Entrez PubMed Nucleotide Protein Genome Structure OMIM PMC Journals Books
 Search for
  Limits  Preview/Index  History  Clipboard  Details     
About Entrez

Text Version

Entrez PubMed
Help | FAQ

PubMed Services
Journals Database
MeSH Database
Single Citation Matcher
Batch Citation Matcher
Clinical Queries

Related Resources
Order Documents
NLM Catalog
NLM Gateway
Consumer Health
Clinical Alerts
PubMed Central
1: Nature. 1999 Dec 2;402(6761):529-33. Related Articles, Links
Click here to read 
Stable propagation of synchronous spiking in cortical neural networks.

Diesmann M, Gewaltig MO, Aertsen A.

Department of Neurobiology and Biophysics, Institute of Biology III, Albert-Ludwigs-University, Frieburg, Germany.

The classical view of neural coding has emphasized the importance of information carried by the rate at which neurons discharge action potentials. More recent proposals that information may be carried by precise spike timing have been challenged by the assumption that these neurons operate in a noisy fashion--presumably reflecting fluctuations in synaptic input and, thus, incapable of transmitting signals with millisecond fidelity. Here we show that precisely synchronized action potentials can propagate within a model of cortical network activity that recapitulates many of the features of biological systems. An attractor, yielding a stable spiking precision in the (sub)millisecond range, governs the dynamics of synchronization. Our results indicate that a combinatorial neural code, based on rapid associations of groups of neurons co-ordinating their activity at the single spike level, is possible within a cortical-like network.

PMID: 10591212 [PubMed - indexed for MEDLINE]