count distributions. The analytical results shown in this �gure were
checked by computer simulations, based on the Ran2 random number generator
(cf. Galassi et al., 1998).
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probabilities p1 and p2 underlying the different realizations of the spike
counts would remain perfectly constant. Therefore, contrary to the sugges-
tion by Roy et al. (2000), the variation of count-dependent effective signi�-
cance levels between different realizations of the analysis window is not an
issueof neural �ringrates. In fact, thecount-dependenteffective signi�cance
levels do not depend on the spike probabilities p1 and p2. Therefore, a change
of neural �ring rates would in no way in�uence the count-dependent effec-
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tive signi�cance levels—the shape of the sawtooth function in Figures 7A
and 7B. Rather, it would lead to a change in the joint count distribution and,
hence, affect the expected signi�cance levels aj0 and the a-error probability
2 bin

j0
. As shown in Figures 7A and 7B, computing these expectation values

transforms the discrete sawtooth structure (diamonds) into smooth func-
tions of p (curves). Thus, even for p as low as 0.02 (corresponding to a �ring
rate of 4 Hz for 5 ms bins) and n as in Figure 7, small changes in �ring rate
do not lead to large changes in the a-error probabilities of the two methods
(as was claimed by Roy et al., 2000).

6 Discussion

We presented a modi�cation of the statistical test underlying unitary-event
analysis for the detection of neural synchrony. By incorporating the empiri-
cal spike counts into the calculation of the probability distribution of the test
statistic (i.e., the coincidence count), we were able to remove the �ring-rate
estimation from the testing procedure. As a result, the distribution of the
test statistic becomes independent of the a priori �ring rates. The applica-
tion of the modi�ed method therefore avoids the problems of �ring-rate
estimation associated with statistical �uctuations in the spike counts.

To quantify the increase in sensitivity of the new method, we calculated
and compared the test power of both tests with respect to violations of
the null hypothesis of independent �ring for various regimes of physio-
logical parameters (�ring rates; cf. Figure 5), degree of spike correlation
(cf. Figures 3 and 5) and analysis parameters (size of analysis window; cf.
Figure 4), and signi�cance level (cf. Figure 3). The spike probabilities p1
and p2 were chosen such that the corresponding neural �ring rates (for
bin size D t D 5 ms) lay between 2 Hz and 30 Hz. These results are of dual
importance. First, they directly specify the probabilities of detecting given
deviations from independent �ring with the two methods. These probabili-
ties are not only important quantities to characterize the performance of the
statistical test, they are also critical in the context of experimental design:
they allow one to choose appropriate values for analysis parameters such
as the size of the time window necessary to verify a theoretically predicted
dependence between two neurons. Second, the power curves allow us to
quantify the effect of the suggested modi�cation of the testing procedure
on the performance of the test in comparison to the original version. This is
important to reevaluate the results obtained by use of the original method
and point out parameter regimes where the usage of the modi�ed version
of the test is especially crucial.

Overall, we found that for applications of the test to analysis windows
comprising larger values of n (n 100), the modi�cation proposed leads to
an increase in test power of up to 0.12 (50% relative increase). This increase
becomes especially pronounced for conservative nominal signi�cance lev-
els a, asymmetric �ring regimes of the two neurons, high �ring rates, and
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moderate degrees of spike correlation. In general, for the �ring rates an-
alyzed, the peak values of the difference in test power were reached for
values of the correlation between 0.05 and 0.15. This range corresponds to
the empirical values of the asynchronous gain (ASG) found in the cortex
(see reviews by Aertsen & Gerstein, 1985, and Abeles, 1991).

For short time windows (n ¼ 20) we found that the test power of both
methods falls below 0.2 (cf. Figure 4) for two neurons that operate below
30 Hz (D t D 5 ms) with r ¼ 0.25, corresponding to the maximal ASG for
cortical neurons reported by Abeles (1991). Thus, when applying the test
to single-trial data with short analysis windows comprising only a low
number of bins,one has to face substantial reductions in test power.For these
applications of the test, the increase in test power due to the modi�cation
of the method is vital. In addition, it is important to realize that for low
values of n and for low �ring rates, the discrete nature of the underlying
test statistic dominates the properties of the test. Their dependence on n and
a is complex in this regime, so special care should be taken with respect to
the experimental design.

