NCBI PubMed NLMPubMed
Entrez PubMed Nucleotide Protein Genome Structure OMIM PMC Journals Books
 Search for
  Limits  Preview/Index  History  Clipboard  Details     
About Entrez

Text Version

Entrez PubMed
Overview
Help | FAQ
Tutorial
New/Noteworthy
E-Utilities

PubMed Services
Journals Database
MeSH Database
Single Citation Matcher
Batch Citation Matcher
Clinical Queries
LinkOut
Cubby

Related Resources
Order Documents
NLM Catalog
NLM Gateway
TOXNET
Consumer Health
Clinical Alerts
ClinicalTrials.gov
PubMed Central
 Show: 
1: Neural Comput. 2002 Jan;14(1):43-80. Related Articles, Links
Click here to read 
Unitary events in multiple single-neuron spiking activity: I. Detection and significance.

Grun S, Diesmann M, Aertsen A.

Department of Neurophysiology, Max-Planck Institute for Brain Research, D-60528 Frankfurt/Main, Germany. gruen@mpih-frankfurt.mpg.de

It has been proposed that cortical neurons organize dynamically into functional groups (cell assemblies) by the temporal structure of their joint spiking activity. Here, we describe a novel method to detect conspicuous patterns of coincident joint spike activity among simultaneously recorded single neurons. The statistical significance of these unitary events of coincident joint spike activity is evaluated by the joint-surprise. The method is tested and calibrated on the basis of simulated, stationary spike trains of independently firing neurons, into which coincident joint spike events were inserted under controlled conditions. The sensitivity and specificity of the method are investigated for their dependence on physiological parameters (firing rate, coincidence precision, coincidence pattern complexity) and temporal resolution of the analysis. In the companion article in this issue, we describe an extension of the method, designed to deal with nonstationary firing rates.

PMID: 11747534 [PubMed - indexed for MEDLINE]


 Show: