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two-dimensional models, the effective mass falls steeply as wave-
length decreases. In three-dimensional models, in a fairly broad
frequency range near the response peak, the effective mass becomes
substantially less sensitive to wavelength14,15. In light of this behav-
iour, and the intuitive argument above, the observed lack of
frequency sensitivity in the penetration depth does not seem all
that surprising. M

Methods
Pressure sensor

A sensor consists of a glass capillary (inner and outer diameters 100 and 170 mm,
respectively) tipped with a gold-coated polymer diaphragm. Light from an LED is
delivered via a ®bre optic threaded into the capillary, and re¯ects from the diaphragm. The
amount of light returning to the ®bre optic for transmission to a photodetector varies
linearly with the pressure-induced bending of the diaphragm. The acoustic impedance of
the sensors is an order of magnitude larger than that of the cochlea, and their presence does
not `load' the cochlea outright. Nevertheless, in some animals small reversible changes in
compound action potential (CAP) threshold and/or scala vestibuli pressure occurred
when the scala tympani sensor was close to the basilar membrane. However, the derived
¯uid velocity close to the basilar membrane was similar to that measured directly by
others11,12, suggesting that the sensor's presence does not cause large changes in cochlear
mechanics.

Experimental procedure

Animal procedures were approved by the Princeton University IACUC. The experimental
animals were young adult gerbils. A gerbil was deeply anaesthetized and its left cochlea was
exposed. Tones from a loudspeaker were delivered to the ear via a tube ®tted to the left ear
canal. The level of the tones was calibrated in the ear canal at the beginning of each
experiment. Basal scala tympani pressure measurements were made by inserting a pressure
sensor through the round window opening after removing the covering membrane. Scala
vestibuli and turn-one scala tympani measurements were made through small holes hand-
drilled in the cochlear bone. In basal experiments it was possible to see the basilar
membrane in order to position the scala tympani sensor. In turn-one experiments it was
positioned by using anatomical landmarks and referring to widely opened excised
cochleae. It was not practical to systematically check the precision of positioning in each
experiment. However, the grouped data indicate that incorrectly positioning the sensor
towards the spiral ligament caused substantial damage, and that incorrectly positioning
the sensor over the spiral lamina caused greatly diminished pressure gradients. The
distance between the basilar membrane and the sensor was determined by touching the
former with the latter, which produced a characteristically noisy signal.

Stimulus generation and recording was performed with a Tucker Davis Technologies
DA/AD system. With typical signal averaging times of 3 s, sound pressure above the level of
60±70 dB SPL (20±60 mPa) could be reliably measured.

As a gauge of cochlear health, an electrode at the round window measured the CAP
response of the auditory nerve to tones. The CAP threshold is the minimum sound level
required to elicit a reliable neural response. Initial thresholds in the turn one experiment
were <30 dB SPL at 15 and 20 kHz, and 50 dB SPL at 25 kHz. Close to the time of
measurements, these thresholds were 40, 40, and 50±60 dB SPL. Initial thresholds in the
basal experiment were <60 dB SPL at 30 kHz, and 80 dB SPL at 40 kHz. Close to the time
of measurements, they were 60 and .80 dB SPL. At the frequencies of interest, the initial
CAP thresholds in the turn one experiment were in keeping with those of MuÈller6, those in
the basal experiment were elevated somewhat. The degree of nonlinearity observed in the
scala tympani pressures was consistent with the health of the cochlea as indicated by the
CAP thresholdÐthe basal experiment was nearly linear, and the nonlinearity in the turn-
one experiment was strong, but not among the strongest in the literature9.
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The classical view of neural coding has emphasized the impor-
tance of information carried by the rate at which neurons
discharge action potentials. More recent proposals that informa-
tion may be carried by precise spike timing1±5 have been chal-
lenged by the assumption that these neurons operate in a noisy
fashionÐpresumably re¯ecting ¯uctuations in synaptic input6Ð
and, thus, incapable of transmitting signals with millisecond
®delity. Here we show that precisely synchronized action poten-
tials can propagate within a model of cortical network activity
that recapitulates many of the features of biological systems. An
attractor, yielding a stable spiking precision in the (sub)milli-
second range, governs the dynamics of synchronization. Our results
indicate that a combinatorial neural code, based on rapid associa-
tions of groups of neurons co-ordinating their activity at the
single spike level, is possible within a cortical-like network.

