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Detecting unitary events without discretization of time
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Abstract

In earlier studies we developed the ‘Unitary Events’ analysis (Grün S. Unitary Joint-Events in Multiple-Neuron Spiking
Activity: Detection, Significance and Interpretation. Reihe Physik, Band 60. Thun, Frankfurt/Main: Verlag Harri Deutsch, 1996.)
to detect the presence of conspicuous spike coincidences in multiple single unit recordings and to evaluate their statistical
significance. The method enabled us to study the relation between spike synchronization and behavioral events (Riehle A, Grün
S, Diesmann M, Aertsen A. Spike synchronization and rate modulation differentially involved in motor cortical function. Science
1997;278:1950–1953.). There is recent experimental evidence that the timing accuracy of coincident spiking events, which might
be relevant for higher brain function, may be in the range of 1–5 ms. To detect coincidences on that time scale, we sectioned the
observation interval into short disjunct time slices (‘bins’). Unitary Events analysis of this discretized process demonstrated that
coincident events can indeed be reliably detected. However, the method looses sensitivity for higher temporal jitter of the events
constituting the coincidences (Grün S. Unitary Joint-Events in Multiple-Neuron Spiking Activity: Detection, Significance and
Interpretation. Reihe Physik, Band 60. Thun, Frankfurt/Main: Verlag Harri Deutsch, 1996.). Here we present a new approach,
the ‘multiple shift’ method (MS), which overcomes the need for binning and treats the data in their (original) high time resolution
(typically 1 ms, or better). Technically, coincidences are detected by shifting the spike trains against each other over the range of
allowed coincidence width and integrating the number of exact coincidences (on the time resolution of the data) over all shifts.
We found that the new method enhances the sensitivity for coincidences with temporal jitter. Both methods are outlined and
compared on the basis of their analytical description and their application on simulated data. The performance on experimental
data is illustrated. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

1.1. Detecting excess coincidences as Unitary E6ents

It is now generally accepted that both perceptual and
motor functions are based on joint processing in neu-
ronal networks which are widely distributed over vari-
ous brain structures. However, it is much less clear,
how these networks organize dynamically in space and
time to cope with momentary computational demands.
The concept emerged that computational processes in
the brain could rely on the relative timing of spike

discharges among neurons within such functional
groups (von der Malsburg, 1981; Abeles, 1982, 1991;
Gerstein et al., 1989; Palm, 1990; Singer, 1993), com-
monly called cell assemblies (Hebb, 1949). In this view,
changes of the cooperative interplay among neurons
within an assembly, induced by sensory and behavioral
events, should be reflected in systematic and rapid
modulations of precise timing of spike occurrences in
the participating neurons. An essential ingredient of the
notion of coordinated ensemble activity is its flexibility
and dynamic nature. To critically test if such a tempo-
ral scheme is actually implemented in the central ner-
vous system, it is necessary to simultaneously observe
the activities of many neurons, and to analyze these
activities for signs of temporal coordination. The op-
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portunity to decipher the functional cooperativity
among neurons was entranced by the recent develop-
ment of new technologies for recording multiple single-
neuron activities in brain structures of behaving
animals. Associated with this development, new compu-
tational tools were designed to analyze and interpret
the large amount of information in such multichannel
recordings.

In the conceptual framework of distributed networks,
it is particularly intriguing to trace the temporal evolu-
tion of cooperative neuronal activity within such net-
works. For that purpose, the Joint-peri-stimulus-time
histogram (JPSTH, Aertsen et al., 1989), Gravitational
Clustering (Gerstein and Aertsen, 1985), and various
flavours of Hidden Markov Models (HMM, Abeles et
al., 1995; Gat et al., 1997) have been developed. How-
ever, although the dynamics of synchronicity can be
observed as a function of time by averaging over trials,
it has so far not been possible to analyze individual
spike coincidences on a trial by trial basis. With this
goal in mind, we recently developed the ‘Unitary
Events’ analysis (Grün, 1996; Grün and Aertsen,
1999a,b) for detecting the presence of conspicuous
spike coincidences in multiple single neuron recordings
and evaluating their statistical significance. Basically,
this technique allows one to determine those spike
coincidences which violate the assumption of indepen-
dence of the participating neurons and insofar are an
expression of the activation of a functional cell assem-
bly (Aertsen et al., 1991). The statistical null-hypothesis
is formulated on the basis of the individual firing
probabilities of the participating neurons. By means of
this null-hypothesis, it is possible to calculate the num-
ber of expected coincidences. As a result of calculating
the statistical significance of the difference between
expected and measured coincidences, one obtains both
the amount and the moment in time of the significant
excess coincident spiking activities (‘Unitary Events’;
for technical details, see Appendix B). To account for
the dynamics of synchronized activity as well as to deal
with non-stationarities in the firing rate of the neurons,
synchronicity is estimated on the basis of small time
segments, by sliding a boxcar window in steps along the
data. This technique allows one to describe a detailed
relationship between spike synchronization, rate varia-
tions and behaviorally relevant events (Riehle et al.,
1997). Effectively, UE-analysis is strongly related to
evaluating the dynamics and significance of the diago-
nal trace of the JPSTH-matrix (Aertsen et al., 1989).
Also the significance measure used (the modified sur-
prise function) is very similar. UE-analysis deviates
from JPSTH-analysis, however, in that it is not satisfied
with detecting significant dynamic correlation per se,
but makes a first step towards recovering the actual
events that constitute this dynamic correlation.

The usual time resolution of the data aquisition in
electrophysiological recordings is less then or equal to 1
ms. There is recent experimental evidence that the
timing accuracy of spikes, which might be relevant for
higher brain functions, can be as precise as 1–5 ms
(Abeles et al., 1993; Riehle et al., 1997). To detect
synchronous spikes on a particular time scale, we sec-
tioned the observation interval into short disjunct time
slices (‘bins’) (disjunct binning, DB). After such
binning, binary processes were constructed from each
spike train by assigning a ‘1’ to time slices in which one
or more spikes occurred (‘clipping’) and ‘0’ to time
slices in which no spike occurred. Although coincident
spiking events can reliably be detected by using such
discretized process, the method looses sensitivity for
higher temporal jitter of the coincident events (Grün,
1996). This is mainly due to the non-linear effect of
binning and clipping of the single spike trains, on the
one hand, and the application of the same binning grid
over multiple spike trains, on the other.

Here we present an alternative approach, the ‘multi-
ple shift’ method (MS). This method overcomes the
need for binning, and thereby treats the data in their
(original) high time resolution. Technically, coinci-
dences are detected by shifting the spike trains against
each other over the range of allowed coincidence width
and integrating the number of exact coincidences (on
the time resolution of the data) over all shifts.

We first present the analytical descriptions for both
methods (a list of symbols used is given in Appendix
A). We then compare the two methods using surrogate
data sets. Conceptually, we separate spike trains in
‘background’ spikes, i.e. uncorrelated spikes, and spikes
being involved in coincidences. Thus, in our simulations
we first generate independent spike trains with a given
background rate, and then ‘inject’ coincident spikes of
a given coincidence width (tolerance) into both trains.
The firing rate levels are chosen in physiologically
plausible ranges. Our analytical descriptions are con-
strained to low coincidence rate levels, such that inter-
actions of injected coincidences are neglectable.

In a second step, we compare the two methods for
their reliability to detect near-coincidences. It turns out,
that MS is more sensitive to detect near-coincidences
than DB. To illustrate the performance of our method,
we apply MS to a particular experimental data set.
Based on the result of this analysis, we set up a simple
model for the composition of the coincident spiking
activity. Using our analytical description, we estimated
the parameters of our model from the experimental
result and verified our assumptions by simulations.

For simplicity, we only discuss two parallel processes,
but this work serves as a basis for an expansion to M
parallel processes.
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2. Simulation experiment

In order to calibrate and test the analysis methods,
we used simulated spike trains in which we could
control the firing rates of the ‘neurons’ and the tempo-
ral precision of the spike coincidences (the coincidence
width). Here, firing rates are composed of both back-
ground activity and coincident activity (see Fig. 1).

In a first step, spike trains of time duration T were
generated independently as Poisson spike trains, simu-
lating uncorrelated background activity. At each in-
stant of time a random number x from the interval [0,
1] (equally distributed) was drawn and compared to the
instantaneous firing probability p

r
given by the back-

ground rate lr (pr=lr · h, see e.g. Papoulis (1991)). If
x5pr, a spike (‘1’) was set, otherwise not (‘0’). The
resulting spike trains were then put together in parallel,
as if they were recorded simultaneously.

Synchronized activity was generated as a single spike
train, together with a ‘noisy’ replica of it (same dura-
tion T and time resolution h as for the background
spike trains). The master train was generated again as a
Poisson process, with coincidence rate lc(�lr). The
noisy replica was generated by jittering each spike
independently and uniformly over a time window of
9s time steps around its original position, thus simu-
lating a coincidence width of s. The probability to be
placed at any one of the 2s+1 possible positions is
ps=1/(2s+1). Thus, the coincidence width could be
controlled by the variable s.

Finally, synchronized activity was injected into the
spike trains representing the background activity by
merging the two sets of spike trains. If by chance, a
‘coincidence’ spike coincided with background spike, it
was discarded, thereby effectively clipping that particu-
lar bin content to 1. The probability per time step for
such clipping is given by the product: pr · pc.

The resulting total firing probability per spike train is
given by the sum of the probabilities for background
spikes and the coincident spikes, reduced by the proba-
bility for clipped spikes:

prc=pr+pc−pr · pc (1)

3. Disjunct binning (DB)

3.1. Detection of near-coincidences

To enable our analysis to detect coincident spike
events in simultaneously recorded spike trains with a
certain tolerance regarding coincidence precision, we
generate a new process on a less restrictive time scale by
sectioning the observation interval T into

N(b)=
T

b · h
(2)

disjunct time segments (bins) of width b (in units of the
original time resolution h). In order to treat this process
as a binary process (possible outcomes within a bin e{0,
1}) data are clipped to 1 in the case of more than one
spike within a bin.

Coincidences of these newly generated processes are
detected on the new time scale b · h. Simultaneous 1’s in
both spike trains are counted as a coincidence. The
total count of all coincidences in all bins N(b) provides
the number of measured coincidences n.

The expected number of coincidences (n̂) is calcu-
lated on the basis of the firing probabilities (p1, p2) of
the individual (new) processes involved:

n̂=p1 · p2 · N(b) (3)

For evaluating the significance of the difference be-
tween the numbers of observed and expected coinci-

Fig. 1. Simulation experiment. Spike trains are composed of two independent contributions: background and coincident activity. Independently
generated spike trains, generated as Poisson spike trains with given stationary rate lr, constitute the uncorrelated background activity.
Synchronized activity is generated separately as a Poisson spike train with coincidence rate lc, and a jittered replica of it, by ‘jittering’ each spike
relative to the original position by 9s time steps. The synchronized activity is then ‘injected’ into the background activity by adding the two
activities time step by time step. If two spikes or more fall within a single time step, the contents is clipped to 1.
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Fig. 2. Disjunct Binning. In order to detect near-coincidences of spike
distances up to s=b−1, the spike trains are sectioned in parallel into
disjunct bins of width b=s+1 (in units of h). Bins that contain a
spike are marked in grey. Note, that two spikes in the middle,
although they are less then 5h apart, are split by a bin border and
thus cannot be detected as a coincident event.

border is: Pl
i= (s− i ) · 1/(2s+1). Thus, the total prob-

ability for near-coincident spikes to be separated by the
left bin border is:

Pl= %
r

i=0

Pi · Pl
i , with r=

!s−1
b−1

for b]s
for bBs

(4)

By symmetry it follows that the total probability for
near-coincident spikes to be splitted by a bin border
equals F(s, b)=2 · Pl. The latter can be expressed in an
arithmetic series representation, yielding an expression
for the ‘fission’ probability as the result of binning:

F(s, b)=
! 1

2s+1 · s
b · (s+1)

1
2s+1 · (2s−b+1)

for b]s
for bBs

(5)

The shape of F(s, b) as a function of b is shown in Fig.
3 for different choices of s. As expected, exact coinci-
dences (s=0) are not affected since they cannot be
splitted. For increasing coincidence widths s, the proba-
bility for splitting coincidences increases. It is high for
small bin sizes, and decreases for larger bin sizes, finally
converging to 0 for the case of one bin covering the
whole data piece (Fig. 3). As a result, the total number
of coincidences after binning is reduced by a factor
1−F(s, b):

nc(s, b)=pc · (1−F(s, b)) · N(b) (6)

Note, that for a coincidence width of s=2 and a
binning grid of b=2, for instance, the original coinci-
dence probability is reduced by a factor 0.5. Thus, one
fails to detect a considerable fraction of coincidences.
For bin sizes smaller than the coincidence width s all
coincidences with inter-spike distances larger or equal
than the bin width are split. Only coincidences with a
spike distance smaller than the bin width can be de-
tected at all. For bin sizes larger than s, the near-coinci-
dences are in principle detectable since they would fit
into a single bin. However, for both cases it holds that
some coincidences will be split due to their positioning
relative to the binning grid.

3.2.2. ‘Background’ coincidences
The second contribution to the observed number of

coincidences are the coincidences occurring by chance
due to uncorrelated background activity. In addition to
the regular background activity (pr), those spikes have
to be considered as background, that were originally
part of a near-coincidence, but were split by the binning
grid and now contribute to the background. This gives
an additional contribution pc · F(s, b) to the back-
ground rate. However, some of these debris may have
collided with regular background spikes and thus have
been clipped by the injection procedure. This results in
a reduction of the background probability by the
amount pr · pc · F(s, b). Thus, for the total background
spike probability per time step we obtain:

Fig. 3. Probability for splitting coincidences due to the binning
procedure. The curves show the fission probability as a function of
the binsize b (in units of the time resolution h) for a range of
coincidence widths s of the injected coincidences. In black the fission
probability calculated using Eq. (5), in grey using Eq. (4) for the
series representation.

dences the joint-surprise may be used (Eq. (27) in
Appendix B). The task now is to find analytical descrip-
tions for n and n̂ in our model situation (Section 2).