In addition, we have calculated the expected effective signi�cance levels
of the two tests and their a-error probabilities when applied to two neu-
rons operating at equal rates, ranging from 0.2 Hz to 30 Hz (D t D 5 ms). As
discussed in detail in section 5, it is important to differentiate between the
count-dependent effective signi�cance level that does not depend on the
neuronal spike probabilities and the expected effective signi�cance level
that depends on the spike probabilities through the joint count distribution.
Contrasting the view expressed by Roy et al. (2000), who based their anal-
ysis on the count-dependent effective signi�cance levels, our calculations
show that the a-error probabilities of both methods vary only slowly as
a function of �ring rate above 4 Hz. Thus, in this regime, the probability
of falsely indicating neural synchrony is only moderately sensitive to the
�ring-rate levels of the investigated neurons. While this result describes the
behavior of the method when applied to neurons operating at certain �r-
ing rate levels, that is, independent of any speci�c empirical realization of
spike counts (c1, c2), the count-dependent effective signi�cance level (i.e.,
the effective signi�cance level of the test when applied to a stretch of data
with a speci�c combination of spike counts) does show considerable �uctu-
ations depending on the joint counts in the analysis window (cf. Figure 6).
This indeed implies �uctuations of the count-dependent effective signi�-
cance level with respect to different realizations of the analysis window.
We emphasize that these �uctuations are not the result of changes in neu-
ral �ring rates, but the consequence of stochastic �uctuations in the counts
themselves.

For �ring rates below 4 Hz, the joint count distribution tends to concen-
trate on a small number of count combinations. This causes the changes of

the a-error probabilities 2 bin
j0

and 2
hyp
j0

of the two versions of the test with
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changes in neural �ring rates to become more pronounced. For neurons
operating at rate levels below 1 Hz, the joing count distribution becomes so
narrow that the expectation value of the count-dependent effective signif-
icance level essentially behaves like the count-dependent effective signi�-
cance level itself. Thus, the probability of producing a false positive when
applying the method at �ring rates below 1 Hz steeply decreases as the �ring
rate approaches lower values. As a consequence, in this �ring-rate regime,
the expected effective signi�cance level of the test becomes sensitive to the
�ring rates of the investigated neurons. Since, by construction of the test, the
effective signi�cance level cannot surpass the nominal signi�cance level a,
the problem is not that the test could produce more false positives than ex-
pected. Rather, the decrease of the effective signi�cance level for low �ring
rates implies that the test will effectively operate at a very conservative sig-
ni�cance level. However, as can be seen from the power curves (cf. Figure 5),
this decrease in effective signi�cance level is accompanied by a decrease in
test power. Thus, for very low �ring rates, both versions of the test will fail
to detect deviations from the null hypothesis of independent �ring.

Finally, we could show that the use of the hypergeometric coincidence
count distribution allows us to relax the stationarity requirement of the neu-
ronal �ring rates. In contrast to the original method, which had to assume
the �ring rates of both neurons to remain stationary over all bins of the
analysis window, the modi�ed test requires only one of the two neurons to
have a stationary �ring rate, while the other can follow an arbitrary time
course. This generalization implies an important increase of applicability
of the method to empirical data. We are currently investigating whether
this “one-sided” stationarity criterion can be further relaxed, possibly by
imposing joint (but weaker) requirements on both neuronal rate pro�les.
The robustness of the modi�ed method with respect to the violation of
the “one-sided” stationarity assumption will also be the subject of further
research. A conceptually different approach to treat nonstationary neural
data with count-based statistics could be based on the use of estimators
for the instantaneous �ring rate. Following recent work by Pauluis and
Baker (2000), who implement a rate-based version of unitary-event analysis
(Grün, 1996) in connection with an instantaneous rate estimation proce-
dure, it might be interesting to use instantaneous rate estimation (Nawrot,
Aertsen, & Rotter, 1999) together with the conditional coincidence count
distribution used here for variable spike event probabilities. This approach
seems capable of combining the advantages of count-based statistics with
the improved applicability of instantaneous rate estimators to nonstationary
data sets.