Evidence is accumulating that cortical neurons in vivo are capable
of producing action potentials with high temporal accuracy. In
recordings of multiple single-neuron activity in behaving monkeys,
precisely timed action potentials have been systematically related to
stimuli and behavioural events, indicating that these instances of
precise spike timing play a functional role1±3. Independent evidence
for precise spike timing in cortical neurons came from intracellular
recordings in vitro4,5. But can an instance of synchronous spiking,
once it has occurred, be successfully propagated by subsequent
groups of cortical neurons? Under which input conditions can a
group of cortical neurons engage in precisely coordinated spike
timing, and are such conditions feasible in the cortical network?
How can we clarify and quantify the notions of `well timed' and
`reliable', which gained such a prominent role in the on-going debate
on temporal coding in the brain?7±10 Clearly, these questions must be
resolved to determine whether cortical computation on the basis of
precise spike timing is possible. Preliminary results have been
presented in abstract form11,12.

To address these questions, we have studied the ®ne-grained
temporal response properties of the `integrate-and-®re' neuron, a
widely used class of model neurons capturing essential properties of
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the ®ring behaviour of cortical neurons13,14. We focused on spike
responses to transient membrane-potential excursions, implied by
the physiological ®ndings1±5. As a rule, such transients are explained
by convergent inputs from simultaneously spiking neurons onto a
target neuron (Fig. 1a). These transients, in turn, result in well timed
response spikes in target neurons. Neurons that share a large enough
pool of simultaneously discharging input cells tend to align their
action potentials15 (Fig. 1b). By repeating this arrangement, a group
of neurons can reproduce its synchronous input activity and act as
the source of synchronous shared input to the following group (Fig.
1c). This idea of connecting groups of neurons into feed-forward
arrangements16 was formalized by Abeles in the `syn®re chain'17. The
degree of temporal accuracy of spike times among the group's
members determines whether subsequent groups can reproduce
(or even improve) this accuracy (Fig. 1d), or whether synchronous
excitation disperses and eventually dies out (Fig. 1e). Thus, in the
context of cortical network function, the timing precision of a
neuron's action potentials is measured vis-aÁ-vis the timing of those
of its companion neurons; the quality of timing is judged on the
effect the group's activity has in the network, that is, whether
synchronous spiking is sustained or whether it dies out.

Existing measures of short-term dynamics in neural transmission
focus on two extreme cases of input activity: full synchrony and
random arrival of spikes18±20. Intermediate cases with limited degree
of temporal dispersion are generally not addressed. `Pulse
packets'11,12 were introduced to overcome this restriction and to
quantify the degree of synchrony in a propagating spike volley. A
pulse packet characterizes a spike volley by two parameters: activity,
a, and temporal dispersion, j. Activity is de®ned as the number of
spikes in the volley; their temporal dispersion is measured by the
standard deviation of the underlying pulse density (Fig. 2a). Thus,
in simulations we measured the response of a cortical model neuron
(see Methods) to different pulse-packet inputs in the presence of
background activity (Fig. 2b). The neuronal transmission function
for transient input activity is de®ned by the transformation of the
input pair (ain,jin) into the output pair (a,jout), where a is the single
neuron response probability. The ®ring probability curves (Fig. 2c)

resemble the well known sigmoid activation function, the slope is
determined by the degree of input synchrony (the saturation slightly
below 1 re¯ects the chance that the neuron was refractory on
stimulus arrival). As expected, the spread of the response distribu-
tion (Fig. 2d) increases with the input spread; however, the slope is
less than 1, hence output spread increases more slowly than input
spread. In addition, the curves show an offset; even for fully
synchronized volleys (jin � 0 ms), some residual jitter of the
response spike remains, re¯ecting the in¯uence of background
activity. Hence, each dispersion curve crosses the diagonal at
some critical value of input synchrony. Up to this intersection,
the neuron's response is less precise than the input, that is,
synchronous input is desynchronized. Beyond the intersection,
however, the neuron's spike response is more precise than the
input, that is, the neuron exhibits a synchronizing behaviour.
Duplication of the experiment with identical input pulse-packet
realizations across trials yielded essentially the same results, con-
®rming that trial-by-trial response variability is due to ¯uctuations
in background activity21.