3.2. Analytical description: obser6ed coincidences

The number of observed coincidences has two contri-
butions: injected coincidences and coincidences ob-
tained by chance due to the uncorrelated background
activity. In a first step, the influence of the binning
procedure on the injected coincidences will be
examined.

3.2.1. Injected coincidences: splitting by binning
The application of the fixed binning grid to near-co-

incident events with a coincidence width s, that were
injected at random instances in time, leads to situations
in which two near-coincident events may fall into
neighboring bins. Such near-coincidences are split and
cannot be detected anymore (see Fig. 2). The fraction
of split coincidences can be determined as follows.

Consider a spike in the first train at an arbitrary
position. The probability for that spike to be at dis-
tance i from the nearest left bin border is: Pi=N(b)/
N=1/b. The probability for the second
(near-coincident) spike to be at the left of that bin
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p %r(s, b)= pr

backgr.

+pc · F(s, b)
debris

−pr · pc · F(s, b)
collisions

(7)
¿ËÀ ¿¹Ë¹À ¿¹¹Ë¹¹À

This yields (see Appendix C) for the spike probability
after binning and clipping:

pr¦(s, b)=1− (1−p %r(s, b))b (8)

Assuming both neurons to have the same background
rates, then the expected joint probability is obtained
according to Eq. (3) by squaring:

P. r= (pr¦(s, b))2 (9)

The number of coincidences due to the background
activity equals P. r multiplied with the number of avail-
able bins. The latter are the number of bins N(b)
reduced by the number of bins which are already
‘occupied’ by injected coincidences (i.e. nc(s, b)):

nr(s, b)= (pr¦(s, b))2 · (N(b)−nc(s, b))
bins available

(10)¿¹¹Ë¹¹À

3.2.3. Total number of obser6ed coincidences
The total number of observed coincidences then cor-

responds to the sum of the injected coincidences and
the background coincidences:

n(s, b)=nc(s, b)+nr(s, b) (11)

For a comparison of simulations with the analytical
description (Eq. (11)) see Fig. 4, solid lines. We note in

passing that, as long as the spike rates and coincidence
rate are stationary across the observation time window,
i.e. spikes and coincident spikes are uniformly dis-
tributed across time (which they are in this case), the
mean and variance shown in Fig. 4 are independent of
shifts of the binning window. Once the spike rates
and/or coincidence rate vary as a function of time, and
the spike trains (and/or coincidence trains) show a
corresponding time structure, this may affect the values
of mean and variance. The reason is that in such case
there may be an interaction of the time structure in the
spike trains and the positioning of the binning grid,
depending on the various time constants involved. If
the time constants of modulation in the spike/coinci-
dence trains and the resolution of the binning grid
become too similar, one may even approach a situation
as observed in Moire-patterns or in aliasing. Hence,
such choice of binning grid, effectively amounting to an
undersampling of the relevant dynamics, should be
avoided in the analysis.

3.3. Analytical description: expected number of
coincidences

The predictor for the number of expected coinci-
dences is based on the assumption of independence of
the spike trains. Thus, it is based on the marginal
probabilities. These are, however, a composition of the
background firing probability and the coincident firing
probability, reduced by the probability for clipped
spikes due to the injection procedure (see Eq. (1)). The
resulting firing probability prc is then modified by the
binning (and clipping) procedure, as shown in Ap-
pendix C, Eq. (28) (see for illustration Fig. 5A, case of
pc=0):

po=1− (1−prc)b=1− (1− (pr+pc−pr · pc))b (12)

The predictor for the expected number of coincidences
corresponds to the product of the firing probabilities of
the two trains, multiplied by the number of bins:

n̂= (po)2

P.

· N(b) (13)
¿ËÀ

For small bin sizes, this function is dominated by the
parabolic behavior of the expected joint probability
(Fig. 5B). However for larger bin sizes, the decreasing
number of bins N(b) dominates (Fig. 5C), and reduces
the number of expected coincidence counts consider-
ably (Fig. 5D). Note, that this probability does not
depend on the coincidence width in the data, it is a
function of the bin size only. For comparison of simu-
lations and the analytical description (Eq. 13) see Fig.
4, dotted line.

Fig. 4. Coincidence analysis using the disjunct binning method (the-
ory and simulation). Two parallel spike trains were generated with
background rates lr=30 sp/s, the rate of the injected coincidences
was lc=5 coinc/s, for T=106 ms in time steps of h=1 ms. The
scatter of coincident events was varied from s=90 ms to s=95
ms. Each simulation experiment was repeated 10 times, and analyzed
for the number of observed coincidences by varying the analysis bin
width from b=1 ms up to b=11 ms. Results from repeated trials are
indicated by the mean and variance (error bars). The solid lines
indicate the analytical results. The dotted line shows the analytical
result for the predicted number of coincidences, assuming indepen-
dence of the two spike trains.
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Fig. 5. Influence of disjunct binning on basic analysis parameters,
here with pc=0. A: Spike probability po per bin (Eq. 12) as a
function of the analysis bin size b, original spike probabilities pr (per
time step h) varied from 0.005 to 0.05. B: Expected probability (see P.
in Eq. 13) for coincidences as a function of bin size (original single
spike probabilities as in A for both processes). C: Number of bins
(Eq. 2) as a function of bin size; original time steps N=1000. D:
Number of expected coincidences (Eq. 13) as a function of bin size.

