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Abstract. Electrophysiological studies of cortical function on the basis of multiple single-
neuron recordings reveal neuronal interactions which depend on stimulus context and
behavioural events. These interactions exhibit dynamics on different time scales, with
time constants down to the millisecond range. Mechanisms underlying such dynamic
organization of the cortical network were investigated by experimental and theoretical
approaches. We review some recent results from these studies, concentrating on the
occurrence of precise joint-spiking events in cortical activity, both in physiological and
in model neural networks. These findings suggest that a combinatorial neural code, based
on rapid associations of groups of neurons co-ordinating their activity at the single spike
level, is biologically feasible.
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Modern attempts to understand the mechanisms of higher brain function are
increasingly concerned with neuronal dynamics. The task of organizing
perception and behaviour in a meaningful interaction with the external world
prompts the brain to rectruit its tesources in a propetly orchestrated manner.
Contributions from many elements, ranging from individual nerve cells to entire
brain atreas, need to be coordinated in space and time. Our principal research goal is
to understand how this organization is dynamically brought about, and how the
brain uses such coordinated activity in neurons. To this end, we studied the
spatiotemporal organization of cortical activity recorded at many different sites at
a time. The rules that govern this organization and the underlying mechanisms are
brought to light by complementary approaches of neurobiological
experimentation, advanced data analysis, and neural network modelling.
According to the classical view, firing rates play a central role in neuronal coding
(Barlow 1972, 1992). The firing rate approach indeed led to fundamental insights
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into the neuronal mechanisms of brain function (e.g. Georgopoulos et al 1993,
Hubel & Wiesel 1977, Newsome et al 1989). In parallel, however, a different
concept was developed, according to which the temporal organization of spike
discharges within functional groups of neurons, the so-called neuronal
assemblies (Hebb 1949), also contribute to neural coding (von der Malsburg
1981, Abeles 1982a, 1991, Gerstein et al 1989, Palm 1990, Singer 1993). It was
argued that the biophysics of synaptic integration favours coincident presynaptic
events over asynchronous events (Abeles 1982b, Softky & Koch 1993).
Accordingly, synchronized spikes are considered as a property of neuronal
signals which can indeed be detected and propagated by other neurons (Perkel &
Bullock 1968, Johannesma et al 1986). In addition, these spike correlations must
be expected to be dynamic, reflecting varying affiliations of the neurons
depending on the stimulus or behavioural context. Such dynamic modulations
of spike correlation at various levels of precision have in fact been observed in
different cortical areas, namely visual (Eckhorn et al 1988, Gray et al 1989; for
reviews see Engel et al 1992, Aertsen & Arndt 1993, Singer & Gray 1995,
Roelfsema et al 1996), auditory (Ahissar et al 1992, Eggermont 1994, de Charms
& Merzenich 1995, Sakurai 1996), somato-sensory (Nicolelis et al 1995), motor
(Murthy & Fetz 1992, Sanes & Donoghue 1993), and frontal (Aertsen et al
1991, Abeles et al 1993a,b, Vaadia et al 1995, Prut et al 1998). Little is known,
however, about the functional role of the detailed temporal organization in such
signals.

The first important hints about the importance of accurate spike patterns came
from the work of Abeles and colleagues (Abeles etal 1993a,b, Prut etal 1998). They
observed that multiple single-neuron recordings from the frontal cortex of awake
behaving monkeys contained an abundance of precise spike patterns. These
patterns had a total duration of up to several hundred milliseconds and repeated
with a precision of +1ms. Moreover, these patterns occurred in systematic
relation to sensory stimuli and behavioural events, indicating that these instances
of precise spike timing play a functional role. Independent evidence for the
possibility of precise spike timing in cortical neurons came from intracellular
recordings 7n vitro (Mainen & Sejnowski 1995, Nowak et al 1997, Stevens &
Zador 1998, Volgushev et al 1998) and invivo (Azouz & Gray 1999).