We used this neuronal transmission function to test whether the
cortical network is capable of sustaining synchronous spiking
activity. As each neuron responds to an incoming pulse packet
with at most one spike, stable propagation of synchronous spike
volleys inevitably requires the activation of successive, large enough
groups of neurons (Fig. 1c). For a group of identical independent
neurons, the distribution of response spikes to an input pulse packet
is identical to the response distribution for a single neuron (Fig. 2).
Thus, the spread of the group's response equals the single neuron's
response dispersion jout (Fig. 2d). The expected number of response
spikes aout in a group equals a (Fig. 2c) multiplied by the group size
w. Figure 3a, b (grey curves) shows the input±output relation for a
group of w � 100 neurons. Assuming that the group's response to a
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spike volley is adequately described by a and j (see Methods:
Fluctuations), we can capture the evolution of synchronous spiking
activity by repeatedly applying the (a,j)-transformation while
moving from one group to the next (Fig. 3a, b, coloured curves).
Thus, the evolution of synchronous activity on its course through
the network is described by a trajectory in the 2-dimensional state
space, spanned by a and j (Fig. 3c).

The state-space portrait exhibits two ®xpoints: an attractor
(a � 95, j � 0:5 ms), and a saddle point (a � 65, j � 1:2 ms). A
separatrix (dashed line) running through the saddle point divides

the state space into two regimes. In the basin of attraction, all
trajectories converge into the attractor. A spike volley starting
anywhere inside this regime rapidly (that is, after only few stages)
reaches a stable con®guration (,95 spikes) with submillisecond
dispersion. Volleys starting outside the stable regime decay after
only few stages; too weak or too dispersed activity rapidly dies out.
Note that neither the relationship between input and output activity
(Fig. 3a) nor that between input and output jitter10 (Fig. 3b) alone
determines whether synchronous activity survives. The nonmono-
tonic evolution of these variables along a trajectory (Fig. 3c,
coloured curves) demonstrates this fact. An initial increase in
temporal spread may still support stable propagation, provided
that the number of spikes in the volley is large enough (blue). If,
however, this number is too small, the volley dies out, in spite of its
initial increase (purple). Conversely, synchronous activity may still
vanish with an initial decrease in dispersion (red), unless the volley
is large enough (green). Thus, the system dynamics are governed by
the interaction of the two state variables.

Evidently, the number of neurons per group in¯uences the
evolution of the activity (see Fig. 3a). The analysis in Fig. 3 was
made using the group size w � 100. To determine how many
simultaneously ®ring neurons are needed to guarantee that syn-
chronous activity survives in the network, we examined how the
structure of the state space depends on the groups size (Fig. 4). For
increasing numbers of neurons per group, the two ®xpoints move
apart, thereby increasing the basin of attraction (yellow). The
regime over which synchronous spiking survives in the network
increases accordingly. By contrast, for decreasing groups size, the
two ®xpoints approach each other until, at some critical value (here
w � 89), they merge into a single saddle node. Below this critical
value, no ®xpoint exists and, hence, all trajectories lead to extinction
(Fig. 4a). Thus, a minimum of some 90 neurons per group is needed
to maintain precise spike synchrony. This lower bound is essentially
determined by the ratio of the distance from mean membrane
potential to spike threshold and the postsynaptic potential (PSP)
amplitude; stronger intergroup synapses reduce this number (see
Methods: Fluctuations).