6), the simultaneously recorded spike trains are ana-
lyzed for coincident events on their ‘recording’ time
resolution h. Spikes that occur at the same time in the
parallel spike trains are counted as coincident events.
To account for near-coincidences, the second spike
train is shifted against the first in steps of h up to 9b %.
For each shift, the ‘exact’ coincidences are counted, the
sum over all shifts yields the observed coincidence
count n.

For the predictor of the expected number of coinci-
dences, the expected number of coincidences per shift of
spike train 2 relative to spike train 1 is calculated and
summed over all possible shifts −b %5 i5b %:

n̂= %
b%́

i=−b%

p1 · p2(i) ·
T
h

(14)

where p2(i ) indicates that spike train 2 is shifted relative
to spike train 1 by i steps on the original time resolu-
tion h. Since spike train 2 itself is not modified by
shifting, the firing probability is unaffected, thus
p2(i )=p2. In addition, we assume that the jitter of the
near-coincidences is equally distributed over the total
coincidence width. Then, the sum in Eq. (14) can
simply be replaced by a factor of 2b %+1, and Eq. (14)
can be rewritten as:

n̂=p1 · p2 ·
T
h

· (2b %+1) (15)

For the significance evaluation of the difference be-
tween the observed and expected counts the joint-sur-
prise (see Appendix B, Eq. 27) may be used again.

4.2. Analytical description: obser6ed coincidences

4.2.1. Injected coincidences
All injected coincidences are detected, provided that

the possible analysis shifts fully cover the scatter range
9s of the coincidences. At each single shift, only a
fraction (on average: 1/(2s+1) of the injected coinci-
dences is detected. Thus, per shift, the probability of
detecting exact coincidences (p %c) is given by this frac-
tion of the total injection probability: pc · 1/(2s+1).
Thus, as long as the maximal analysis shift b % is smaller
than the injected scatter width (b %Bs), not all injected
coincidences are detected, but only the fraction (2b %+
1)/(2s+1). For b %=s, the probability of detection is 1,
for shifts larger than s, the probability is 0 (all coinci-
dences are already detected for shifts up to b %=s). As
a result, the coincidence probability becomes

p %c(s, b %)=
!pc · 2b%+1

2s+1

pc

for b %Bs
for b %]s

(16)

and the total number of detected injected coincidences
is given by:

Fig. 6. Multiple Shifts. The second spike train is shifted against the
first over up to 9b % in steps of the time resolution h (here shown for
b %=4h). For each shift, only exact coincidences (marked in grey) are
counted. The sum over all shifts yields the total number of observed
coincidences.

4. Multiple shifts (MS)

4.1. Detection of near-coincidences

In the alternative method of multiple shifts (cf. Fig.
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nc(s, b %)=p %c(s, b %) · N (17)

with N=T/h the number of time steps of resolution h.

4.2.2. ‘Background’ coincidences
To obtain the background coincidences count,

chance coincidences occurring at all possible time shifts
(covering the analysis window [−b %, b %]) have to be
summed. The effective background spike probability is
composed of the original background activity pr and
possible ‘debris’ from not detected coincidences at a
given analysis width (if b %Bs). The contribution of
debris per shift is pc · (1−1/(2s+1)). For maximal
analysis shifts b %\s, all spikes belonging to an injected
coincidence are already counted as coincident spikes for
shifts up to b %=s. Thus, for larger shifts, no debris are
left as additional contributions to the background ac-
tivity. In addition, a loss of background activity due to
clipping by the injection procedure needs to be consid-
ered; this loss amounts to pr · pc. As a result, the
number of background coincidences is given by:

nr(s, b %)

=Í
Ã

Ã

Á

Ä

%i=1
2b%+1 (pr−pr · pc+pc · (1− 1

2s+1))2 · N

%i=1
2s+1 (pr−pr · pc+pc · (1− 1

2s+1))2 · N

for b %5s

for b %\s

+%i=1
(2b+1)− (2s+1) (pr−pr · pc)2 · N

=

> (pr−pr · pc+pc · (1− 1
2s+1))2 · N · (2b %+1)

(pr−pr · pc+pc · (1− 1
2s+1))2 · N · (2b %+1)

for b %5s

for b %\s

+ (pr−pr · pc)2 · N · ((2b %+1)− (2s+1))
(18)

4.2.3. Total number of obser6ed coincidences
The total number of observed coincidences is the sum

of the detected injected and the chance coincidences:

n(s, b %)=nc(s, b %)+nr(s, b %) (19)

For a comparison of simulations with the analytical
description see Fig. 7, solid lines.