In conclusion, in view of the increase in test power, the increased inter-
pretability of the signi�cance measure, and the relaxation of the stationarity
requirement, we clearly recommend implementation of the count-based
rather than the rate-based version of this analysis method when testing the
statistical signi�cance of coincident spikes.
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Appendix A: Stochastic Model

According to the de�nition of a spike event given in section 2, we de�ne the
probability space (Vi, Pji ) for each pair of bins within the analysis window
(indexed by i 2 f1, . . . , ng) on the basis of the sample space,

Vi :D
©
vi D

¡
v1,i, v2, i

¢
: v1, i, v2, i 2 f0, 1g

ª
, (A.1)

and a probability Pji for each of the four possible outcomes (0,0), (0,1), (1,0),
(1,1). A parameterization of these probabilities in terms of the individual
spike event probabilities p1,i and p2, i,

Pji

¡
v1, i D 1

¢
D p1, i and Pji

¡
v2,i D 1

¢
D p2, i

(p1, i, p2,i 2 (0, 1)), (A.2)

and the spike correlation ri between the two neurons,

Corr(v1, i, v2, i) D ri (ri 2 (¡1, 1)), (A.3)

leads to the de�nition

Pji (vi D (1, 1)) :D p1, ip2,i C riRi (A.4)

Pji (vi D (1, 0)) :D p1, i(1 ¡ p2, i) ¡ riRi (A.5)

Pji (vi D (0, 1)) :D (1 ¡ p1, i)p2, i ¡ riRi (A.6)

Pji (vi D (0, 0)) :D (1 ¡ p1, i)(1 ¡ p2,i) C riRi , (A.7)

with Ri D
p

p1, i(1 ¡ p1, i)p2, i(1 ¡ p2, i) and ji :D (p1, i, p2, i, ri).
Based on equations A.4 through A.7, the conditional probabilities to ob-

serve a spike event from neuron 2, given the behavior of neuron 1, are

#i :D Pji

¡
v2,i D 1 | v1,i D 1

¢
D p2,i C

riRi

p1, i
(A.8)

Qi :D Pji

¡
v2,i D 1 | v1,i D 0

¢
D p2,i ¡ riRi

1 ¡ p1, i
. (A.9)

These conditional probabilities will be used in appendix B, yielding compact
expressions of the probability distribution functions.

Starting from assumptions A1 and A2 as stated in section 2, we can de�ne
the probability space describing the entire analysis window by forming the
product space (V , Pj ) with

V :D V1 £ ¢ ¢ ¢ £ Vn, Pj :D
nY

iD1

Pji , (A.10)
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and samples v D (v1, . . . , vn). Based on this product space, we de�ne the
discrete random variables,

Cm(v) :D
nX

iD1

vm, i m D 1, 2, (A.11)

denoting the total number of spike events from neuron m in the analysis
window. Similarly,

K(v) :D
nX

iD1

v1, i ¢ v2,i , (A.12)

denotes the number of coincident spike events from the two neurons.

Appendix B: Probability Distributions

For the derivations in this section, we will assume stationarity of all parame-
ter tripletsji in the analysis window, as formulated in assumption A1. We let
j D ji for all i D 1, 2, . . . , n. Given the probabilities of the four possible spike
event constellations of any two coinciding bins (see equations A.4–A.7) and
using the conditional spike probabilities # and Q (see equations A.8 and
A.9), application of the multinomial distribution (cf. Feller, 1968) yields the
probabilityof�nding k coincident events and c1, respectively c2, spikeevents
from the two neurons, that is, of making an observation v with K(v) D k,
C1(v) D c1, and C2(v) D c2:

Pj (K D k, C1 D c1, C2 D c2)

D
n!

k!(c1 ¡ k)!(c2 ¡ k)!(n ¡ c1 ¡ c2 C k)!

£
£
p1#

¤k £
p1(1 ¡ #)

¤c1¡k £
(1 ¡ p1)Q)

¤c2 ¡k

£
£
(1 ¡ p1)(1 ¡ Q)

¤n¡c1 ¡c2 Ck . (B.1)

Using

Pj (C1 D c1) D

³
n

c1

´
p1

c1 (1 ¡ p1)(n¡c1 ), (B.2)

it follows that

Pj (K D k, C2 D c2 | C1 D c1) D
Pj (K D k, C1 D c1, C2 D c2)

Pj (C1 D c1)

D

³
c1

k

´³
n ¡ c1

c2 ¡ k

´
#k(1 ¡ #)(c1 ¡k)Q(c2 ¡k)

