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Abstract

Recent proposals that information in cortical neurons may be encoded by precise spike
timing have been challenged by the assumption that neurons in vivo can only operate in a noisy
fashion, due to large #uctuations in synaptic input activity. Here, we show that despite the
background, volleys of precisely synchronized action potentials can stably propagate within
a model network of basic integrate-and-"re neurons. The construction of an iterative mapping
for the transmission of synchronized spikes between groups of neurons allows for a
two-dimensional state space analysis. An attractor, yielding stable spiking precision in the
(sub-)millisecond range, governs the synchronization dynamics. � 2001 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Recently, evidence is accumulating that cortical neurons in vivo are capable of
"ring action potentials with high temporal accuracy. Independent evidence for precise
spike timing in cortical neurons also comes from intracellular recordings in vitro. But,
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Fig. 1. (A) Locally feed-forward network structure: (1) Convergent synchronous input from a group of
neurons (left group) causes transients in target neurons. (2) Neurons receiving shared input (right group) due
to divergence tend to generate simultaneous spikes. (B) Transmission function ¹ combined with the
network structure w de"ne an iterative mapping ¹

�
. (C) a-section of ¹

�
for di!erent levels of input spread

(from left to right �
�
"0, 1, 3, 5 ms, w"100). (D) �-section of ¹

�
and ¹ for di!erent input spike numbers

(from top to bottom a
�
"45, 65, 75, 115).

can an instance of synchronous spiking be successfully propagated by subsequent
groups of cortical neurons? The aim of this study is to investigate under which
conditions a group of cortical neurons can engage in precisely coordinated spike
timing, and to explore whether such conditions are feasible in the cortical network.
To address these questions, we studied the "ne-grained temporal response

properties of integrate-and-"re neurons. We focused on spike responses to transient
membrane potential excursions, implied by physiological "ndings. Interestingly, the
occurrence of transients can be interpreted in terms of local network structure
(Fig. 1A). Thus, a `locally feed-forwarda network where a group of neurons projects to
another group of neurons in an all-to-all fashion can in principle propagate
synchronous activity from the "rst group to the second group. Repeating this
arrangement, the second group in turn can act as source of synchronous input to
a consecutive group (syn"re chain [1]). `Pulse packetsa are used [2] to quantify the
degree of synchrony in spike volleys propagating in this structure. A pulse packet is
a spike volley characterized by two parameters: activity a and temporal dispersion �.
Activity is de"ned as the number of spikes in the volley; their temporal dispersion is
measured by the standard deviation of the underlying pulse density. Examples of the

566 M. Diesmann et al. / Neurocomputing 38}40 (2001) 565}571



types of activity occurring in such a network are shown in [4] (this volume). In an
earlier contribution [2] we studied the response of a cortical model neuron to pulse
packets in the presence of background activity and introduced the neuronal transmis-
sion function ¹ for transient input activity. ¹ is de"ned by the transformation of the
input pair (a

��
,�

��
) into the output pair: response probability �

���
, and temporal spread

of the response spikes �
���

. In numerical simulations the input is generated by drawing
a
��

spike times from a Gaussian distribution of width �
��
.

2. State space analysis

In the present work we computed ¹ for a further reduced I&F model to demon-
strate that the described e!ects are generic to this class of models. Post-synaptic
currents (PSCs) are modeled as �-functions.
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Eq. (1) is the coe$cient matrix of the subthreshold dynamics y� "Ay, where the "rst
two components of y describe the sub-system generating the PSCs and the third
component the membrane potential. If input spikes are restricted to occur on a tem-
poral grid t"hk, the sub-threshold dynamics can be integrated by repeatedly ap-
plying the propagator matrix P(h)"e�� of the system Eq. (2) and changing the state
according to the incoming events in each time step. See [5] for a detailed description
of the general approach and the particular system. After-spike-e!ects of the I&F
model can be consistently incorporated into the discrete time simulation scheme
(Fig. 2). At low spontaneous "ring rates, the e!ects of after hyperpolarization and
adaptation on ¹ are small. Therefore, we only included an absolute refractory period
�


during which the membrane potential is clamped to the resting level to prevent

unrealistically short spike intervals. Eq. (3) is the discrete time version of �


. Including

the detection of threshold crossings (Fig. 2), however, simulation on the grid becomes
an approximative method. The pitfalls of approximate numerical integration of such
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Fig. 2. The state of the neuron is fully described by vector y for the sub-threshold dynamics and integer
r measuring time in the absolute refractory period �



(h). Time is advancing in discrete steps h. A constant

propagator matrix updates the sub-threshold dynamics (this can be done in place because P(h) is lower tri-
angular). Point events arriving at t"h(k#1) cause changes x��� which add linearly to the state. Two state
variables (y

�
, y

�
) are necessary to describe the e!ect of all synaptic inputs. y

	
is the membrane potential.