4.3. Analytical description: expected number of
coincidences

As for DB, the firing probability (po) of a single spike
train is the sum of the background activity (pr) and the
injected coincidence activity (pc), reduced by the loss of
spikes due to the injection procedure:

po=prc=pr+pc−pr · pc (20)

The predictor for the expected coincidence count is the
product of the individual probabilities, summed over all
possible time shifts and multiplied by the number of
time steps:

n̂= %
2b%+1

i=1

(po)2 · N= (po)2 · (2b %+1)

P.

· N (21)
¿¹¹Ë¹¹À

The comparison of simulations with the analytical
description for the expected number of coincidences is
shown by the dotted line in Fig. 7.

Fig. 8 illustrates the behavior of the components that
contribute to the expected number of coincidences. In
contrast to the case of disjunct binning (see Fig. 5), the
various components do not show a pronounced non-
linear behavior. The firing probabilities are constant for
increasing analysis shift sizes (Fig. 8A), the coincidence
probability behaves, as expected, slightly parabolic
(Fig. 8B), but does not go into saturation as for DB.
Finally, the number of time steps is constant for in-
creasing analysis shift size (Fig. 8C). Hence, the ex-
pected number of coincidences increases (slightly
parabolic) (Fig. 8D), and does not show a maximum as
in the case of DB.

5. Discussion

5.1. Comparison of methods: sensiti6ity for
near-coincidences

The performance of the disjunct binning (DB) and
the multiple shifts (MS) method is compared in relation

Fig. 7. Coincidence analysis using the multiple shifts methods (theory
and simulation). Two parallel spike trains were generated with back-
ground rates lr=30 sp/s and injected coincidence rate lc=5 coinc/s,
for T=106 ms in time steps of h=1 ms. The scatter of the coincident
events was varied from s=90 ms to s=95 ms. Each simulation
experiment was repeated 10 times, and analyzed for the number of
coincidences by varying the maximal shift for analysis from b %=90
ms up to b %=910 ms. Mean and variance from repeated simulation
experiments are shown by dots and error bars. Analytical results are
shown by the curves (solid lines for the observed number of coinci-
dences; dotted line: expected number of coincidences, assuming the
two spike trains are independent).
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Fig. 8. Influence of multiple shifts on basic analysis parameters,
assuming pc=0. A: Spike probability po per time step as a function
of analysis shift size b %, original spike probabilities pr varied from 0.005
to 0.05. B: Expected probability for coincidences (P. in Eq. 21) as a
function of b % (original spike probabilities as in A for both processes).
C: Number of time steps as a function of b %; original time steps
N=1000. D: Number of expected coincidences (Eq. 21) as a function
of b %. These results should be compared to Fig. 5 (disjunct binning).

methods show a very similar behavior: the joint-sur-
prise decreases non-linearly from its maximum at b−
1=0 for DB, and at b %=0 for MS respectively. This
decrease is due to the property of the joint-surprise,
that evaluates the significance of excess coincidences in
relation to the expected level. Thus, even for a constant
level of excessive coincidences, S gets smaller with
increasing b %, because the expected level increases (see
as an example Fig. 9B for s=90).

For coincidence widths s\0, the S-functions for DB
and MS differ. For small analysis widths (b−1Bs,
b %Bs, respectively), the joint-surprise functions start
for both, DB and MS, at low values smaller than the
curve for s=0, and they reach their maximum at
s=b−1 and s=b %, respectively. However, the joint-
surprise curves are in general lower for DB, and do not
converge to the same joint-surprise curve as they do in
the case of MS. Consequently, its maxima are lower,
and fall below the significance level of a=0.01 (line at
S=2 in Fig. 9, bottom graphs). As a consequence, the
significance threshold is reached only for small values
of the analysis bin width, i.e. at smaller analysis bin
widths as compared to MS. For example, excess coinci-
dences of a given coincidence width, e.g. s=4 as in Fig.
10, are only detected as significant events by MS, but
not with DB.

The reason for these differences are best visualized by
the differences of the observed and the expected num-
ber of coincidences (Fig. 9, third row from top). For
b−1Bs (or b %Bs) only a fraction of the injected
coincidences are detected in both methods, although for
different reasons: in case of DB, since coincidences are
split and therefore cannot be detected, in case of MS,
only a fraction of the coincidences are covered by the
time shift. However, from b %=s on, all coincidences are
detected in case of MS. In the example, the difference
n− n̂ reaches a constant value at 93.3986, a value
slightly smaller than the number of injected coinci-
dences (here: 100). This is a result of a negative differ-
ence between the (accumulated) background
coincidences (up to the maximal shift) (Eq. 18) and the
predicted number of coincidences (Eq. 21). In contrast,
in case of DB the differences between the observed and
the expected number of coincidences are in general
lower than for MS. They even decrease for large bin
sizes, which is a result of binning followed by clipping
and the strong reduction of the number of bins (see Fig.
4C,D).