We investigated the mechanisms underlying the dynamic organization of the
cortical network by experimental and theoretical approaches. Here, we review
evidence— both from experimental data and from model studies — that volleys
of precisely synchronized spikes can propagate through the cortical network in a
stable fashion, thereby serving as building blocks for spatiotemporal patterns of
precisely timed spikes. Taken together, these findings support the hypothesis
that precise synchronization of individual action potentials among groups of
neurons presents an inherent mode of cortical network activity.
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‘Unitary events’ in cortical multiple single-neuron activity

It has been proposed that cortical neurons organize dynamically into functional
groups, so-called ‘cell-assemblies’ (Hebb 1949, Gerstein et al 1989). It is widely
assumed that this functional organization is reflected in the temporal structure of
the spike activity of the neurons involved. Thus, cortical activity would be
characterized by synchronous spike volleys, travelling through the sparsely firing
cortical network (‘synfire chain’ hypothesis; Abeles 1982a, 1991). To test this
hypothesis, we analysed multiple single-neuron recordings from various cortical
areas for the presence of excessive coincident spike events among the recorded
neurons. We refer to such conspicuous coincidences as ‘unitary events’, and
define them as those joint spike constellations that occur significantly more often
than expected by chance (Grin et al 1994, Griin 1996). The functional significance
of such unitary events was tested by investigating their occurrence and
composition in relation to sensory stimuli and behavioural events.

‘Unitary event’ analysis

We developed a method that detects the presence of conspicuous spike
coincidences and evaluates their statistical significance, taking into account the
non-stationarities in the firing rates of the neurons involved (Griin 1996, Griin et
al 2001a,b). Briefly, the detection algorithm works as follows: The simultaneous
observation of spiking events from N neurons can be described mathematically by
the joint process, composed of N parallel point processes. By appropriate binning,
this can be transformed to an N-fold (0,1)-process, the statistics of which are
described by the set of activity vectors reflecting the various (0,1)-constellations
that occurred across the recorded neurons. Under the null-hypothesis of
independently firing neurons, the expected number of occurrences of any activity
vector and its probability distribution can be calculated analytically on the basis of
the single neuron firing rates. The ‘mutual dependence’ measures the degree of
deviation from independence among the neurons by comparing these
theoretically derived probabilities with their empirical values. Those activity
vectors that violate the null-hypothesis of independence define potentially
interesting occurrences of joint events; their composition defines the set of
neurons which are momentarily engaged in synchronous activity.

To test the significance of such unitary events, we developed a new statistical
measure: the ‘joint-P-value’. For any particular spike activity vector, this joint-P-
value measures the cumulative probability of observing the actual number of
coincidences (or an even larger one) by chance. Finally, in order to account for
non-stationarities in the discharge rates of the observed neurons, modulations in
spike rates and coincidence rates are determined on the basis of short data segments
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by sliding a fixed time window (typically 100 ms wide) along the data in steps of the
coincidence binwidth. This timing segmentation is applied to each trial, and the
data of corresponding segments in all trials are then analysed as one quasi-
stationary data set, using the appropriate rate approximation. (Further details and
calibration of the unitary event analysis technique are described in Griin 1996,
Griin et al 2001a,b; recent extensions of the approach are discussed in Griin et al
1999, Gitig et al 2001.)

‘Unitary events’ in motor cortex

In collaboration with Alexa Riehle (CNRS, Marseille, France) we tested the
hypothesis that such precise synchronization of individual action potentials
among groups of neurons in the monkey motor cortex is involved in
dynamically organizing the cortical network during the planning and execution
of voluntary movements (Riehle et al 1997).

We found that simultaneously recorded activities of neurons in monkey primary
motor cortex indeed exhibited context-dependent, rapid changes in the patterns of
coincident action potentials during performance of a delayed-pointing task.
Accurate spike synchronization occurred in relation to external events (visual
stimuli, hand movements), commonly accompanied by discharge rate
modulations, however, without precise time-locking of the spikes to these
external events. Accurate spike synchronization also occurred in relation to
purely internal events (stimulus expectancy), where firing rate modulations were
distinctly absent. These findings indicate that internally generated synchronization
of individual spike discharges may subserve the cortical organization of cognitive
motor processes. The clear correlation of spike coincidences with stimuli and
behavioural events underlines their functional relevance (Riehle et al 1997; see
also Fetz 1997).