Our results show that for a wide range of amplitudes and
dispersions of spike input distributions, the response of successively
activated groups of cortical neurons is governed by an attractor,
which describes a stationary con®guration of activity in (a,j) space.
However, unlike the Hop®eld attractor22, this attractor describes a
dynamic activity con®guration in neuron space, that is, different
neuron groups, one after the other, contribute single spikes to the
propagating synchronous wave. The basin of attraction guarantees
robustness of the propagating synchrony against perturbations
exceeding the response variability accounted for by the transmission
function (Fig. 2). Thus, temporal dispersion due to differences in
axonal or dendritic delays, ¯uctuations in synaptic transfer proper-
ties or correlated background ¯uctuations will not destroy the
synchronous transmission, as long as they do not push the network
outside the basin of attraction.
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In the stable state, essentially all response spikes in a volley fall
within 61 ms. This temporal precision is consistent with the
accuracy of observed spike patterns in cortical recordings1±3.
Thus, in contrast to other studies using this neuron model7,8, we
conclude that precise synchronous ®ring of cortical neurons is
indeed feasible, in spite of the membrane time constant of 10 ms
or more (see Methods: Membrane time constant). The notion of
pulse packets yields a natural solution to the question of whether the
cortical neuron acts as `integrator' or `coincidence detector'Ða
question raised many years ago18 and revived recently7±10Ðby
embedding these two conceptions in a single framework. The
temporal structure of the input determines which of the two aspects
is emphasized.

For each neuron in our network model, the synapses delivering
activity from the preceding group and the synapses delivering
background activity were set at equal strength. Our ®ndings show
that stable transmission of synchronous spiking does not require
dedicated strong synapses, provided enough neurons can be
recruited in successive groups. Each neuron in a group contributes
a single spike to the passing volley. Once the neuron recovers from
refractoriness, it is ready to engage in another group. Thus, each
neuron may participateÐspike by spike, not limited by a speci®c
arrangement of synaptic weightsÐin multiple volleys with different
neuron compositions, provided its engagements differ by more than
the refractory period. Hence, the network only needs to be locally
feed forward. Several such volleys may propagate through the
network simultaneously, allowing multiple synchronous processes
to coexist while maintaining their identities23,24. Their degree of
temporal coupling may differ, depending on overlap (numbers and
arrangement of shared neurons and inputs)23,25. This scheme indi-
cates that a combinatorial neural code, based on the continual
recon®guration of the cortical network into short-lived functional
groups depending on the immediate computational demands, is
compatible with biological constraints. M

Methods
Model neuron

Simulations were performed using a leaky-integrator with voltage-threshold model13,14,
with physiological and anatomical parameters taken from experimental literature. The
model neuron (membrane time constant 10 ms, resting potential -70 mV, spike threshold
-55 mV, absolute refractoriness 1 ms, relative refractoriness (t < 15 ms) modelled by K-
conductances) was supplied with synaptic noise input, re¯ecting on-going activity in the
cortical network (20,000 synapses: 88% excitatory, 12% inhibitory)26. Postsynaptic
currents (PSCs) were modelled by an a-function to yield realistic PSPs (peak amplitude
0.14 mV, time-to-peak 1.7 ms, half-width 8.5 ms)27. Identical values were used for inter-
group and background connections; excitatory and inhibitory PSPs only differed in sign.
Background ®ring rates (excitatory, 2 Hz; inhibitory, 12.5 Hz; all uncorrelated stationary
Poisson) were chosen to yield an output rate of 2 Hz. At this consistency condition, output
statistics were approximately Poisson, membrane potential shot noise (mean 8.25 mV, s.d.
2.85 mV) was close to `balanced' excitation/inhibition28. It can be shown that details of the
construction of background ¯uctuations are not essential. Simulations were performed in
0.1 ms time steps using the simulation tool SYNOD29.

Threshold packet

The (ain,aout) curves (grey) in Fig. 3a cross the diagonal (dashed) in two points. Here, the
number of output spikes equals the number of input spikes. The lowest intersection (at the
left-most vertical line) occurs with the curve for fully synchronized input (jin � 0),
de®ning a lower boundary on the size of the threshold packet, that is, the minimum input
spike number needed to reach the attractor. Smaller packets cannot survive, since for other
curves, the output spike number is even smaller. Decreasing the group's size rotates the
diagonal relative to the (ain,aout) curves counterclockwise around the origin; the inter-
section points approach each other and the threshold packet size increases. Thus, for
decreasing w, more curves fall below the diagonal until even the curve for fully
synchronized input only touches (short-dashed oblique line intersection with right-most
vertical line). For smaller groups, all curves run below the diagonal; the attractor vanished,
and stable propagation of synchronous spiking is no longer possible.