Summarizing, the splitting of coincidences by dis-
junct binning at small bin sizes, combined with the
strong non-linear effect of binning followed by clipping
for larger bin sizes leads to a considerably lower sensi-
tivity for excess coincident events as compared to the
MS. Thus, multiple shifts are better suited for the
detection of near-coincidences for any coincidence
width.

to their ability to detect excess coincidences with respect
to various coincidence widths of injected synchronous
activity. The joint-surprise S is used as a measure for
evaluating the sensitivity for excess coincidences. It
compares the observed number of coincidences with the
expected number of coincidences, based on the assump-
tion of independent processes. Thus, the two methods
are discussed in respect to these two components (n and
n̂), the difference between the observed and expected
numbers of coincidences, and the resulting joint-sur-
prise. Such a comparison using the same data parame-
ters, i.e. background rate lr and coincidence rate lc, is
shown in Fig. 9 for DB (A) and MS (B). The analyses
using the analytical descriptions for DB and MS are
illustrated for increasing analysis widths (bin size b for
DB, maximal shift b % for MS). The corresponding
analysis widths for DB and MS are b %=b+1, since for
a maximal coincidence spike distance s, the disjunct
binning covers the distance within a bin of size b=s+
1. In the case for multiple shifts the distance s is
covered by shifts up to b %=s.

Let us first consider the behavior of the joint-surprise
S as a function of the analysis width. If coincidences
were injected without any scatter (s=0), both analysis
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Fig. 9. Comparison of the performance of disjunct binning (A) and multiple shifts (B) using analytical descriptions. For various coincidence widths
(s=90 . . . 95 ms) the observed coincidence counts (top row), the expected coincidence counts (second row), the differences of the two (third
row) and the joint-surprise (bottom row) are calculated for increasing analysis widths (in A: for bin sizes b from 1 to 11, in B: for maximal shifts
b % from 0 to 10). For better comparison, in A and B the abscissae are represented such that they correspond to the same maximal spike distances
of a coincidence, that is covered by the analysis widths, i.e. b=b %+1. Parameters were lr=30 sp/s, lc=1 coinc/s, T=105 ms, h=1 ms. The
maxima of the joint-surprise curves are marked by filled circles, if the values are above the significance level of a=0.01, i.e. S=2; if they are below
they are marked by empty circles. The maxima of S for s=90 (not shown) are at b−1=0, S=16.76 in A and at b %=0, S=16.73 in B.

5.2. The temporal precision of neuronal processes

In order to detect the temporal precision in an exam-
ple set of real neuronal data, we will now use the
multiple shifts method. In a first step, experimental data
are analyzed for the significance of coincident spike
events (by using the joint-surprise) for various analyses
shift widths b %. In a second step, the coincidence firing
probability pc of the experimental data is calculated
from the model, introduced in Section 2 for comparison
of the two analysis methods. In a third step, experimen-
tal results are compared to simulated data, in order to
test the validity of our model assumptions.

Neuronal data were taken from a pair of simulta-
neously recorded neurons (time resolution: h=1 ms)
from the primary motor cortex of a behaving monkey
involved in a visuo-manual pointing task (see Bastian et
al. (1998) and Grammont and Riehle (1999) for experi-
mental details). A first stimulus instructed the monkey
about the required movement direction, a second stimu-
lus after a delay of 1000 ms called for its performance.
From repetitive trials (here: 33) of the same behavioral
condition, a time segment of 800 ms during which the
rates of the neurons were stationary, was cut beginning
100 ms after the first stimulus and analyzed for coinci-
dent spike events.

The results of the MS analyses of the experimental
data using various shift widths b % are shown in Fig. 11
(solid lines). The number of observed coincidences (Fig.
11A) and the number of expected coincidences (Fig.
11B) increase approximately linear with b %. The joint-
surprise function, however, shows a clear peak at b %=6
ms. In the left column of Fig. 11, the experimental
results are compared to control surrogate data (shown
in grey), in which no coincidences were injected. The

