
Abstract. An e�cient new method for the exact digital
simulation of time-invariant linear systems is presented.
Such systems are frequently encountered as models
for neuronal systems, or as submodules of such systems.
The matrix exponential is used to construct a matrix
iteration, which propagates the dynamic state of the
system step by step on a regular time grid. A large
and general class of dynamic inputs to the system,
including trains of d-pulses, can be incorporated into
the exact simulation scheme. An extension of the
proposed scheme presents an attractive alternative for
the approximate simulation of networks of integrate-
and-®re neurons with linear sub-threshold integration
and non-linear spike generation. The performance of the
proposed method is analyzed in comparison with a
number of multi-purpose solvers. In simulations of
integrate-and-®re neurons, Exact Integration systemat-
ically generates the smallest error with respect to both
sub-threshold dynamics and spike timing. For the
simulation of systems where precise spike timing is
important, this results in a practical advantage in
particular at moderate integration step sizes.

1 Introduction

Computational neuroscience, like the study of any
complex dynamic system, depends much on the use of
reliable and e�ective numerical methods. Approximate
digital simulation of the system behavior under various
conditions is exceedingly helpful for exploration and as a
®rst step of analysis, as well as for demonstration
purposes. Detailed knowledge of the numerical proper-
ties of the simulation method, however, is critical for the
success of its application and, eventually, for the
credibility of the results.

Approximate digital simulation of a function y�t�
involves the computation of a sequence of samples of the
function on a discrete temporal grid. This is typically
achieved by iteration, where y�t � D� for some step of
size D > 0 is determined from y�t� and from knowledge
about the local properties of the function y�t�. The
success of this procedure essentially relies on Taylor's
formula, which explicitly states what is meant by local
information:

y�t � D� � y�t� � _y�t�D� 1
2

�y�t�D2 � 1
6 y

...�t�D3 � � � � �1�

If y�t� is the trajectory of a dynamic system, the various
temporal derivatives are related by the di�erential
equations which govern the system dynamics. Di�erent
methods for the approximate numerical integration of
these equations are distinguished by their ability to
faithfully approximate the above power series for
su�ciently small steps D. State-of-the-art approximate
digital simulation of dynamic systems is based on multi-
purpose adaptive solvers. Beginning with the initial
conditions, the solver steps through time, computing a
solution at each time step. If the solution satis®es the
prescribed error tolerance criteria, it is a successful step.
Otherwise, the results are discarded, the solver shrinks
the step size and tries again.

For linear time-invariant systems, the approximate
nature of digital simulation can be completely overcome.
It is possible to compute the exact trajectories, sampled
on a regular grid of arbitrary step size, with a precision
depending only on the ¯oating-point arithmetic used.
This is achieved by iteration of a linear map on a suit-
able state space, without reference to a precomputed
explicit solution, by using the full Taylor series. To avoid
signal aliasing, one only needs to make sure that the grid
is dense enough, compared to the time scale of change in
the signal.

A fair number of dynamic systems which play a role
in neuronal modeling are both linear and time-invariant.
The list includes stochastic models for multi-state ion
channel kinetics (Colquhoun and Hawkes 1995a,b),
compartmental models for the passive spread of current
in dendritic cables (Rall 1964; Hines and Carnevale
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1997), and the leaky integrator model for spatio-tem-
poral summation of synaptic currents (Tuckwell 1988).

Spatio-temporal integration of synaptic inputs coming
as transient changes of ionic conductances (Rall 1964;
Hines and Carnevale 1997) are described in terms of
linear equations, which are not time-invariant. The dy-
namics of voltage-sensitive conductances under current-
clamp conditions and the generation of action potentials
(Hodgkin and Huxley 1952) involves essentially non-
linear equations. Both types of systems must be treated
approximately with general approximate methods.

Some relevant non-linear systems, however, like the
integrate-and-®re neuron, can be viewed as a cascade of
a dynamic linear part (sub-threshold leaky integration of
inputs) and a static non-linearity (threshold operation
for spiking). The proposed integration method can be
extended in a natural way to account for this type of
non-linearity. In addition, for many problems in neu-
ronal systems modeling, it is mandatory for computa-
tional reasons to ®x a step size for the iteration. Such is
the case for high-dimensional systems with many
threshold operations involved (large neural networks),
and for systems with stochastic inputs, which are de®ned
by their spectral properties (shot noise). Our exposition
in Sects. 3 and 5 gives a more detailed account of the
scope of the proposed method.

In the sequel, we ®rst provide the mathematical
background and give a short derivation of the exact
simulation method (Sect. 2, Appendices A and B). Its
application is then explained in detail for a collection of
frequently encountered time-invariant linear systems,
with and without input (Sect. 3). Finally, we discuss the
advantage of using the proposed new method in com-
parison with classical integration methods (Sect. 4, Ap-
pendices C and D).

2 Mathematical background

2.1 Linear di�erential equations

We consider a time-invariant linear system, the behavior
of which is speci®ed by a ®rst-order linear di�erential
equation in n dimensions

_y � Ay � x : �2�
Here, y�t� is the time-dependent state of the system, and
x�t� is the time-dependent input to the system. Both x and
y are n-dimensional column vectors with real or complex
components. The system is characterized by a ®xed
square matrix A of numerical constants. By appropriate
substitution of variables, any higher-order linear di�er-
ential equation can be written as a ®rst-order system.

A fundamental system of solutions to the homoge-
neous (zero-input) equation _y � Ay is given by the col-
umns of the matrix exponential eAt. This can be checked
by substituting all derivatives y�k� � Aky in Taylor's
formula (1). In Appendix A, a more precise de®nition of
the matrix exponential and a discussion of its properties
is provided. The unique solution of the full equation (2)

with initial value y�s� amounts to (Arnol'd 1992; Hirsch
and Smale 1974; Walter 1996)

y�t� � eA�tÿs�y�s� �
Z t

s�
eA�tÿs�x�s�ds �3�

where the convolution integral extends over the half-
open interval �s; t�. The ®rst part of the sum is the result
of passive propagation of the initial state, whereas
the second part represents the input-driven response of
the system. Correspondingly, for a system with no input,
the matrix eAt is termed ``time-evolution operator'' or
``propagator''. In contrast, for a system with input but
zero initial conditions, the same matrix is called the
``impulse response'' of the system.

As can be directly seen from the explicit solution (3),
the dynamic history of the system prior to time s is
completely subsumed in its state y�s� at that time, and is
otherwise ``forgotten''. This fact can be used to set up a
simple method for the exact digital simulation of linear
system behavior.

2.2 Exact digital simulation in discrete time

Digital simulation means to compute the response y�t�
of the system to a prescribed input x�t� on an evenly
sampled grid tk � kD, where D is a ®xed step size and k
takes only integer values. We write yk � y�tk� for brevity.
The function y�t� then corresponds to the sequence yk of
its samples on the grid. For a special type of input
functions, the simulation can be performed in an exact
way, avoiding potentially inaccurate and unstable inte-
gration methods. To this end, we consider (generalized)
functions x�t� of the form

x�t� �
X

k

xkd�t ÿ tk� ; �4�

where xk is an n-dimensional vector for each k, and d�t�
is the scalar Dirac delta-function; see Appendix B for a
short discussion of its properties. Such ``pulse trains'' are
completely de®ned by the sequence of coe�cients xk.
The somewhat di�erent nature of pulse amplitudes xk
and function samples yk should be kept in mind.

For pulse train inputs which are restricted to the grid,
the temporal evolution of the continuous system (2)
collapses to a discrete matrix equation. Namely, if we let
s � tk and t � tk�1 be two successive points on the grid, it
is readily veri®ed that the general solution (3) turns into

yk�1 � eADyk � xk�1 �5�
which can be interpreted as an iteration. Starting with
some initial state y0 and assuming non-zero input only at
tk for k � 1; 2; . . ., it propagates the exact solution on the
grid, step by step. The diagram

x1 x2 x3 . . .
# # #

y0 ! y1 ! y2 ! y3 ! . . .
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depicts the dependency of the current output of the
system on its previous output and the current input. We
refer to the iteration (5) as the method of ``Exact
Integration''. For a time-invariant system, it is based on
the ®xed numerical matrix eAD, which has to be
computed only once by using appropriate standard
numerical algorithms (see Appendix A for a more
detailed discussion).

2.3 Exact simulation with general inputs

In the context of Exact Integration of a time-invariant
linear system, pulse trains of the form (4) can be used to
synthesize a rather large class of more general input
functions. This is achieved by simply adding equations to
the system and then applying the Exact Integration
method to the extended system. This quali®es, for
instance, piecewise polynomials of bounded degree, sums
of sine waves, or sums of exponentials as input functions
to a linear system subject to exact digital simulation.

The most general input function x�t� compatible with
Exact Integration is itself a linear image of the output
v�t� of another linear system with pulse train input u�t�

_v � Bv� u

x � Cv

for suitable time-invariant coe�cient matrices B and C.
An exact digital simulation of the system (2) with this
particular input is then accomplished by applying the
above methods to the combined system as a whole

_v
_y

� �
� B 0

C A

� �
v
y

� �
� u

0

� �
:

Several examples for this strategy are given in Sect. 3.2.

3 Examples

3.1 Initial value problems

We will now elaborate on the general method of exact
digital simulation by discussing a number of simple
cases. The examples chosen cover all fundamental types
of stable system behavior (Hirsch and Smale 1974):
``exponentially damped'' (real eigenvalues of the coe�-
cient matrix), ``oscillatory'' (complex eigenvalues of the
coe�cient matrix) and ``polynomial'' (nilpotent coe�-
cient matrix). We consider ®rst linear constant-coe�-
cient initial value problems with no input. In such a case,
the iteration (5) reduces to a repeated matrix multipli-
cation, which propagates the initial vector y�0� on a
regular time grid in steps of size D.

3.1.1 Exponential decay
The most elementary example, which nevertheless illus-
trates almost all important aspects of the method, is that
of a simple exponential decay

_g� ag � 0; g�0� � g0
for a scalar variable g and no external input, whatsoever.
The solution of this initial value problem is given by

g�t� � g0e
ÿat :

If we bring the equation to the normal form (2), we
identify

x � 0; y � g; y�0� � g0; A � ÿa :

The iteration (5) yields the sequence

yk�1 � eADyk � eAD
ÿ �k

y0 � g0e
ÿakD

which is clearly an exact sample of the solution g on the
grid. Figure 1 gives a numerical example.

3.1.2 Alpha- and beta-functions
The solution of the second-order equation

�g� �a� b� _g� �ab�g � 0; g�0� � 0; _g�0� � _g0

is called beta-function for a 6� b and alpha-function for
a � b. Both functions are in use for modeling post-
synaptic e�ects in neurons (Bernard et al. 1994; Jack
et al. 1983). The explicit form of alpha- and beta-
functions are

g�t� � _g0teÿat and g�t� � _g0
bÿ a

eÿat ÿ eÿbt
ÿ �

;

respectively. The ®rst step to obtain a sample of these
functions on the grid without reference to the analytical
expressions is to rephrase the di�erential equation as a
two-dimensional ®rst-order system. This can be achieved
by many di�erent variable substitutions. Numerical
arguments in view of the matrix iteration, however,
may favor particular choices. A convenient arrangement
in this particular example is a cascade of one-dimen-
sional systems, the ®rst with decay constant a feeding the
second with decay constant b. The normal form of the
equations then is

x � 0

0

� �
; y � bg� _g

g

� �
;

y�0� � _g0
0

� �
; A � ÿa 0

1 ÿb

� �
:

An analytical expression for the matrix exponential is

eAD � eÿaD 0
DeÿaD eÿaD

� �
for the alpha-function, and

eAD � eÿaD 0
1

bÿa eÿaD ÿ eÿbD
ÿ �

eÿbD

� �
for the beta-function, respectively. For the purpose of
exact digital simulation, the matrix exponential can also
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be obtained with the help of appropriate numerical
routines (see Appendix A), which are as easy to apply as
the routines computing the exponential of a real
number. Figure 1 gives an illustration of the method
for alpha- and beta-functions.

3.1.3 Harmonic oscillations
The solution of

�g� x2g � 0; g�0� � p; _g�0� � qx

is a harmonic oscillation with frequency x, amplitude
c �

���������������
p2 � q2

p
and phase / � arctan�p=q�

g�t� � p cos�xt� � q sin�xt� � c sin�xt � /� :
For the digital simulation of a harmonic oscillation
without reference to its analytic description, we ®rst
rewrite the di�erential equation in a form compatible
with (2). We choose variables such that the coe�cient
matrix attains a symmetric shape

x � 0

0

� �
; y �

1
x _g

g

" #
; y�0� � q

p

� �
;

A � 0 ÿx

x 0

� �
:

The matrix exponential for this particular system is

eAD � cos�xD� ÿ sin�xD�
sin�xD� cos�xD�
� �

corresponding to a rotation in y-space by an angle of
xD. Figure 2 shows a numerical illustration.

3.1.4 Damped harmonic oscillations
We now consider the damped system

�g� 2l _g� l2 � m2
ÿ �

g � 0; g�0� � p; _g�0� � qmÿ pl :

It describes a damped oscillation with frequency m,

amplitude decay rate l, amplitude factor c �
���������������
p2 � q2

p
and phase / � arctan p=q� �
g�t� � p cos�mt�eÿlt � q sin�mt�eÿlt�c sin�mt � /�eÿlt :

For a digital simulation of this function, we again

rewrite the di�erential equation in a form compatible

with (2), putting q �
���������������
l2 � m2

p
x � 0

0

� �
; y �

1
q _g

g

" #
; y�0� �

1
q �qmÿ pl�

p

" #
;

A � ÿ2l ÿq

q 0

� �
:

In this case now, the matrix exponential is

eAD � 1 0
0 1

� �
cos�mD�eÿlD � ÿ l

m ÿ q
m

q
m

l
m

� �
sin�mD�eÿlD :

Figure 2 shows the numerical simulation of a damped
oscillation using Exact Integration.

3.1.5 Polynomial functions
Newton's equations for the ballistic movement of an
ideal canon ball imply a parabolic trajectory. More
general, for any non-negative integer n, the di�erential
equation

Fig. 1. Exponential decay, alpha- and beta-
functions. Exact digital simulation of the initial
value problems _g� ag � 0; g�0� � a with pa-
rameter a � 5 (exponential decay, circles) and
�g� �a� b� _g� �ab�g � 0, g�0� � 0, _g�0� � ab
for a � b � 5 (alpha- function, squares) and
a � 5, b � 20 (beta- function, triangles). The
step size for the iteration was D � 0:02. The
solid lines are plots of the exact solutions
g�t� � aeÿat, g�t� � a2teÿat and g�t� �
ab

bÿa

ÿ
eÿat ÿ eÿbt

�
, respectively. The initial con-

ditions were chosen such that
R1
0 g�t�dt � 1 in

all three cases
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g�n� � 0

with initial conditions

g�k��0� � k!ak �k � 0; 1; . . . ; nÿ 1�
is uniquely solved by the polynomial function

g�t� � a0 � a1t � � � � � anÿ1tnÿ1 :

The exact digital simulation of any polynomial function
can be obtained by means of an iteration of the form (5).
In the case of a cubic polynomial function (n � 4), for
example, one puts

x �

0

0

0

0

26664
37775; y �

g
...

�g

_g

g

26664
37775; y�0� �

6a3

2a2

a1
a0

26664
37775;

A �

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

26664
37775 :

The matrix exponential for this particular system is

eAD �
1 0 0 0
D 1 0 0
D2

2 D 1 0
D3

6
D2

2 D 1

2664
3775 :

Samples for the exact simulation of polynomial functions
based on this time evolution operator are given in Fig. 3.

3.2 Linear systems with input

We now seek a digital simulation of the response
of speci®c linear time-invariant systems to prescribed
inputs, restricted to a regular grid with a ®xed step size D.
This can be accomplished by using the general form of
the iteration (5). We assume zero initial conditions
throughout this section.

3.2.1 Low-pass ®ltered impulse sequence
As a ®rst example, we consider a one-dimensional ®rst-
order system at rest with a non-zero input n switched on
at time 0

_g� ag � n; g�0� � 0 :

As input, we consider a one-dimensional pulse train on
the grid, as discussed in Sect. 2.2. The response g then is
a low-pass ®ltered version of the input

g�t� �
Z t

0

eÿa�tÿs�n�s�ds :

As above, one identi®es

x � n; y � g; y�0� � 0; A � ÿa :

The result of a discrete iteration according to (5) is
illustrated in Fig. 4 and describes a scalar system which
relaxes from its previous state according to its autono-
mous dynamics, and which then updates its initial
conditions to satisfy the input. This interpretation is
valid also for higher-dimensional examples.

3.2.2 Shot noise
The response of a linear system is called ``shot noise'', if
the pulse train input is a realization of a Poisson process

Fig. 2. Oscillations. Exact digital simulation
of harmonic oscillations with and without
damping. An iterative solution of the initial
value problem �g� x2g � 0;
g�0� � 0; _g�0� � x with x � 20 is indicated
by circles. The squares correspond to the
initial value problem �g� 2l _g
� l2 � m2
ÿ �

g � 0, g�0� � 0, _g�0� � m with
m � 20 and l � 5. The step size of both
iterations was D � 0:02. The solid lines are
plots of the exact analytical solutions
g�t� � sin�xt� and g�t� � sin�mt�eÿlt,
respectively
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(Papoulis 1991). We consider an example from neuronal
modeling. The ionic current, which is induced at a
synapse in response to a pre-synaptic action potential, is
approximated by an alpha-function (see Sect. 3.1.2).
Provided that dendritic integration is linear and that all
synapses have equal weights, the total current induced
by a barrage of pre-synaptic action potentials n is
proportional to a variable w such that

�w� 2a _w� a2w � n; w�0� � 0; _w�0� � 0 ;

where a is the decay constant of the current. The post-
synaptic potential g relative to the resting level is a low-
pass ®ltered version of the current

_g� bg � w :

Fig. 3. Polynomial functions. Exact digital
simulation of the polynomial functions
g�t� � ÿ5t2 � 6t ÿ 1, g�t� � 15t3 ÿ 20t2

�6t, and g�t� � 70t4 ÿ 143t3 � 94t2ÿ
22t � 1. Shown are the iterative solutions to
the linear di�erential equation g�n� � 0 for
n � 3 (circles), n � 4 (squares), and n � 5
(triangles), respectively, with appropriate
initial conditions. The iteration had a step
size of D � 0:02. The solid lines are plots of
the exact analytical functions

Fig. 4. Low-pass ®ltered pulse train. Exact
digital simulation of the response of the
linear system _g� ag � n; g�0� � 0 with
parameter a � 20 to a pulse train n of 15
equally spaced impulses with unit ampli-
tude. The step size of the iteration is
D � 0:01. The solid line is a plot of the
exact solution g�t� � R t

0 e
ÿa�tÿs�n�s�ds.

Note that the simulated time series cannot
fully convey the abrupt changes in the
signal, but since all inputs come on the grid,
the simulation is nevertheless exact
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Here, b is the decay constant of the neuronal membrane.
The cascaded set of equations describing the complete
integration process has the normal form

x �
n

0

0

264
375; y �

aw� _w

w

g

264
375; y�0� �

0

0

0

264
375;

A �
ÿa 0 0

1 ÿa 0

0 1 ÿb

264
375 :

Assuming that all pre-synaptic spikes arrive on the grid,
the shot noise realization can be exactly simulated by the
iteration method, an illustration is given in Fig. 5. The
analytic form of the matrix exponential is already
somewhat complex

eAD �
eÿaD 0 0

DeÿaD eÿaD 0
eÿbDÿeÿaD

�aÿb�2 ÿ DeÿaD

aÿb
eÿbDÿeÿaD

aÿb eÿbD

264
375 :

It is nevertheless given here to point out the occurrence
of the ``correction term'' in the lower-left corner of the
matrix. The corresponding entry in the coe�cient matrix
A is zero. In the propagator matrix eAD, however, it must
be nonzero to ensure the exactness of the simulation.
This issue will be discussed in Sect. 4 in more detail.

3.2.3 Piecewise-constant input
The requirement that the input to the system must be an
impulse sequence can be overcome to some extent by

adding equations to the system (see Sect. 2.3). A
piecewise constant signal w, for instance, is obtained as
the solution of

_w � n; w�0� � w0 ;

where n is again a pulse train. The function w solving the
equation is constant between any two successive pulses.
The heights of the jumps are speci®ed by the input
function n. We feed w as input to a ®rst-order low-pass
system, which responds with a function g

_g� ag � w; g�0� � g0 :

Altogether, one obtains the cascade

x � n
0

� �
; y � w

g

� �
; y�0� � w0

g0

� �
; A � 0 0

1 ÿa

� �
:

Provided that the jumps occur only on the grid, one can
simulate this two-dimensional system in an exact
manner. To this end, one needs to compute the
appropriate matrix exponential. In practical applica-
tions, this would be done numerically. The analytical
expression is

eAD � 1 0
1
a 1ÿ eÿaD
ÿ �

eÿaD

� �
:

The iteration of this system according to (5) has been
termed ``exponential integration'' (MacGregor 1987)
and is widely used in the context of neuronal model
simulations. Some aspects of its use in the literature are
discussed in Sect. 4 and Appendix C.6. An illustration is
given in Fig. 6.

Fig. 5. Shot noise. Exact digital simula-
tion of the response g of a passive linear
dendrite to a barrage of action potentials
arriving in a Poisson-like manner. The pre-
synaptic process n had an expected rate of
1000 spikes for the simulation interval
shown. The occurrence of spikes was
constrained to the grid with a time step
D � 0:001. We chose a � 1000 for the
decay constant of the alpha-function de-
scribing unitary post-synaptic currents; the
decay constant of the membrane was
b � 100. After a short transient while the
membrane is charged from rest, one
observes ¯uctuations around an equilibri-
um level. The inset shows a unitary post-
synaptic potential; the circles indicate the
time-steps of the simulation. The same
(arbitrary) units are used for both ®gures
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3.2.4 Continuous piecewise-linear input
To go one step further, we want the input w to be
continuous and piecewise-linear. Such a function is
obtained as a solution of

�w � n; w�0� � w0;
_w�0� � _w0 ;

where now n is a pulse train describing the changes in
slope of the input function. As above, we feed w into a
®rst-order low-pass. The equations describing the whole
system are then

x �
n

0

0

264
375; y �

_w

w

g

264
375; y�0� �

_w0

w0

g0

264
375;

A �
0 0 0

1 0 0

0 1 ÿa

264
375 :

The matrix exponential is

eAD �
1 0 0
D 1 0

1
a2 eÿaD � aDÿ 1
ÿ �

1
a 1ÿ eÿaD
ÿ �

eÿaD

24 35 :

A numerical example, where again all changes in slope
occur on the grid, is shown in Fig. 6. Input functions
with any given degree of regularity, like cubic splines,
can be synthesized and incorporated into the description
of a linear system by further generalizing the principle
indicated by the preceding two examples.

3.2.5 Damped driven oscillations
We now construct an iteration to simulate the response
of a damped oscillator system, which is driven by a
periodic force w�t� � cos�xt�. The equations are

�g� 2l _g� l2 � m2
ÿ �

g � w; g�0� � 0; _g�0� � 0

damped oscillator, and

�w� x2w � 0; w�0� � 1; _w�0� � 0

for the periodic driving force. The response of the
damped system has two components

g�t� � p sin�mt � /�eÿlt � q sin�xt � h� ;
for suitable parameters p, q, / and h. The ®rst is a
transient oscillation with the eigenfrequency m of the
system. The second is an undamped oscillation with the
frequency x of the driving force which eventually
dominates the response of the system. For a digital
simulation of this behavior, we transform the combined
system of di�erential equations, putting q �

���������������
l2 � m2

p

x �

0

0

0

0

26664
37775; y �

1
x

_w

w
1
q _g

g

26664
37775; y�0� �

0

1

0

0

26664
37775;

A �

0 ÿx 0 0

x 0 0 0

0 1 ÿ2l ÿq

0 0 q 0

26664
37775 :

Fig. 6. Piecewise constant and continuous
piecewise-linear input. Exact digital simula-
tion of a low-pass system with piecewise
constant (w: Ð, g: - - -) and continuous
piecewise-linear (w: ± � ±, g: � � �) input, re-
spectively. The low-pass system is given by
the di�erential equation _g� ag � aw with
a � 25. The step size of both iterations was
D � 0:001, the graphs shown are linear
interpolations of the actual data points
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Due to their rather complex dependence on the param-
eters of the system, neither the explicit form of the
parameters p, q, /, h nor the analytic form of the matrix
exponential are given here. The exact digital simulation
of the system on the basis of the numerical time-
evolution operator, however, is as straightforward as for
the previous examples. Figure 7 gives an illustration.

4 Approximate numerical integration

In this section, we compare Exact Integration with
di�erent approximate methods commonly used in the
context of neuronal network modeling. For time-invari-
ant linear systems and for a ®xed step size of integration,
all approximate methods considered here reduce to
matrix iterations which approximate the exact propaga-
tor and which have comparable computational costs.
De®nitions of the alternative integration methods which
are considered here, including a short discussion of their
properties with respect to accuracy and stability, are
given in Appendix C. In particular for moderate-sized
integration steps, before signal aliasing due to under-
sampling starts to become a major cause of malfunction,
Exact Integration proves to be more reliable than all
other methods tested. This holds for a continuous test
system (subthreshold integration in neurons) and an
extended non-linear system involving abrupt resets in
one variable (integrate-and-®re neuron).

4.1 The test system

As a continuous test system, we chose the passive
response of a leaky integrator neuron model to alpha-

shaped post-synaptic currents. In order to operate in a
realistic parameter regime, we use the following physical
constants throughout this section, unless otherwise stated

sa � 0:3 ms; sm � 10 ms;

amax � 50 pA; C � 250 pF :

The equations have been introduced in Sect. 3.2.2
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At time 0 we present a delta-pulse input n�t� � bd�t�,
where b � amaxe�saC�ÿ1 provides the scaling to physical
units. Equivalently, we could have set the initial
conditions y�0� for the iteration to the value, which is
now enforced by the input. The function w�t� describes
the post-synaptic current, which reaches its peak value
amax at time sa. The function

g�t� � b
eÿt=sm ÿ eÿt=sa

1=sa ÿ 1=sm� �2 ÿ
teÿt=sa

1=sa ÿ 1=sm

 !
represents the membrane response, the post-synaptic
potential.

In most models of spiking neurons the membrane
potential is the critical variable for spike generation. In
addition, it is the variable where all time scales of the

Fig. 7. Damped driven oscillations. Exact
digital simulation of two damped oscilla-
tors responding to harmonic input. In one
case, the eigenfrequency was higher
(m � 130, Ð); in the other case it was
lower (m � 13, ---) than the frequency of
the driving input (x � 30, � � �). The
damping of both oscillators was l � 4.
The displayed amplitude of the driving
cosine is reduced by a factor of 500. The
step size of both iterations was D � 0:001;
the graphs shown are linear interpolations
of the actual data points
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system combine their e�ect. The system (6) with the
parameters chosen is, in fact, a moderately sti� system
(Mascagni 1989; Press et al. 1992), where the range of
characteristic time constants spans more than one order
of magnitude. This poses a problem to some methods of
approximate integration, which are limited in step size
by the smallest time constant, even if one is interested in
the system behavior on a larger time scale.

For this particular system, we quantitatively assessed
the advantage of using exact integration and compared
the applicability and accuracy of di�erent approximate
integration methods. To this end, we analyzed the de-
viation of the approximate solutions from the exact so-
lution, in several respects. The quantitative measures
employed for that purpose are de®ned in Appendix D.
As a rule, the errors in the tail of the test function are
small as compared to the errors in the peak region. To
exclude a systematic bias in our results due to this fact,
we also evaluated our test system under shot noise
conditions, similar to what is described in Sect. 3.2.2.
The system was supplied with input, which was close to

a balance of excitation and inhibition (van Vreeswijk
and Sompolinsky 1996). The pulse train input was re-
stricted to a 2ms grid to ensure comparable results for
di�erent step sizes. We veri®ed that the results obtained
for a single post-synaptic potential also hold for shot
noise input.

4.2 Local accuracy and stability

As a measure of the local accuracy of an integration
method, we consider the root-mean-square (RMS) of the
point-wise deviation of the approximate solution from
the analytical solution on the grid, within the
®rst 120ms. This corresponds to the d2 measure as
described in Appendix D.1; the d1 and d1 measures,
however, give essentially the same results. Figure 8
shows the results for a number of selected integration
methods. As expected, the total point-wise error of the
various approximations increases with the integration
step size.

Fig. 8. Local error of various integration methods as a
function of the step size (log-scaled abscissa). The error
is de®ned as the RMS of the point-wise deviation of
the approximation from the analytical solution on the
grid, expressed in percentage of the amplitude of the
test function (see Appendix. D.1). The test function
describing a post-synaptic potential is generated by a
system of three linear di�erential equations with
constant coe�cients. The step size D of the integration
is varied from 0:01ms to 2ms; the error is evaluated
over the ®rst 120ms. EI denotes the (zero) error of the
Exact Integration scheme. Explicit approximate inte-
gration methods are Forward-Euler (FE), second-
order Adams-Bashforth (AB) with start values
y�ÿD� � 0 and y�0�, fourth-order Runge-Kutta
(RK), and Exponential Integration (XP). Implicit
methods are Backward-Euler (BE) and Crank-Nichol-
son (CN). AM is the result of the second-order Adams-
Bashforth integrator, where in contrast to AB start
values y�0� and the exact value for y�D� are used. XM
is the result for the Exponential Integration where the
approximate solution is shifted by ÿD relative to the
exact solution. The inset shows the same data with a
larger ordinate range and an abscissa range of
0:01±60ms. With increasing step size AB (D � sa),
FE (D � 2sa), and RK (D � 8

3
sa) become unstable and

yield exceedingly large errors
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The explicit integration methods of Adams-Bash-
forth, Forward-Euler and Runge-Kutta lose stability
when the step size exceeds the smallest time constant by
a method-dependent factor (Wilson and Bower 1989;
Hines and Carnevale 1995). The critical value for D can
be calculated with the methods presented in Appendix
C. It turns out that stability depends only on the product
of the eigenvalues of the coe�cient matrix A and the
step size D. In our case, where the eigenvalues are all real
and negative (ÿ 1

sa
, ÿ 1

sa
, ÿ 1

sm
), the bound for stability

scales with the smallest time constant sa (see Fig. 16).
In contrast, the implicit integration methods of

Backward-Euler and Crank-Nicholson, as well as Ex-
ponential Integration and Exact Integration, are
absolutely stable (see Appendix C). The average local
errors of the implicit methods and Exponential Inte-
gration remain bounded and become small again for
large step sizes, because then the peak region no longer
contributes. Below D � 0:6ms, the Crank-Nicholson
method has the smallest error of the stable approximate
integration methods. At D � 2sa, however, the ®rst ei-
genvalue of its propagator becomes negative and the
iteration starts to oscillate. For larger step sizes, the
Backward-Euler and the modi®ed Exponential Integra-
tion method have smaller errors.

The multi-step Adams-Bashforth method shows the
largest error and is the ®rst to become unstable, if the
speci®cation of initial values is not done with great care.
The method has a fatal tendency to accumulate errors
(Press et al. 1992; Bower and Beeman 1997). The error
remains small, however, if in addition to the initial
condition the exact value for the second step is used. In
its stable regime the modi®ed Adams-Bashforth method
is the second-best explicit method after that of Runge-
Kutta. In the context of neuronal modeling, two-step
initialization can be implemented with some additional
bookkeeping.

For the test system, Exponential Integration, which is
an explicit method, is also stable. Its propagator has, in
fact, the same eigenvalues as the exact matrix exponen-
tial (see Appendix C.6). For large step sizes, however, it
produces considerable errors. This is essentially due to a
time delay of one time step relative to the exact solution.
If the approximate solution is arti®cially aligned by a
shift backwards in time, the error is reduced (compare
Fig. 10). For large step sizes, it becomes even smaller
than the error of the implicit methods.

Originally introduced by MacGregor (1987), expo-
nential integration is now widely used in neuronal
modeling (Wilson and Bower 1989; Bower and Beeman
1997). This is due to its stability and relative accuracy in
typical applications. If, however, Exponential Integra-
tion is applied to a sti� system like the one discussed
here, care must be taken to appropriately set the initial
condition (see Appendix C.6). The non-monotonic be-
havior of the errors produced by the modi®ed Expo-
nential Integration around D � 1ms is due to a match of
shapes (see Fig. 8). In the ®rst iteration step after the
peak of the test function, the approximate solution
comes to lie close to the exact solution such that all
successive steps also generate a small error.

Figure 9 shows the ®rst time steps in the approximate
simulation of the test system for di�erent integration
methods. The onset delay observed for Exponential
Integration as well as for the Forward-Euler and Ad-
ams-Bashforth methods (see Fig. 9) is caused by the
particular structure of the corresponding propagator
matrices for a cascaded system of n di�erential equa-
tions. The ith component of the state vector can in¯u-
ence the jth component only after jÿ i iterations, and
not already after a single step, which is the theoretical
minimum for a general matrix. If, for instance, one is
only interested in the long-term behavior of a single
neuron, this e�ect could be ignored. In a network of
neurons interacting by spikes, the e�ect can be com-
pensated for, if the synaptic delays are at least jÿ i time
steps long.

4.3 Global accuracy and signal aliasing

In an application, the step size for a numerical
simulation may be limited by stability and accuracy of
the iteration on the grid. Such problems are clearly
re¯ected by point-wise measures. However, there may
also be external criteria such as the detectability of
threshold crossings, the accuracy of spectral properties,
or the visual appearance of the graph. In the context of
threshold models, for instance, we are particularly
interested in a faithful approximation of peaks in
transient signals. Figure 10 shows the peak region of
the test function and its approximations. In contrast,
Fig. 11 illustrates the problem of signal aliasing due to
under-sampling, which a�ects any simulation method,
including Exact Integration. Although the values ob-
tained are exact on the grid for arbitrary D, the shape of
the test function is completely lost for step sizes that are
too large.

Figure 12 shows the results from the application of a
measure which tries to capture the error in global shape,
relative to the exact analytical function (see Appendix
D.2 for a de®nition). Now, the error produced by Exact
Integration essentially represents a lower bound, be-
cause for approximate methods the errors on the grid
also contribute to the deviation in global shape.

4.4 Accuracy of threshold crossings

The simplest model for a spiking neuron involves a
threshold on the membrane potential. A crossing of the
threshold elicits an action potential and a reset of the
membrane potential to its resting value. Depolarizations
toward threshold are due to passive integration of inputs
from other neurons, as discussed above. Therefore, in
the sub-threshold regime, the integrate-and-®re model is
linear and time-invariant. Only when spikes are gener-
ated is the membrane potential trajectory a�ected by an
additional non-linear mechanism.

To test the performance of numerical simulation
methods we chose an integrate-and-®re neuron with the
same sub-threshold integration as discussed above, and
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Fig. 10. Peak region of the test function
(gray curve) simulated at a step size
D � 0:2ms. Parameters and labeling are
as in Fig. 8. The inset shows an enlarged
view of the peak region; the curves
already labeled in the main ®gure are
omitted. At the chosen step size, Adams-
Bashforth integration shows clear oscilla-
tory behavior. This is due to the fact that
half of the eigenvalues of its propagator
are negative in this regime, and their
relative magnitudes increase with D (see
Appendix C.4). Nevertheless, the variant
of the method which is supplied with
exact values for the ®rst two steps still
captures the peak region. Forward-Euler
and Backward-Euler integration both
have an error of about 5% peak height.
The Crank-Nicholson method has an
error of less than 1% peak height, all
other methods less than 0:1%. The curve
of the D-shifted Exponential Integration is
closer to the exact solution than the
original one everywhere. This reduces
both the average local error (Fig. 8) and
the global error (Fig. 12) of the method

Fig. 9. Onset of the approximate simulation of the test system, a post-synaptic potential (gray curve) with parameters given in the text. The
di�erent integration methods are labeled as in Fig. 8, we used a step size D � 0:2ms for all methods. The trigger event is at time 0. The initial
value for the variable shown (membrane potential) is 0. Therefore, a deviation from 0 can only occur after one computation time step. Forward-
Euler, the Exponential Integration and the Adams-Bashforth method show values di�erent from 0 only after one additional time step. This is due
to the cascaded structure of the coe�cient matrix for the corresponding propagators. In the case of Exponential Integration, the error can be
reduced if the approximate solution is shifted to the left by one time step (XM). The second-order Adams-Bashforth method performs an
iteration on the basis of the two preceding states. In order to reduce the error, it is therefore natural to start the iteration with the initial value and
the exact value after the ®rst step (AM)
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Fig. 11. Under-sampling and signal
aliasing in digital simulation. The solid
curves show the linearly interpolated
results of the exact integration method
compared to the analytical test func-
tion (gray curve), for di�erent step sizes
(solid curves, D � 0:2ms a, D � 0:5ms
b, D � 1ms c, D � 2ms d). Parame-
ters are as in Fig. 8. The samples are
exact on the grid for arbitrarily large
step sizes D. Although the solution is
exact on the grid, the shape of the test
function is completely lost if the step
size is too large

Fig. 12. Global error in the digital simulation of a test
function, depending on the integration step size (log-
scaled abscissa). The error is de®ned as the relative
integrated square error in shape with respect to the
analytical solution (see Appendix D.2). Parameters
and integration methods are the same as in Fig. 8. For
the implicit methods and Exponential Integration, the
error converges to 100% for large step sizes because the
approximate solutions are then close to the null
function and the full shape of the test function
contributes to the error. For larger step sizes, under-
sampling causes an increasing global error also for
Exact Integration (see Fig. 11). For step sizes above
1ms, Backward-Euler and Exponential Integration
come close to Exact Integration. However, for step
sizes below 1ms, Crank-Nicholson has a smaller error
than Backward-Euler and the Exponential Integration
techniques. The step-size-dependent hierarchy of the
integration methods with respect to the global error is
essentially the same as for the point-wise error
measures (compare Fig. 8). The l1 and l1 measures
give essentially the same results
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a voltage threshold for spike generation at Uh � 15mV
above its resting potential. Each time the neuron gen-
erated a spike its membrane potential was reset to rest
without a�ecting the input current. The input comprised
an almost balanced combination of excitatory and in-
hibitory events, which had a di�erent sign but otherwise
equal amplitudes and time constants. The average
spiking frequency of the simulated neuron was
10±15 spikes=s. For comparison, we examined an even
more sti� system with all parameters equal, except that
the synaptic currents were three times faster.

The simulation of spike trains generated by an inte-
grate-and-®re neuron may be a�ected by three types of
errors (Fig. 13). Firstly, provided there is a ®xed step
size for the simulation, even Exact Integration cannot be
exact for such a system with respect to the precise time
of threshold crossing; the occurrence of spikes is con-
strained to the simulation grid. This gives a clear lower
bound for the accuracy of spike trains obtained by this
simulation method. This type of error, however, is
completely predictable and under control. Secondly, a
more serious failure of numerical simulation is the pos-
sibility that a threshold crossing is completely over-
looked. This can happen for any integration method
including Exact Integration, if only the very tip of a peak

is super-threshold, but the tip falls in-between two
sample points. Clearly, this type of error occurs more
frequently for larger step sizes in systems with fast
components. Thirdly, approximate integration methods
can produce false excess spikes due to integration errors
of the continuous threshold variable. Since exact inte-
gration does not have this kind of problem, it will sys-
tematically indicate the exact number or fewer spikes
than the exact system.

We attempted to systematically account for all three
types of failures, and to evaluate their combined e�ect
on the quality of numerical simulations. To this end, we
®rst computed cross-correlations of the approximate
spike trains with a reference spike train simulated with
Exact Integration on a super-®ne grid and evaluated the
defect, the width and the shift of the respective center
bin (Fig. 14). The combined e�ect of the various types of
failures and inaccuracies, however, can be displayed
more compactly by employing a distance measure for
pulse trains, similar to that employed for continuous
signals. A detailed description of the method is given in
Appendix D.3; the results of this analysis are displayed
in Fig. 15.

In conclusion, the only approximate integration
methods which are competitive with Exact Integration

Fig. 13. Simulation of an integrate-and-®re neuron with shot noise input. The reference signal (gray) is simulated with Exact Integration on a
super-®ne grid of step size 0:001ms. Superimposed is a spike train obtained with a particularly bad approximate integration method (Forward-
Euler ) at a step size of 0:2ms (black), a combination not uncommon in applications. Identical input, which was constrained to the coarser grid,
was used in both simulations. The ®rst spike in the approximate response signal is falsely generated due to an integration error of the threshold
variable. The second spike is accurate except that it is forced to the much coarser grid of the simulation (not visible on the time scale of the ®gure).
The following two spikes come way too early, again due to integration errors. Beyond integration errors, under-sampling may lead to a systematic
skipping of threshold crossings. In principle, this problem also a�ects Exact Integration, in particular at larger integration step sizes. In all cases of
failure, however, a complete recovery toward the correct trajectory is the rule for the model under consideration, since the sub-threshold system
(like any stable time-invariant linear system) has the property to forget its own previous history
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are Crank-Nicholson and, for small enough step sizes,
Runge-Kutta. All other methods must be used with care;
some of them, most notably Exponential Integration,
can be modi®ed for better performance. The ®rst-order
methods Forward-Euler and Backward-Euler both suf-
fer from bad accuracy. The method of Adams-Bashforth
can be good; its correct implementation, however, is
quite di�cult and computationally expensive. Especially
for moderately sized steps, there is a clear advantage in
using Exact Integration with respect to the precision and
reliability of the resulting spike train. This advantage
may be critical for computer simulations of e�ects re-
garding precise synchronization of action potentials.

5 Discussion

5.1 Why is Exact Integration generally useful?

The greatest appeal of the proposed method for digital
simulation of linear time-invariant systems lies in the fact
that the result is always exact on the grid. In theory,
deviations from the analytical solution do not occur,
independently of the step size of the iteration. This enables
the use of large steps, where high temporal resolution is

not of interest, andwhere the dimensionality of the system
would otherwise cause high costs of computation.

An estimate of the computational e�cacies of the
various integration methods at ®xed step size shows
that, in general, the exact method is computationally no
more expensive than any of the approximate methods.
In fact, a large portion of the computational load is
concentrated on the determination of the matrix expo-
nential. This, however, has to be done only once, e�ec-
tive and stable algorithms for this purpose are available
and have been published. For time-critical simulations,
one may want to exploit the zeros of the propagator
matrix and generate optimized codes for the actual it-
eration. It should be noted, however, that a sparsely
coupled system does not necessarily lead to a sparse
propagator. In contrast, triangular systems always have
a triangular propagator. If such is the case, updating of
the state vector can be done ``in place'', which may be
advantageous for large systems.