Isoclines

The a-isocline is the collection of states for which the spike number in a volley does not
change from stage to stage, irrespective of j (Fig. 4b±d, solid red curves). The j-isocline
contains all states maintaining temporal spread, irrespective of a (Fig. 4a±d, dashed red
curves). Thus, the isoclines are the loci of horizontal/vertical ¯ow. The ®xpoints (neither a

nor j changes) are the intersections of the isoclines. The j-isocline is independent of w
(Fig. 3b). The spike number, however, is proportional to w (Fig. 3a). Hence, with
decreasing w (Fig. 4d to 4a), the a-isocline shrinks and moves left until it ceases to exist.
Thus, the group's size w acts as bifurcation parameter, controlling the existence and
separation of ®xpoints.

Fluctuations

As con®rmed by network simulations (M.-O.G., manuscript in preparation), the state-
space portrait derived here describes the evolution of synchronous activity in the mean,
that is, by subsequent values of the expectation (a,j) across trials with different back-
ground activity realizations. Around each point of a trajectory, these realizations form a
distribution with width determined by a, j, w and intergroup connectivity. This width
becomes more important near the separatrix because of the increased probabilityÐeven
for trajectories stable in the meanÐthat individual realizations leave the basin of
attraction (and vice versa). Upscaling the synaptic weights by a factor up to 10 while
downscaling the groups size accordingly does not alter the structure of the state space,
except close to the separatrix where the probability to leave the basin of attraction
increases. The contribution of individual input spikes grows; consequently, ¯uctuations in
membrane-potential response to pulse-packet realizations with identical parameters and,
hence, trial-by-trial variability, increases.

Background activity

Background activity in different neurons was considered independent, stationary Poisson.
However, on-going cortical activity is known to exhibit coherent spatio-temporal
structure30. Hence, anatomically nearby neurons within a group tend to be excited
(inhibited) together. This affects the pulse-packet properties needed to make these
neurons ®re simultaneously. The impact of such coherence in background activity is
currently being studied.

Membrane time constant

The temporal precision of spike response is not constrained by membrane time constant
itself; the limiting factor is the up slope of the excitatory PSP. The larger this slope, the
faster the membrane-potential response to a pulse packet traverses the threshold region17.
This reduces the chance of interference with background ¯uctuations, which degrade
response spike precision. The membrane time constant does, however, limit transmission
of synchronous spikes in the opposite way. It determines the integration time window of
the receiving neuron, limiting the extent over which a spike volley is `seen' as a single
packet, rather than as individual spikes. For a too-small membrane time constant, PSPs no
longer overlap and cannot add up to threshold. Reliable transmission of incompletely
synchronized spike volleys, therefore, requires a minimal (rather than maximal) mem-
brane time constant, in the order of the volley duration.
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Mutations in the gene encoding the amyloid protein precursor
(APP) cause autosomal dominant Alzheimer's disease1±3. Cleavage
of APP by unidenti®ed proteases, referred to as b- and g-
secretases4±7, generates the amyloid b-peptide, the main compo-
nent of the amyloid plaques found in Alzheimer's disease
patients8. The disease-causing mutations ¯ank the protease clea-
vage sites in APP and facilitate its cleavage. Here we identify a new
membrane-bound aspartyl protease (Asp2) with b-secretase
activity. The Asp2 gene is expressed widely in brain and other
tissues. Decreasing the expression of Asp2 in cells reduces amyloid
b-peptide production and blocks the accumulation of the car-
boxy-terminal APP fragment that is created by b-secretase cleav-
age. Solubilized Asp2 protein cleaves a synthetic APP peptide
substrate at the b-secretase site, and the rate of cleavage is
increased tenfold by a mutation associated with early-onset
Alzheimer's disease in Sweden3. Thus, Asp2 is a new protein
target for drugs that are designed to block the production of
amyloid b-peptide peptide and the consequent formation of
amyloid plaque in Alzheimer's disease.