£ (1 ¡ Q)(n¡c1¡c2 Ck). (B.3)
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Since the sample space V can be decomposed into disjoint subsets con-
taining all elementary events with a speci�c coincidence count, we can write
the joint count distribution as

Pj (C1 D c1, C2 D c2) D Pj (C1 D c1)Pj (C2 D c2 | C1 D c1)

D Pj (C1 D c1)

£
min(c1,c2 )X

kD0

Pj (K D k, C2 D c2 | C1 D c1), (B.4)

which by insertion of equation B.3 turns into

Pj (C1 D c1, C2 D c2) D

³
n

c1

´
pc1

1 (1 ¡ p1)(n¡c1 )

£
min(c1,c2 )X

kD0

³
c1

k

´
#k(1 ¡ #)(c1 ¡k)

³
n ¡ c1

c2 ¡ k

´
Q(c2¡k)

£ (1 ¡ Q)(n¡c1 ¡c2 Ck). (B.5)

Going back to equation B.1, it is now straightforward to derive the con-
ditional coincidence count distribution. By inserting equations B.1 and B.5
into

Pj (K D k | C1 D c1, C2 D c2) D
Pj (K D k, C1 D c1, C2 D c2)

Pj (C1 D c1, C2 D c2)
, (B.6)

we �nd

Pj (K D k | C1 D c1, C2 D c2)

D

³
c1

k

´
#k(1 ¡#)(c1 ¡k)

³
n ¡c1

c2 ¡k

´
Q(c2¡k)(1 ¡Q)(n¡c1 ¡c2 Ck)

min(c1,c2 )X

kD0

³
c1

k

´
#k(1 ¡ #)(c1¡k)

³
n ¡c1

c2 ¡k

´
Q(c2 ¡k)(1 ¡Q)(n¡c1 ¡c2 Ck)

. (B.7)

For independent neurons (r D 0), the conditional probabilities # and Q
become equal to the spike probability of neuron 2 (# D Q D p2). Therefore,
it is a matter of straightforward substitution to derive the conditional coin-
cidence count distribution Pj0 (K D k | C1 D c1, C2 D c2) and the joint count
distribution Pj0 (C1 D c1, C2 D c2) for independent neurons from the general
expressions in equations B.7 and B.5, respectively. Finally, the general form
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of the unconditional coincidence count distribution (cf. section 2) is found
by replacing p2 of equation 2.1 with #, so that the term p1# corresponds to
the general form of the probability to observe a pair of coincident spikes
within one bin (cf. equation A.4).

Appendix C: Nonstationary Rates

Relaxing the stationarity assumption A1, we return to the general formu-
lation of our stochastic model as developed in section 2 and appendix A.
Thus, we replace the parameter triplet j with a vector of triplets Ej . Its n
components ji D (p1, i, p2,i , ri) describe the probability space (Vi, Pji

) of
each individual pair of corresponding bins in the analysis window. Assum-
ing stochastic independence of the two neurons (i.e., H0), we can rewrite
equation B.6 as

PEj0
(K D k | C1 D c1, C2 D c2) D

PEj0
(K D k, C1 D c1, C2 D c2)

PEj0
(C1 D c1)PEj0

(C2 D c2)
, (C.1)

where we used Ej0 to indicate this parameter setting under the condition H0.
Following assumption A2, we can write the probability for a speci�c

realization as the product of the probabilities of obtaining or not obtaining
a spike event in each of the corresponding bins, respectively. Thus, the
probability PEj0

(K D k, C1 D c1, C2 D c2) of making an observation with c1
spike events from neuron 1, c2 spike events from neuron 2, and k coincident
events is given by the sum over the probabilities of all possible arrangements
of this count con�guration. For M D f1, 2, . . . , ng, where n is the number
of bins in the analysis window, we de�ne the set Mc1 as the collection of
all subsets of M with c1 elements. Further, for any m 2 Mc1 , we let the set
Mm ,k

c2 denote the collection of all subsets of M with c2 elements in total and
k elements in common with m . Using this notation, we have

PEj0
(K D k, C1 D c1, C2 D c2)

D
X

m2Mc1

X

l2Mm ,k
c2

Y

i2m

p1, i
Y

j2Mnm

(1 ¡ p1, j)
Y

l2l

p2,l

Y

m2Mnl

(1 ¡ p2,m). (C.2)