Taken together, these findings demonstrate the existence of precise ( 1-3 ms)
synchronization of individual spike discharges among selected groups of neurons
in the motor cortex. This synchronization is associated with distinct phases in the
planning and execution of voluntary movements, indicating that it indeed plays a
functional role. Moreover, these findings suggest that under behavioural
conditions as investigated in this study, the brain uses different strategies in
different contextual situations: in order to process a purely cognitive, i.e. an
internal and behaviourally relevant event, neurons preferentially synchronize
their spike occurrences without changing, at the same time, their firing rates. By
contrast, when processing an external, behaviourally relevant event, neurons tend
to synchronize their spikes and modulate their firing rates at the same time. Thus,
precise synchronization of spike events and modulation of discharge rate may serve
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different and complementary functions. They act in conjunction at some times, and
not others, depending on the behavioural context (Riehle et al 1997).

Conditions for stable propagation of
synchronous spiking in cortical networks

In a complementary, model-oriented study we explored the mechanisms
underlying these rapid synchronizations of cortical spiking activity. Specifically
we focused on the explanation for the excessive occurrences of highly accurate
(£ 1-3 ms) spike patterns (Abeles et al 1993a,b, Riehle et al 1997, Prut et al 1998),
observed in frontal cortex and in motor cortex neurons of awake behaving
monkeys.

Synfire chains and pulse packets

On the basis of the characteristic anatomy and physiology of the cortex, Abeles
(1982a, 1991) proposed that ‘synfire’ activity, which propagates in volleys
through the sparsely firing cortical neural network, presents a natural explanation
for this phenomenon. We have investigated the conditions under which such
synchronous volleys of action potentials can propagate reliably through the
cortical network (Diesmann et al 1996, 1999, Aertsen et al 1996). Our theoretical
approach combined analytical calculations and extensive simulations of single-
neuron responses and network dynamics (Diesmann et al 1995, Gewaltig 1999).

Existing measures for the efficacy of synaptic transmission concentrate on two
limiting cases: full synchrony and random arrival of spikes. Intermediate cases with
a realistic degree of temporal dispersion are hardly addressed. To overcome these
restrictions and to quantify the degree of temporal synchrony in propagating
volleys of spike activity we introduced the concept of ‘pulse packets’ (Diesmann
et al 1996). A pulse packet is a probabilistic description of the spiking activity of a
group of neurons, represented by a pulse density function. This density function is
characterized by two parameters: the ‘activity’, defining the number of spikes in the
volley, and the ‘width’, defining their temporal dispersion. For a single realisation
of a pulse packet, the activity is measured by counting the number of spikes in the
volley, and its width is measured by the standard deviation of the spike
distribution.

Neural transfer function and synchronization dynamics

Adopting this approach, we studied the response behaviour of a model cortical
neuron to input activity with varying degrees of synchrony by presenting pulse
packets with different choices of the ‘activity® and ‘width’ parameters as stimuli.
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From the model neuron we recorded the response (time of first spike), collected in a
peri-stimulus time (PST) histogram over many trials. After normalization for the
number of trials, the resulting output distribution was again desctibed as a pulse
packet, and the associated pulse density, along with the values of the activity and
width were determined. The resulting neural transfer function, which describes the
input-output relation between incoming and outgoing pulse packets, was
visualized in an iterative map. This map yields a compact characterization of the
neuron’s response to transient input. In contrast to earlier approaches where the
neuron’s firing probability is measured quasi-statically as a function of DC current,
this new transmission function takes full account of the dynamic properties of the
input distribution (Aertsen et al 1996).