Sti� systems, in general, do not pose a problem to the
Exact Integration method, provided that an accurate
matrix exponential is available. Systems with eigenval-
ues of very di�erent magnitude can be exactly integrated
with the proposed method, at arbitrarily large step sizes.
The post-synaptic potential discussed in Sect. 4 is an

Fig. 14. Accuracy of approximate spike trains. Cross-correlation of a reference spike train (1186 spikes) obtained with Exact Integration on a
super-®ne grid of step size 0:001ms and spike trains obtained with various approximate methods at a step size of 0:1ms. Labels are as in the
previous ®gure, unit of time is 1ms, histogram shows raw counts, bin width is 0.01ms. Note that for all integration methods (except for the
modi®ed Exponential Integration, which is already corrected) the spikes are put half a time step earlier than the detection of the super-threshold
potential. This is done because the precise time of threshold crossing must take place somewhere in the preceding interval, provided there are no
integration errors. Most histograms have a rectangular shape, which indicates that all points in the interval qualify for a threshold crossing with
equal probability. Therefore, on average, the point of threshold crossing is in the center of the preceding interval. Information about a tendency to
indicate a threshold crossing too early (Forward-Euler ) or too late (Backward-Euler ) can be taken from the location of the center peak relative
to the origin. Finally, a systematic skipping or false detection of extra spikes expresses itself in the weight of the center peak, which is indicated
here as a percentage of matches within the time window shown
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Fig. 15A,B. Error in temporal precision of threshold crossings in simulations of an integrate-and-®re neuron with shot noise input, as a function
of the integration step size (log-scaled abscissa). Labeling of integration methods is as in the previous ®gures. We computed the distances between
the approximate spike trains and a reference spike train obtained by simulation on a super-®ne grid of step size 0:001ms. Gaussian convolution
kernels of standard width equal to the step size of the approximate simulation were used; see Appendix D.3 for a more detailed description of the
method. A Errors in simulations of a neuron with synaptic currents as in Sect. 4 (sa � 0:3ms), B A neuron with faster synaptic currents
(sa � 0:1ms�. The simulations extended over 100 s, each yielding 1000±1500 spikes. The bottom dashed line indicates the error of the exact spike
train with all its n spikes forced to the grid; the bottom gray line is the value

����������
n=24

p
predicted by theory for that situation. The left scale bar

expresses all errors in terms of this discretization error, assuming the average number of spikes found in the di�erent simulations. Another
interesting limit of this error measure is the case where all spikes are dislocated so far that the spike train is orthogonal to the reference spike train.
In this case, if the number of spikes in both spike trains is the same, the theoretical value for the error is

�����
2n
p

, as indicated by the top gray line. The
top dashed line, in fact, gives the distance of the reference spike train with a spike train having the same number of spikes at randomly chosen
times in the simulation interval. The right scale indicates the total number of complete misses or excess spikes in either spike train under the
assumption that all other spikes match perfectly. Note that by adapting the metric to the step size of simulation, we normalize errors to the
minimal error enforced by the grid. For each ®xed metric, errors increase with increasing step size, as is the case for the l2 error measure (see
Fig. 12). The overall performance of the various integration methods for digital simulation of a spiking neuron is comparable to their
performance for the previously discussed continuous test system. Especially for moderately sized steps, exact integration has a clear advantage
with respect to the precision and reliability of the result
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example of a moderately sti� system, which frequently
occurs in neuronal modeling.

Possible deviations from the exact solution on the
grid, if they occur at all, could have their cause in an
accumulation of errors due to ®nite precision computer
arithmetic. Integration of the equations in a coordinate
system, where the propagator is diagonal or has Jordan
normal form, may then help to reduce the number of
multiplications and, therefore, the chance of error ac-
cumulation. Another potential source of numerical
problems is the computation of the correct matrix ex-
ponential itself. Much depends on the choice of a robust
algorithm (Moler and van Loan 1978). Relying on the
implementations of Matlab and Mathematica, however,
we never observed such problems in our simulations (see
Appendix A for details). In any case, however, signal
aliasing due to under-sampling must be considered a
potential source of misinterpretation even of correctly
sampled signals.

5.2 How good are approximate methods?

As a rule of thumb, approximate methods dramatically
lose accuracy (see Figs. 8 and 12) or even become
unstable (see Fig. 16), if they are operated at time steps
signi®cantly exceeding the smallest time constant of the
system. The use of elaborate higher-order methods can
push the borders, but does not present a general cure.
Therefore, depending on the system and on the scienti®c
question one has in mind, great care is needed to assess
the accuracy of the results of numerical simulation. This
is particularly true for compound non-linear systems
with thresholds on linear variables (integrate-and-®re
neurons) and for large distributed systems (large recur-
rent neuronal networks), if one is interested in relative
timing and synchronization e�ects.

For linear time-invariant initial value problems and
input-output systems, Exact Integration is clearly the
method of choice; it is always exact on the grid, and it is
computationally almost as e�ective as any other meth-
od. No integration method, however, is immune against
the surprising e�ects of under-sampling, and consider-
able reconstruction errors must always be taken into
account. Therefore, if small step sizes are acceptable, the
advantage of exact integration over approximate meth-
ods can be small. One may then even come to the con-
clusion that a carefully chosen multi-purpose solver,
which would also be usable for non-linear systems, is
good enough.

Depending on the system, adaptive control of the step
size may be a desirable feature of any solver. Exact
Integration can be operated at di�erent step sizes in
sequence, without losing its exactness. A naive criterion
for switching to a smaller step size might be the occur-
rence of large slopes in the trajectories. The price of
doing so is that the corresponding matrix exponentials
must be made available, for example in the form of a
lookup table of precomputed matrices for a ®xed set of
step sizes. If an analytic expression of manageable
complexity for the exact propagator exists, as is the case

for most of the examples presented in this paper, more
sophisticated step-size control mechanisms can be im-
plemented.

5.3 Exact Integration for neuronal modeling?

The standard kinetic model for the transitions between
`open' and `closed' states of ion channels employs
continuous-time ®nite-state-space Markov processes.
The transient dynamics of the distribution of states for
a (large) ensemble of channels under voltage-clamp
conditions is governed by a linear time-invariant di�er-
ential equation of the type discussed in this paper. The
model can, therefore, be simulated by the proposed
method. Some properties of the matrix exponential have
been employed for the general analysis of the system
(Colquhoun and Hawkes 1977; 1981; 1982; 1995a,b).
Exact digital simulation of multi-state channel kinetics
and the corresponding voltage-clamp experiments may
add a useful analysis tool and present a worthwhile
application of the proposed method.

The simplest model for the sub-threshold behavior of
a neuron is that of a leaky integrator. It can be consid-
ered as a time-invariant linear system which turns
current input into a voltage response. Similarly, multi-
compartment models for neurons with spatially
extended dendrites can also be viewed as time-invariant
linear systems as long as inputs are given as currents and
not as conductance changes. The method of Exact In-
tegration can, therefore, be applied. If, however, the
input to the dendrite is given as a time-dependent change
of synaptic conductances, one ends up with a more
general type of linear system, which has to be treated
with more general numerical methods.

The alpha-function is a frequently used model for the
time course of either the ionic current or of the corre-
sponding conductance during a synaptic event (Wilson
and Bower 1989; Bernard et al. 1994). In either case, the
proposed methods can be used to generate the time
course of a synaptic event ``online'' avoiding the need for
large lookup tables. Moreover, the combined e�ect of all
synapses in a single compartment is most easily obtained
by integrating the lumped and weighted pulse train of all
pre-synaptic neurons. In the case of currents, the mem-
brane response can be incorporated into exact integra-
tion. In the case of conductances, the membrane
potential must be obtained by a di�erent method.

Models for biological neuronal networks with spiking
neurons almost exclusively use delta-functions to rep-
resent action potentials. In many of these models, the
generation of a spike is the result of a threshold crossing
for some internal state variable, such as the membrane
potential, the dynamics of which is governed by a linear
di�erential equation. Since a spike in one such neuron
typically causes a change of state in many other neurons
of the network, the use of adaptive step-size solvers for
the dynamic equations of the internal states would be
highly ine�ective.

Restricting threshold crossings to a ®ne temporal
grid, an approximate simulation of the network
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dynamics is obtained by extending the Exact Integration
scheme by a threshold operation for each neuron. Post-
spike e�ects, such as a reset of the membrane potential
(Stein 1965; Knight 1972; Troyer and Miller 1997), can
be modeled as an alteration of the state of the neuron
itself. The onset latency of such e�ects is constrained to
non-negative integer multiples of the step size. A mini-
mal delay of one time step for synaptic interactions
enforces causality of the system and is required by a
parallel update scheme. In such a model, each neuron
receives pulse train input and is itself the generator of a
pulse train, and the network contributes to its own
input. Since pulse train inputs play a special role in
combination with the proposed Exact Integration
method, its use is natural for such integrate-and-®re
models.