Using the same notation, the probability PEj0
(C1 D c1) is given by

PEj0
(C1 D c1) D

X

m 2Mc1

Y

i2m

p1,i
Y

j2Mnm

(1 ¡ p1, j). (C.3)

The probability PEj0
(C2 D c2) can be expressed analogously. Thus, we can

rewrite equation C.1 as

PEj0
(K D k | C1 D c1, C2 D c2)
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D

X

m 2Mc1

X

l2Mm ,k
c2

Y

i2m

p1,i

Y

j2Mnm

(1 ¡p1, j)
Y

l2l

p2, l

Y

m2Mnl

(1 ¡p2,m)

2

4
X

g2Mc1

Y

i2g

p1,i

Y

j2Mng
(1 ¡p1, j)

3

5

2

4
X

k2Mc2

Y

i2k

p2, i

Y

j2Mnk
(1 ¡p2, j).

3

5

(C.4)

This equation describes the conditional probability that, given the individ-
ual spike event counts c1 and c2, one will observe k coincident events from
two stochastically independent neurons with spike event probabilities ac-
cording to Ej0.

Assuming a stationary rate for neuron 2 (i.e., p2, i D p2 for all i), equa-
tion C.4 reduces to

PEj0
(K D k | C1 D c1, C2 D c2)

D

2

4
X

m2Mc1

Y

i2m

p1, i
Y

j2Mnm

(1 ¡ p1, j)

3

5
³

c1

k

´³
n ¡ c1

c2 ¡ k

´
pc2

2 (1 ¡ p2)n¡c2

2

4
X

g2Mc1

Y

i2g

p1, i

Y

j2Mng
(1 ¡ p1, j)

3

5
³

n

c2

´
pc2

2 (1 ¡ p2)n¡c2

D

³
c1

k

´³
n ¡ c1

c2 ¡ k

´

³
n

c2

´ , (C.5)

which is the hypergeometric distribution as given in equation 2.2, indepen-
dent of whether the �ring rate of neuron 1 is stationary over the observation
interval. Obviously, by interchanging the roles of the two neurons in the def-
initions of Mc1 and Mm ,k

c2 , the same result can be obtained for a stationary rate
in neuron 1—for p1, i D p1 for all i. In other words, stationarity of only one
of the two neurons (either one) suf�ces to obtain the result in equation C.5.

Appendix D: Approximative Evaluation of the Expectation Values

The number of terms in the sums underlying the computation of the ex-
pectation values for the count-dependent test power and signi�cance level
with respect to the joint count distribution (cf. equations 4.4, 4.5, and 5.1–
5.3) grows with n2. Thus, the direct evaluation of the sums for realistic
values of n, which can reach up to thousands, is rather unpractical. How-
ever, by using the fact that the mass of the joint count distribution is mainly
concentrated at relatively few count combinations, it is straightforward to
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calculate an approximate value of these quantities up to arbitrary preci-
sion d, for example, the approximate test power p

approx
j ,d . Selecting Bj ,d ½

f0, 1, . . . , ng £ f0, 1, . . . , ng such that
X

Bj,d

Pj (C1 D c1, C2 D c2) ¸ 1 ¡ d, (D.1)

we �nd the approximate test power p
approx
j,d given by

p
approx
j ,d D

X

(c1,c2 )2Bj ,d

Pj (C1 D c1, C2 D c2)Pj (K ¸ kcrit(c1, c2) | c1, c2). (D.2)

Since all probabilities are smaller than unity, it is clear from equation D.1
that pj ¡ p

approx
j,d · d. When computing the effective signi�cance levels aj0

and 2 j0 , the expectation value is formed over quantities smaller than a. Thus,
the precision of the approximation of these signi�cance levels improves to
ad.

Note that Bj ,d is not uniquely de�ned through equation D.1. In our cal-
culations, Bj ,d was determined by successively adding up the mass of in-
dividual spike event count combinations until the cutoff value 1 ¡ d was
reached. To keep the number of individual spike count combinations enter-
ing Bj ,d reasonably low, we started with the central term (cf. Feller, 1968) of
the joint count distribution of independent neurons and iteratively added
those count combinations from the surrounding of Bj ,d that contributed
most. Although not required for this procedure, this approach was moti-
vated by the fact that the joint count distribution falls off monotonically
with increasing distance from its central term.