The temporal evolution of a pulse packet as it travels through the network can be
traced by iterating the transfer function. Keeping the width of the chain fixed at a
value in the order of 100, the dynamics of the two-dimensional iterated system is
characterized by three fix points: two attractors and a saddle point. These fix points
partition the state space in two domains, with stable propagation of the
synchronous pulse packet in the first and extinction of the synchronous activity
in the second. For increasing numbers of neurons per group, the fix points move
further apart, increasing the basin of attraction, i.e. the range over which
synchronous spiking can survive in the network. By contrast, for too few
neurons per group, the fix points disappear, and all trajectories lead to
extinction. Synchronous spiking then is no longer a viable option for the
network. We found that under physiological conditions, pools of 100 neurons
can easily sustain stable synchronous transmission through the network
(Diesmann et al 1999).

This state space portrait describes the evolution of synchronous activity ‘in the
mean’, i.e. by subsequent values of the expectation of the pulse packet parameters
across trials with different background activity realizations. On the basis of
network simulations we could confirm that the results of such analysis in the
mean also hold for single-trial realizations (Gewaltig et al 2000, 2001). Around
each point of a trajectory, these realizations form a distribution with a width
determined by the pulse packet parameters, the group size and inter-group
connectivity. This width becomes more important near the separatrix, due to the
increased probability — even for trajectories which are stable in the mean — that
individual realizations leave the basin of attraction (and vice versa). Thus, it is
possible to assess the survival probability at each point in the state space, by
computing which fraction of the trajectories crossing a small area around that
point reaches the attractor. We found that there is a wide range of stimulus
parameters for which the pulse packet is likely to evolve towards the attractor. If
the pulse packet is moved away from the fix point, it is able to re-synchronize and to
re-gain activity. Important aspects of these synchronization dynamics could be
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dissected and understood with the help of a continuous, probabilistic description
of propagating synfire activity: the ‘pulse-density model’ (Gewaltig et al 1997,
Gewaltig 1999).

Synchronization dynamics in recurrent networks

We also studied the spatiotemporal dynamics of spiking activity in cortical
network models with recurrent synaptic architecture (Rotter & Aertsen 2000).
The dynamics in such networks provide clues to the interplay that may result
from the simultaneous activity of many pulse packets travelling through the
cortical network.

Spatiotemporal patterns of precisely timed spikes

We used a network model, which is based on interacting stochastic point processes
(Rotter 1994, 1996). Such systems can be formally described in terms of a Markov
process, the dynamic state of which at a given point in time is the spatiotemporal
pattern of previously generated spikes. The transition probabilities specify how the
pattern gradually evolves in time. A generalized type of integrate-and-fire
dynamics thereby emerges as a mathematical consequence of the assumption that
neurons communicate by action potentials. Assuming the existence of infinitesimal
spike probabilities, which is in fact a very mild condition for physical systems, the
corresponding dynamic equations could be completely solved.

The solutions for special cases have been used to identify some important model
parameters from electrophysiological recordings of real neurons. A simple
parametric characterization of single neuron function is in fact achieved by fitting
the model to the discharge behaviour of various types of cortical pyramidal cells.
Some fundamental properties of recurrent cortex-like networks assembled from
such neurons can be readily predicted, most notably their ability to maintain
stable low rates of activity without the help of inhibitory neurons (Rotter &
Aertsen 1997). Furthermore, computer simulations of random-topology, but
otherwise realistic cortical networks indicate that high precision spatiotemporal
patterns, embedded in periods of enhanced cooperative group activity, may play
arole in coding and computation in such networks. This is true, even if neither the
anatomy of the network nor the physiology of its neurons are in any sense
specifically designed for that purpose.