A network of such point event exchanging units is consistent if the minimal delay of interaction is h.

systems are discussed in [5]. In addition to pulse packet input, the model neuron is
supplied with uncorrelated Poisson input from 20,000 background neurons (88%
excitatory, 12% inhibitory). Rates are adjusted to obtain a membrane potential
y
�
with mean about 7 mV below threshold (�"15 mV) and a standard deviation of

2.5 mV. Membrane time constant is �
	

"10 ms and capacity C"250 pF. All post-
synaptic potentials (PSPs) have an amplitude of 0.14 mV and a rise time of 1.7 ms.
We recently found [3] that the ability of the neuron to support spike synchroniza-

tion cannot be judged from the transformation ¹ alone. The network architecture has
to be incorporated to answer this question. Since each neuron responds to an
incoming pulse packet with at most one spike, stable propagation of synchronous
spike volleys inevitably requires activation of successive, su$ciently large groups of
neurons. For a group of identical, independent neurons, the distribution of response
spikes to an input pulse packet is identical to the response distribution for a single
neuron. The expected number of response spikes in a group equals the single neuron
response probability, multiplied by the group size w. Thus, using ¹ we can construct
an iterative mapping ¹

�
(Fig. 1B) describing the transformation of (a,�) from one

group to the next. The iterative mapping for the model neuron described above,
choosing w"100 is shown in Fig. 1C and D. Assuming that the group's response to
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Fig. 3. State space portrait of dynamic variables a and �. Group size w decreasing from left to right and
from top to bottom w"110,100,90,80. Gray area indicates the basin of attraction. The a-isocline (loci of
horizontal #ow, thick solid curve) depends on w. The �-isocline (loci of vertical #ow, dashed curve) remains
unchanged.

a spike volley is adequately described by (a, �) (see [4], this volume), we can capture
the evolution of synchronous spiking activity in a chain by repeatedly applying ¹

�
.

Thus, the evolution of synchronous activity is described by a trajectory in the
two-dimensional state space. Apart from the trivial "xpoint at vanishing activity, the
state space portrait can exhibit two "xpoints (Fig. 3): an attractor and a saddle point.
A separatrix divides the state space into two regimes. In the basin of attraction, all
trajectories converge into the attractor. A spike volley starting anywhere inside this
regime rapidly reaches a stable con"guration with sub-millisecond dispersion and
close to full group activation. The "nite rise time of the PSP limits the precision of
spike timing. Volleys starting outside the stable regime decay after only few stages: too
weak or too dispersed activity rapidly dies out. Neither the relation between input and
output activity alone, nor between input and output jitter alone (Fig. 1C and D)
determines whether synchronous activity survives. An initial increase in temporal
spreadmay still support stable propagation, provided that the number of spikes in the
volley is large enough. Conversely, synchronous activity may still vanish with an
initial decrease in dispersion, unless the volley is large enough. Thus, the system
dynamics are governed by the interaction of the two state variables.

M. Diesmann et al. / Neurocomputing 38}40 (2001) 565}571 569



To determine how many neurons in a group are needed to guarantee that syn-
chronous activity survives, we examined how the structure of the state space depends
on the group size w (Fig. 3). For decreasing groups size, the two "xpoints approach
each other, until at some critical value theymerge into a saddle node. Below this value,
no "xpoint exists: all trajectories lead to extinction. Hence, w is a bifurcation para-
meter of the system. This lower bound is essentially determined by the ratio of the
distance from mean membrane potential to spike threshold and the PSP amplitude.

3. Conclusions

The results obtained for the reduced model are practically identical to the ones
reported in [3]. This demonstrates that the described e!ect is a generic property of
I&F dynamics. Firing probability in the attractor is close to unity because of the low
spontaneous "ring rate and the fast recovery from reset. The attractor describes
a stationary con"guration of activity in (a,�)-space. However, unlike the Hop"eld
attractor, this attractor describes a dynamic activity con"guration in neuron space:
di!erent neuron groups, one after the other, contribute single spikes to the propagat-
ing synchronous wave. The basin of attraction guarantees robustness of the propagat-
ing synchrony against perturbations exceeding the response variability accounted for
by the transmission function. In the stable state, essentially all response spikes in
a volley fall within $1 ms. This temporal precision is consistent with the accuracy of
observed spike patterns in cortical recordings. Thus, precise synchronous "ring of
cortical neurons is feasible, in spite of a membrane time constant of 10 ms or more. We
conclude that the cortical network may indeed provide the substrate for computation
on the basis of precise spike timing.
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