The restriction that spikes can only be reported on the
grid may be partially overcome by additional measures
(Hansel et al. 1998). What remains is the problem that
spikes could be completely overlooked, if the integration
step size is too large. The advantage of using Exact In-
tegration for the sub-threshold variables results, never-
theless, in an improved accuracy of spike trains, in
particular for moderate step sizes. This improvement is
of particular practical importance for the examination of
precise synchronization of action potentials across
neurons.

In conclusion, most neuronal models comprise sub-
modules which can be considered time-invariant linear
systems in their own respect. In many cases, it is ad-
vantageous to treat these subsystems with the method of
Exact Integration. A slight extension of the method leads
to a very e�ective scheme for the accurate simulation of
networks of integrate-and-®re neurons. Compared to
conventional approximate integration methods, Exact
Integration generally yields reliable simulations and
more accurate results even for badly conditioned sys-
tems.

Appendix A: The matrix exponential

Let f �x� be a holomorphic function in an open set of the complex
plane, then a power series expansion of f can be used to de®ne f �B�,
for any square matrix B. The eigenvalues of the matrix f �B� are of
the form f �k�, provided that the series converges for all eigenvalues
k of B (Rudin 1991). In particular, the exponential series

eB �
X1
i�0

Bi

i!
� 1� B� B2

2
� B3

6
� � � �

converges for any square matrix B (Hirsch and Smale 1974; Ar-
nol'd 1992; Bronstein et al. 1996). A number of properties known
from the exponential function of scalars are retained for matrices.
The most important among these are

e0 � 1 and eB�C � eBeC ; if BC � CB :

This means in particular that

eA�s�t� � eAseAt ;

which is important for the application to linear time-invariant
di�erential equations.

The analytic calculation of the matrix eAt for a symbolic matrix
of coe�cients A can be performed either by hand (Colquhoun and
Hawkes 1995b; Hirsch and Smale 1974; Leonard 1996) or with the
help of a software package such as Mathematica (Wolfram 1996)
or Maple (Heal et al. 1997). For the numerical computation of eB

for a ®xed matrix B of real or complex coe�cients, one can make
use of appropriate routines (Moler and van Loan 1998; Golub and
van Loan 1996; Druskin et al. 1998; Kenny and Laub 1998) and
their ready-to-use implementations in numerical mathematics
packages such as Matlab (MathWorks Inc. 1998).

Appendix B: The delta-function

The Dirac delta-function d�t� is not a function in the classical sense.
Its most important property, however, can be described by its be-
havior as a kernel under the integral (Arnol'd 1992; Bronstein et al.
1996)Z �1
ÿ1

/�t�d�sÿ t�dt � /�s� ;

where /�t� is an arbitrary function.
In the context of neuronal models, the concept of an in®nitely

sharp impulse is often used to describe an action potential. A pulse
train, which is the sum of delta-functions appropriately located on
the time axis, then describes the general form of the spike response
of a neuron. By coincidence, this is also the type of input which is
best suited for the Exact Integration technique.

Appendix C: Approximate integration methods

There is a large variety of methods to approximate the solution of
general, possibly non-linear initial value problems (Press et al.
1992; Bronstein et al. 1996; Stoer and Bulirsch 1996)

_y � f �t; y� : �7�
We chose a number of representatives from di�erent classes of
integration methods (Wilson and Bower 1989; Hines and Carnevale
1995; Bower and Beeman 1997; Hines and Carnevale 1997), which
are frequently used in neuronal modeling, and discuss the degree to
which they are useful for the simulation of time-invariant linear
systems. We restrict our considerations to stable linear systems,
where all eigenvalues of the coe�cient matrix have negative real
parts. We focus on the accuracy of the approximation and on the
stability of the iterative solution, and examine the dependence of
both on the step size. For time-invariant linear systems, this can be
done in a systematic way.

For all methods under consideration, the approximate integra-
tion of a linear system turns out to be equivalent to a linear itera-
tion, similarly to the one given by (5). The propagator matrix,
however, deviates from the exact matrix exponential, admitting only
approximate results. The stability of an approximate iteration can
be assessed in terms of the eigenvalues of its time-evolution opera-
tor. The condition for stability is that all eigenvalues of the time-
evolution operator have magnitude smaller than unity. This yields
explicit conditions for the step size D of the iteration, which are
indicated in Fig. 16 for various approximate integration methods.

C.1. Forward-Euler

The simplest method suggested by Euler explicitly approximates
the derivative by a ®nite di�erence quotient. This implies the iter-
ation on the grid

yk�1 � yk � Df �tk ; yk� :
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For a linear time-invariant di�erential equation. (2), this leads to
the linear iteration

yk�1 � 1� AD� �yk :

The time-evolution operator 1� AD of the Forward-Euler method
comprises only the ®rst two terms of the power series expansion of
the exact matrix exponential eAD. The method is indeed known to
be neither accurate nor stable. The lack of stability for large step
sizes D can be understood in terms of the eigenvalues of its prop-
agator. Namely, the corresponding iteration is stable only if all
eigenvalues of the matrix 1� AD have magnitude smaller than
unity. This yields a condition in terms of the eigenvalues k of the
coe�cient matrix A, namely

1� kDj j < 1 :

C.2 Backward-Euler

The Backward-Euler method evaluates derivatives at the point
where the function is to be estimated. This leads to an implicit set of
equations

yk�1 � yk � Df �tk�1; yk�1� ;
which, in the case of a linear time-invariant system, yields

1ÿ AD� �yk�1 � yk ;

which can be solved for yk�1 by Gaussian elimination, for example.
For stability of the corresponding linear iteration, we must have

1

1ÿ kD

���� ���� < 1

for all eigenvalues k of the coe�cient matrix A. If, however, no
eigenvalue has a positive real part, this is automatically satis®ed for
any D > 0. This fact makes the Backward-Euler method absolutely
stable for any such system. In order to obtain the time-evolution
operator for this method, we must solve for yk�1. For small enough
D, all eigenvalues of the matrix AD have magnitude smaller than
unity. In this case, the geometric series expansion for the time-
evolution operator converges, and we can write

yk�1 �
X1
i�0
�AD�i

 !
yk :

Again, this is exact to ®rst order, predicting only moderate accu-
racy of the integration.

C.3 Crank-Nicholson

A method which is known for its stability under rather general
conditions is based on a symmetric evaluation of the right-hand
side of (7), yielding the implicit equation

yk�1 � yk � D
2

f �tk ; yk� � f �tk�1; yk�1�� � :

It originates from Crank and Nicholson, but has also been termed
trapezoidal integration. For linear time-invariant systems we get

Fig. 16. Stability of various numerical integration methods. The ®gure shows areas of absolute stability in the complex plane for six approximate
integration methods and for the exact method. The condition for stability is that all eigenvalues of the iteration have magnitude smaller than
unity. For each method, we show the curve separating stable from unstable values of the product kD, where k is an eigenvalue of the linear system
and D is the time step of the iteration. The position of the label indicates the area of stability. Only for the Crank-Nicholson method (CN),
Exponential Integration (XP), and the exact method (EI) is the stability of the numerical iteration always equivalent to the stability of the linear
system itself, which then has all its eigenvalues k in the left half of the complex plane. The Backward-Euler (BE) and the Runge-Kutta (RK)
method may yield a stable iteration even for non-stable systems. For the Adams-Bashforth (AB), the Forward-Euler (FE), and the Runge-Kutta
(RK) method, decreasing the step size D always has a stabilizing e�ect, for eigenvalues k with a negative real part
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1ÿ 1
2AD

ÿ �
yk�1 � 1� 1

2AD
ÿ �

yk :

The condition for stability of the iteration is in this case

2� kD
2ÿ kD

���� ���� < 1

for all eigenvalues k of the coe�cient matrix A. Irrespective of the
choice for D > 0, this condition is satis®ed if all eigenvalues have a
negative real part. Therefore, the Crank-Nicholson method is
absolutely stable for such systems. For small enough D, solving for
yk�1 is possible

yk�1 � 1�
X1
i�1

AD� �i
2iÿ1

 !
yk :

The power series matches the exponential series up to second order.
For small time steps D, this predicts a signi®cantly better accuracy
of the Crank-Nicholson method compared to the Backward-Euler
method.