Plasticity of precise time structure

Plasticity of the temporal structure of patterns of precisely timed spikes is achieved
by introducing Hebb-like synaptic plasticity into the network. The phenomena
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observed in a number of experiments concerning the influence of local synaptic
modification on the spatiotemporal dynamics in recurrent networks allow a
number of conclusions (Rotter & Aertsen 1995, Rotter 1996). Learning rules can
be formulated which only use local information, without the necessity for explicit
renormalization of total synaptic transmission (cf. Song et al 2000, Rubin et al
2001). Evidence for temporally asymmetric plasticity, very much in line with
such learning rules, has recently come from electrophysiological studies
(Markram et al 1997, Bi & Poo 1998). Using such rules, rapid convergence of
synaptic strengths can be achieved, while stable global activity is maintained.
Convergence can be extremely fast, within a few presynaptic action potentials.
The reason is that the pre-existing (random) patterns of activity are ‘te-used’ or
only slightly modified until the correlation structure of the stimulus input is
matched. Learning affects only the microscopic time scale, i.e. there is plasticity
of time structure in the millisecond range. In fact, the Hebbian time window
defining temporal coherence is determined both by the dynamics of after-
hyperpolarization in the post-synaptic neuron and by the low-pass properties of
the synapse. Modification of a synapse can be enabled and disabled by controlling
the rate of the presynaptic neuron. Thereby, a more global strategy of supervised
learning is achieved by letting pools of dedicated instructor neurons control firing
rates within the network, depending on some reward condition. The learning of
input-output associations may take place in terms of a stochastic exploration of
error gradients. Again, this amounts to a completely local processing of global
information.

Conclusions and outlook

Assuming realistic values for the anatomical and physiological parameters, our
model work predicts that the cortical network is able to sustain stable
propagation of synchronous spike volleys consisting of spikes from groups of
about 100 neurons, interconnected in feedforward fashion, with a temporal
precision of about 1ms. We are currently investigating to what extent the
cortical architecture supportts the existence of such structures, and how they are
spatially embedded in the cortical network (Hehl et al 2001).

Evidence from recent computer simulations suggests that the observed
synchronization dynamics are strongly influenced by the activity climate in the
surrounding network. In particular, the robustness and propagation velocity of
the synchronous spike volleys exhibit a non-monotonic dependence on the level
(Diesmann et al 2000) and temporal structure (Mohns et al 1999) of the background
activity. With increasing membrane potential fluctuations, the basin of attraction
first increases and then decreases again (see also Boven & Aertsen 1990, Aertsen et
al 1994), a phenomenon reminiscent of stochastic resonance (Collins et al 1996).
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These results have interesting consequences in view of recent findings regarding
the relation between ongoing network activity and the variability of evoked
responses, both in cortical activity and in behavioural responses (Arieli et al
1996a,b, Azouz & Gray 1999).

Our findings on the synchronization dynamics in recurrent networks indicate
that the degree of irregularity of neuronal spike trains is primarily a reflection of
the network dynamics. Spatiotemporal patterns of precisely timed spikes are a
consequence of these network dynamics. The introduction of Hebb-like synaptic
learning rules (cf. Song et al 2000, Rubin et al 2001, Gitig et al 2001) induces a
plasticity of the precise spike patterns. Possible scenarios for the functional
relevance of such precisely timed spike patterns and their plasticity ate the subject
of current investigation.
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DISCUSSION

Sejnowski: There is a problem that has to do with the probability of transmission
at synapses. Several groups have now used various techniques to look at the
reliability of transmission at a single synapse between, for example, two
pyramidal cells. It varies. The peak of the distribution is at one tenth: every 10
times that you stimulate the axon, on average you only get the release of a single
vesicle on one of those trials. That is a typical synapse. There are some that have a
probability of a third or a half, and there are a few that are silent. How does this
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degree of unreliability at the synapse fit into a model like yours that requires
recovery of precision at every stage.

Aertsen: The actual values for the synaptic strengths used in our model were
taken from the experimental literature. As these numbers are based on spike-
triggered averaging, they of course represent an average picture. As I have shown,
the stability is very much governed by the size of the neuron groups in the network.
You can compensate for lower synaptic strength by up-scaling this group size.
Essentially, it is the product of the two that determines what arrives at the next
stage. So, if you bring the synaptic connectivity down, you will need more neurons
pet group. If, by contrast, you manage to increase the strength of the synaptic
connections — through learning or some other means — this will bring the neces-
sary group size down. Another issue is how this scaling interacts with background
activity. In additional simulations (Diesmann et al 2000) we found that if you
consider the level of background activity, this introduces a third axis, in addition to
the two I showed here. Asa result, the phase portrait is re-shaped in a rather complex
way, because it depends in a non-monotonic way on this third dimension. Yet, there
are interesting trade-offs that can be made between the level of background
activity and the numbers for the necessary group size and synaptic connectivity.