Appendix E: Randomized Tests

The basic idea behind randomized tests (Mood et al., 1974) is to de�ne a test
through a critical function y that de�nes rejection probabilities for given
empirical observations rather than through a �xed critical region of rejec-
tion R. Through the incorporation of an additional independent random
variable, it becomes possible to adjust the effective signi�cance level of the
test to match its nominal signi�cance level a precisely, regardless of any
discreteness of its test statistic.

Applying this concept to the test based on the hypergeometric coinci-
dence count distribution, this means that the decision of the test will no
longer be based on the critical region Rc1 ,c2 D fk: k ¸ khyp

crit g of overly critical
coincident spike event counts k but rather on the critical function,

yc1,c2 :D

8
>><

>>:

1 k ¸ khyp
crit (c1, c2)

fc1,c2 k D khyp
crit (c1, c2) ¡ 1

0 k < khyp
crit (c1, c2) ¡ 1,

(E.1)
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which for every element v of the sample space V sets the probability of
rejecting the null hypothesis. Thus, while the null hypothesis will always

be rejected if k ¸ khyp
crit (c1, c2) and never be rejected if k < khyp

crit (c1, c2) ¡ 1,
the parameter fc1,c2 controls the rejection probability for all v with k D
khyp

crit (c1, c2) ¡ 1.
In order to adjust the effective signi�cance level of the test to its nominal

signi�cance level a, we de�ne fc1,c2 such that

fc1 ,c2 :D
a ¡ Pj0 (K ¸ khyp

crit (c1, c2))

Pj0 (K D khyp
crit (c1, c2) ¡ 1)

. (E.2)

From here it is straightforward to see that the probability of falsely rejecting
the null hypothesis of stochastically independent neurons reduces to

Pj0 (K ¸ khyp
crit (c1, c2)) C fc1 ,c2 Pj0 (K D khyp

crit (c1, c2) ¡ 1) D a, (E.3)

and, thus, for all count combinations precisely corresponds to the nom-
inal level of signi�cance. Note that this procedure adjusts the probabil-
ity of falsely rejecting the null hypothesis by introducing rejections of the
null hypothesis with probability fc1 ,c2 for all count constellations with k D
khyp

crit (c1, c2) ¡ 1. While this raises the probability of a false rejection to the
nominal a-level of the test, and correspondingly increases its test power,
the outcome of the test for a given set of data becomes a random variable.
Thus, repeated applications of the test to the same data will in general lead
to different �ndings. This indeterminacy of randomized tests is the reason
for their restricted use in applied statistics (Mood et al., 1974).

By straightforward extension of equation 4.5, we �nd the power p
hyp
j,Rnd

of the randomized version of the test to be given by

p
hyp
j ,Rnd D

nX

c1 ,c2 D0

Pj (C1 D c1, C2 D c2)

£
h
Pj (K ¸ khyp

crit (c1, c2) | c1, c2)

C fc1 ,c2 Pj (K D khyp
crit (c1, c2) ¡ 1 | c1, c2)

i
. (E.4)

Comparison of thepower curves for the randomized versus the nonrandom-
ized test in the same parameter regime as used in Figure 3 demonstrates
that, as expected, the power curves of the randomized version of the test lie
above the values reached by the nonrandomized version. The maximum in-
crease in test power ranges from approximately 0.05 for a D 0.01 (r D 0.1) to
approximately 0.07 for a D 0.1 (r D 0.05). Thus, the effect of randomization
becomes larger for more permissive signi�cance levels a. Finally, we note
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that the randomized version of the test based on the hypergeometric coin-
cidence count distribution, that is, of Fisher’s exact test, is uniformly most
powerful unbiased for testing independence ina 2£2 table (Lehmann, 1997).
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Aertsen, A., Bonhoeffer, T., & Krüger, J. (1987). Coherent activity in neuronal
populations: Analysis and interpretation. In E. R. Canianello (Ed.), Physics of
cognitive processes (pp. 1–34). Singapore: World Scienti�c Publishing.

Aertsen, A., & Gerstein, G. L. (1985). Evaluation of neuronal connectivity: Sen-
sitivity of cross-correlation. Brain Research, 340, 341–354.

Aertsen, A., & Gerstein, G. L. (1991). Dynamic aspects of neuronal cooperativity:
Fast stimulus-locked modulations of effective connectivity. In J. Krüger (Ed.),
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