C.4 Adams-Bashforth

Multi-step methods use information from several previous steps to
achieve better accuracy of the solution. As an example, we consider
the simple explicit two-step method of Adams and Bashforth

yk�1 � yk � D
2

3f �tk ; yk� ÿ f �tkÿ1; ykÿ1�� � :
For an n-dimensional linear time-invariant system we obtain the
two-step iteration

yk�1 � 1� 3
2AD

ÿ �
yk ÿ 1

2ADykÿ1 :

An equivalent single-step method with dimension 2n is given by

yk

yk�1

� �
� 0 1
ÿ 1

2 AD 1� 3
2 AD

� �
ykÿ1
yk

� �
:

For stability, all the 2n eigenvalues of the one-step time-evolution
operator must have magnitude smaller than unity. Since the four
component matrices commute pairwise, the eigenvalues l of the
compound matrix are the roots of the n characteristic equations
(Scheja and Storch 1980)

l2 ÿ 1� 3
2
kD

ÿ �
l� 1

2
kD � 0 ;

where k runs through all eigenvalues of A. Provided that the so-
lution is exact at step k ÿ 1 and at step k, we know that
ykÿ1 � eÿADyk , yielding

yk�1 � 1� 3

2
ADÿ 1

2
AD
X1
i�0

�ÿAD�i
i!

 !
yk :

This approximates the exponential series correctly up to second
order. Deviations from the exact solution, however, may accumu-
late during the iteration and even corrupt the ®rst-order term.

C.5 Runge-Kutta

Finally, a very robust and reliable explicit solver is the fourth-order
Runge-Kutta method. It involves four evaluations of the right-
hand side per step

k1 � Df �tk ; yk�

k2 � Df tk � D
2
; yk � k1

2

� �
k3 � Df tk � D

2
; yk � k2

2

� �
k4 � Df �tk � D; yk � k3�
yk�1 � yk � k1

6
� k2

3
� k3

3
� k4

6
:

For a linear time-invariant system, we again end up with a linear
iteration

yk�1 � 1� AD� �AD�2
2
� �AD�3

6
� �AD�4

24

 !
yk :

It reproduces the exact power series up to fourth order. The con-
dition for stability of the corresponding iteration is

1� kD� �kD�2
2
� �kD�3

6
� �kD�4

24

�����
����� < 1

for all eigenvalues k of the coe�cient matrix.

C.6 Exponential Integration

The di�erential equation

_g� ag � n

has the exact solution

g�t� � eÿa�tÿs�g�s� � 1

a
1ÿ eÿa�tÿs�
� �

n�s� ;

provided a is constant and n does not change on the interval �s; t�.
However, even if a or n vary on a time scale which is slow com-
pared to the step size, the corresponding one-dimensional iteration
(see Sect. 3.2.3)

gk�1 � eÿaDgk �
1

a
1ÿ eÿaD
ÿ �

nk �8�

yields a fairly good approximation to the exact solution. Certain
linear systems, which can be viewed as a cascade of several ®rst-
order one-dimensional systems, have been treated in this way. For
such a system, one can again write the corresponding propagator in
matrix form, as we did for the other integration methods. The time-
evolution operator for a post-synaptic potential (see Sect. 3.2.2)
implemented along these lines is (with a1 � a2)

eÿa1D 0 0
1
a2

1ÿ eÿa2D
ÿ �

eÿa2D 0

0 1
b 1ÿ eÿbD
ÿ �

eÿbD

24 35 :

The eigenvalues of the propagator for such a cascade coincide with
the correct eigenvalues of the matrix exponential. This guarantees
stability irrespective of the parameters of the system. For this
reason, Exponential Integration is frequently used in neuronal
modeling. However, all non-diagonal elements, most notably the
element in the lower-left corner of the matrix, deviate from their
correct values. This explains the approximate nature of the itera-
tion.

Input to the system must also be treated in accordance with the
assumption leading to (8). Consequently, a delta-pulse d�t ÿ tk�
must be represented by a rectangle of height 1=D extending over the
interval �kD; �k � 1�D�. Let yi

k denote the ith component of the state
vector at time tk . The value of y1k�1 then is

1

D
1

a1
1ÿ eÿa1D
ÿ �

: �9�

Since tk is the arrival time of the pulse, one encounters a delay com-
pared to (5); the input is represented in the state vector only after one
time step. This can be compensated for by using (9) as the initial
condition for y1 in the same moment the pulse arrives. The implicit
assumption made by using Exponential Integration is that all func-
tions are piecewise constant; the equation for y2 integrates y1 using
this assumption. If we were to set y1k to 1, the resulting y2k�1 would be

too large, because the decay of y1 over the time step has not been
corrected for. The ``correction factor'' for the input in (9) is the
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average loss in amplitude of y1 over interval D. This factor becomes
important if D is not small compared to the time constant 1=a.

Appendix D: Accuracy measures

To assess the accuracy of di�erent integration methods for the
chosen test systems we use three families of measures: local mea-
sures dp quantifying the average error of continuous-valued func-
tions on the grid, global measures lp comparing the overall shape of
an approximate continuous-valued solution with the exact solution,
and a measure sp evaluating the accuracy of pulse trains obtained in
simulations of spiking neurons.

D.1 Average local error of continuous signals

Let g�t� be the exact solution to the initial value problem under
consideration. The solution on the grid with step size D restricted to
the time interval �0; T � is represented by a vector gD with
nD � bT=Dc � 1 components, given by gD

k � g�kD�. Some approxi-
mate solution on the same grid is represented by the vector ĝD.
Using the vector norm

kf kDp
�

Pn
i�0 jfijp

ÿ �1=p
1 � p <1

sup jfij p � 1

�
for a vector f , we de®ne dp as the average error per data point
expressed in units of the amplitude of the exact solution

dp�D� � 1

sup jgj
1

nD

� �1=p

kĝD ÿ gDkDp
:

For p � 2, this is the RMS of the point-wise deviations, divided by
the amplitude of the exact solution.

D.2 Global error of continuous signals

For a continuous function f �t� evaluated over the interval �0; T � we
de®ne the Lp norm in the usual way

kf kLp
�

R T
0 jf �t�jp dt

� �1=p
1 � p <1

sup jf j p � 1

(
:

Let g�t� be the exact solution and ĝD a numerical approximation on
the grid, as above. We construct a function in continuous time by
linear interpolation

ĝD�t� � ĝD
bt=Dc � ĝD

bt=Dc�1 ÿ ĝD
bt=Dc

� �
� t=Dÿ bt=Dc� �

and de®ne the global error of the approximate solution with respect
to the exact solution as

lp�D� � kĝD ÿ gkLp
=kgkLp

:

For p � 1, this is the relative di�erence in area of the two curves.

D.3. Accuracy of pulse trains

Let /�t� be a kernel of standard width w, appropriately normalized
Gaussians are used in the context of this paper. By convolution
with this kernel, any pulse train n�t� �Pi d�t ÿ ti� is associated
with a continuous-valued function

n/�t� � / � n� ��t� �
X

i

/�t ÿ ti� :

Resorting to norms for continuous-valued functions, this associa-
tion can be used to de®ne a measure for the distance between any
two ®nite trains of unit pulses

sp�n; n0� � kn/ ÿ n0/kLp
:

We used the Euclidean norm (p � 2) for the purpose of this paper.
The width w of the kernel speci®es the temporal resolution of the
distance function. For our application, we consider only kernels
that are narrow compared to the typical inter-event interval.

To understand the scaling behavior of the metric s2, we consider
two extreme situations. The ®rst case is that of two pulse trains n
and n0 comprising n and n0 pulses, respectively. If one can assume
that m � n; n0 points perfectly coincide, but all others are out of the
range of the kernel, the Euclidean distance of the two pulse trains is

s2�n; n0� �
������������������������
nÿ 2m� n0
p

:

This is true provided that the kernel is narrow with respect to the
typical inter-event interval. In particular, if one pulse train is simply
a subset of the other, we have

s2�n; n0� �
������������
nÿ n0
p

:

The second case is that of two pulse trains n and n0 with an identical
number n � n0 of pulses. Corresponding points, however, are ran-
domly shifted with respect to each other. The distribution of shifts
has mean 0 and standard deviation r. If the di�erence between the
two pulse trains is probed by a metric s2 with a narrow Gaussian
kernel, one ®nds

s2�n; n0� �
���
n
2

r
� r
w

;

if r is smaller than or at most equal to w. For larger shifts r,
however, the two pulse trains become more and more orthogonal,
with a Euclidean distance approaching

s2�n; n0� �
�����
2n
p

:

The latter number also represents the worst possible outcome of a
digital simulation of spike trains yielding the correct number n of
spikes. A lower bound for the error in digital simulations of spike
trains on a grid with step size D is given by the discretization error,
which is introduced by the fact that spikes can only be reported on
the grid. The standard deviation of the spike-wise errors is
r � �����������

D=12
p

provided that they are uniformly distributed on

�ÿD=2;D=2�. Therefore, choosing a kernel of width w � D for
convolution yields a measure of the lower bound of the integration
error, which is normalized for the step size of integration and de-
pends only on the total number of spikes in the spike train

s2�n; n0� �
�����
n
24
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