Berridge: When considering Terry Sejnowski’s comment about failures in
synaptic transmission, it is reasonable to ask whether there are any data on how
many synapses ate formed between interacting neurons. Pethaps you get around
the failure rate by having more synapses.

Aertsen: There are numbers on this from various sources. Braitenberg was one
of the first who looked into this (reviewed in Braitenberg & Schiiz 1991), later
several others also studied it. The number of synapses between any two neurons
in the neo-cortex depends strongly on the distance between the two cells. If they are
very close, there is a high probability that they will have multiple (up to 10)
synapses between them; if they ate further apart (100 um or morte), this
probability goes down rapidly (e.g. Hellwig 2000). So, neurons that are some
500 um apart will typically have at most one synapse between them.

Berridge: Then this probability of failure really matters.

Aertsen: Yes. For a story like this to hold under such circumstances, by necessity
we need to increase the size of the assembly. Also, it imposes interesting constraints
on the amount of cortical space such an assembly can live in (Hehl et al 2001). I
would like to point out that if this doesn’t work, nothing does. This is the only
viable type of activity in such networks.

Iyengar: 1 am still thinking what your boundary conditions mean. To achieve
that, one has to increase reliability at each synapse, so there is no potentiation but
the synapse becomes reliable enough that all of them work, and if this is not
achieved in a few cases it fails. If you go back and record at single synapses will
they become more reliable?
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Se¢jnowski: That has been done. It is much easier to potentiate a low probability
synapse than a high probability synapse. Conversely, it is much easier to depress a
high probability synapse. I think there is a close relationship between the two. One
idea of LTP is that you are just converting a synapse from a low probability state to
a high probability state. This can be deceiving. The beauty of having a contact of a
low probability is that you can recruit it if you need it, and you can reorganize your
network. Thereis yet another degree of complexity that underlies synapses that has
to do with short-term dynamics. For example, if you stimulate a synapse at high
frequency, some synapses will depress, that is each subsequent signal will produce a
smaller output, and there are some synapses where the probability of release will go
up.

Iyengar: This scares me, because then I wonder how is it that these biochemical
events in each of these get coordinated to produce these results.

Aertsen: 1 agree that the combinatorial complexity increases with each new axis
that you open up. On the other hand, part of the good news is that this sort of
construction creates robustness.

Se¢jnowski: There may be a principle for self-repair of a network with many
unreliable components, which collectively produces a reliable state.

Iyengar: So you pre-select biochemically for those that are working, and when
you reach a critical number the system becomes reliable.

Eichele: However, there are organisms that have very few neurons, yet they still
work.

Aertsen: This isn’t a theory for all brains of all animals. It is just a theory for the
neo-cortex of the mammalian brain. Moreover, it critically depends on the spike
rates in the network: it works nicely for low to moderate rates (typical for cortex),
but at high spike rates, this theory breaks down.

Se¢jnowski: Even in humans there are synapses that are highly reliable, such as the
neuromuscular junction, which releases so many vesicles thata contraction is bound
to occur, regardless of the fluctuation. Where reliability is called for, nature usually
achieves this with an anatomical specialization. This is not found in the cortex,
except in a few specialized places such as the mossy fibre terminals in CA3.

Langhlin: 1 would put a slightly different gloss on it. We found that the single
synapse, which is just a small synapse, 0.5x0.1 um, was transmitting 55 bits per
second. It is achieving a good transmission rate without any failure. It is not just
a question of using large numbers of synapses or big synapses. You can engineer
small synapses to be reliable or unreliable, presumably by adjusting vesicle release
mechanisms.

Sejnowski: The distinction there is that it is a graded or drip synapse, working
over a wide range of potentials, whereas in the cortex it is an all-or-none event.

Langhlin: I would say that these synapses have been deliberately engineered to be
unreliable and to have their probability of release depend on other events.
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