Visual inspection suggests that the b- and g-secretase cleavage
sites in APP might be substrates for cleavage by aspartyl proteases,

and indeed, cathepsin D cleaves synthetic b-secretase substrates9.
This cleavage is facilitated by the KM ! NL mutation, referred to as
the `Swedish' mutation, found in patients with early-onset
Alzheimer's disease10; however, APP processing to amyloid b (Ab)
peptides occurs normally in hippocampal neurons cultured from
cathepsin-D-null mice11. Nevertheless, it seemed plausible that the
APP b- or g-secretases could be as yet uncharacterized aspartyl
proteases; therefore, we searched for new human enzymes of this
mechanistic set. Sequencing of the Caenorhabditis elegans genome
was nearing completion, which offered the possibility of enumerat-
ing the complete set of aspartyl proteases encoded in a simple
metazoan genome, and using these as a bridge to human sequence
databases.

Simple AWK scripts scanning for the D(S/T)G active-site motif,
PROSITE and hidden Markov models were used to search the
WormPep database of predicted C. elegans proteins. This revealed at
least 10 candidate aspartyl proteases. Seven of these ten were found
on a single chromosome, chromosome V (F21F8.3, F21F8.4,
F21F8.7, Y39B6B.G, Y39B6B.J, Y39B6B.H and T18H9.2), and three
each of these were found in the same cosmid clones (F21F8 and
Y39B6B), suggesting that they represent a recently evolved family of
proteins that arose by ancestral gene duplication. Other homolo-
gous predicted genes were found in the same cluster (F21F8.2,
F21F8.6 and Y39B6B.I); however, these contain only a single DTG or
DSG motif. Additional predicted aspartyl protease genes were
found on chromosomes IV (C11D2.2) and X (R12H7.2 and
H22K11.1). Searches of vertebrate expressed sequence tag (EST)
databases with the 10 C. elegans sequences identi®ed 7 known and 4
new candidate aspartyl proteases. The new human sequences were
numbered in order of their discovery (Asp1±4). R12H7.2 and
H22K11.1 appear to be C. elegans homologues of cathepsin D.
Most of the chromosome V aspartyl proteases had no clear verte-
brate orthologues; however, one of these (T18H9.2) bridged to two
unusual sequences (Asp1 and Asp2) which contained the less
common DSG motif in the second active site. In turn, C11D2.2
identi®ed two additional sequences (Asp3 and Asp4) which have
since been reported in the literature as napsins A and B12.

The two predicted aspartyl protease sequences identi®ed by
T18H9.2 were of greatest interest. Completion of their sequences
by a combination of EST sequencing, 59 rapid ampli®cation of
complementary DNA ends by the polymerase chain reaction, and
library screening showed that both Asp1 and Asp2 had an unusual
C-terminal extension containing a single predicted transmembrane
domain (Fig. 1). Asp1 maps to human chromosome 21q22 within
the Down's syndrome critical region, and Asp2 to chromosome
11q23±24. Northern hybridization to human tissue blots showed
widespread expression of both Asp1 and Asp2. Both are expressed at
the highest levels in pancreas. Asp2 is also expressed at high levels in
brain, whereas Asp1 is expressed in brain at somewhat lower levels.
In situ hybridization showed expression of Asp2 primarily in acinar
cells of the exocrine pancreas, whereas faint hybridization was seen
over neurons in hippocampus; however, we identi®ed two Asp2 EST
in a human astrocyte cDNA library indicating that Asp2 may be
expressed in both neurons and glial cells. Transcripts for both Asp1
and Asp2 were expressed in human embryonic kidney 293 cells,
human IMR-32 neuroblastoma cells and mouse Neuro-2a neuro-
blastoma cells, three commonly used cellular models of APP
processing.

We used a panel of antisense oligomers to test the involvement of
each of the four predicted aspartyl proteases in APP processing by a
stable clone of HEK293 cells that had been engineered to process
APP to Ab peptides at high levels. These cells were transformed with
a modi®ed human APP695 cDNA containing the Swedish
KM ! NL mutation to which two lysine residues had been added
to the C terminus (HEK/APP-Sw-KK cells). The KK motif greatly
increases the processing and release of Ab peptides but does not
in¯uence the ratio of Ab42=�Ab42 � Ab40�, nor alter the effect of