Fig. 10. Detectability of near-coincidences: comparison of disjunct
binning (left) and multiple shifts (right). The analysis width b�−1,
b %� at the maximum of the joint-surprise S, as extracted from Fig. 9,
is plotted against the injected scatter width 9s. Its linear relation for
both analysis types (DB and MS) shows that the analysis width at the
maximum of the joint-surprise indeed indicates the underlying coinci-
dence width s of the data. However, in case of DB, for larger analysis
bin sizes (here: b�−1\2) coincidences are not detected as significant
anymore (empty circles), in contrast MS does (filled circles).
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Fig. 11. Temporal precision of neuronal spike trains and its comparison with simulated processes. In both columns, the analysis results for
increasing shift width b % of two simultaneously recorded neurons are shown and compared to simulated data. Top row: observed number of
coincidences n, middle row: expected number of coincidences n̂, bottom row: joint-surprise S. In the left column, for control purposes the
simulation experiment is performed without injected coincidences, firing probabilities correspond to the measured marginals of the neurons
(p1=0.0321, p2=0.0359). On the right, coincidences were injected with a coincidence width of s=6 ms, corresponding to analysis shift width b %
at the maximum of the joint-surprise. The coincidence and background probabilities were calculated based on the model shown in Fig. 1
(pc=0.0029, pr

1=0.0291 and pr
2=0.0329). Results from simulations are shown as grey bands. The width of the light grey band represents 95%,

the dark grey band 70% of 30 repetitions of the simulation experiments. Each simulation had the same duration in time as the experimental data
(33 trials of 800 ms) with a time resolution of h=1 ms. In panel C the light grey band (representing 95% of the simulation experiments) is well
below the threshold for significance of 1%, demonstrating the low probability of the significance measure to generate ‘false alarms’.

rates for the simulations were set to correspond to the
marginal firing rates of the neuronal data. Simulation
results of 30 repetitions (each consisting of 33 trials) are
shown as grey bands. To visualize the density of the
resulting distribution, the range of 95% is shown in
light grey, the range of 70% in dark grey. The experi-
mental results clearly deviate from the simulation re-
sults, indicating that neuronal spike trains do not
correspond to the assumption of independence. The
light grey band in Fig. 11C (representing 95% of the
simulation experiments) is well below a conservative
threshold for significance of 1%, demonstrating the low
probability of the significance measure to generate
‘false alarms’ (i.e. high specificity).

As discussed above, according to our model the
maximum of S in the experimental data indicates the
coincidence width of the underlying data as s=b %�, i.e.
here 6 ms. Next, surrogate data with injected coinci-
dences were compared to the experimental results. Ac-
cording to our results shown in Fig. 9, we extracted the
coincidence width for the simulation at the maximum
of the joint-surprise, i.e. s=6 ms. The firing probabili-
ties of the neurons, measured as the marginal probabil-
ities, were assumed to be a measure for the sum of

coincident and background activity. Thus, for different
rates of the two neurons i we obtain

pi=pc+pr
i , for i=1, 2 (22)

From the observed number of coincidences at s=6 ms,
the coincidence probability pc can be calculated by
expressing Eq. (19) using Eq. (17) and Eq. (18) as
follows. The number of coincident spikes is given by
Eq. (17) as nc(s, s)=pc · (2s+1)/(2s+1) · N. Chance
coincidences are derived using Eq. (18) (but here for
pr

1"pr
2). Thus, we restate Eq. (19) as:

n(s, s)

=pc ·
2s+1
2s+1

· N+
�

pr
1−pr

1 · pc+pc ·
�

1−
1

2s+1
��

·
�

pr
2−pr

2 · pc+pc ·
�

1−
1

2s+1
��

. N · (2s+1)

(23)

By rearranging Eq. (23) and replacing pr
i by use of Eq.

(22) we obtain a function of 4th order in pc . Neglecting
terms of 3rd and 4th order, we get as an expression for
pc the positive root:
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pc= −
B

2A
+
'� B

2A
�2

−
C
A

(24)

with

A=1+2 · (p1+p2)+p1 · p2

−
�

1−
1

2s+1
�

· (p1+p2+2)+
�

1−
1

2s+1
�2

B=
1

2s+1
−p1−p2−2 · p1 · p2

+
�

1−
1

2s+1
�

· (p1+p2)

C=p1 · p2−
n

(2s+1) · N
(25)

Using the measured marginal probabilites p1 and p2, we
obtain estimates for the coincidence probability pc=
0.0029 and the background firing probabilities pr

1=
0.0291 and pr

2=0.0329 (per time step h).
Fig. 11D–F illustrates the comparison of experimental

and simulated data using the above derived parameters.
The experimentally derived joint-surprise function shows
basically the same curve as obtained from the surrogate
data. The experimental curve lies within the range of 70%
(about 1s) of the simulated data (dark grey band in Fig.
11F), indicating that our model predictions are consistent
with the experimental data.

Because the multiple shifts method recovers more of
the coincidences actually hidden in the data than disjunct
binning does, it necessarily increases the sensitivity of the
UE-method. Even though Fig. 11F is not primarily
concerned with sensitivity — rather, it compares physi-
ological data with surrogate data generated by a specific
model — relevant conclusions regarding the sensitivity
can be drawn from it. Note, that not all cases with
injected coincidences are detected as UEs: there is a
certain percentage of false negatives. To visualize this
more clearly, we indicated the distribution of the surro-
gate data by different grey levels (light grey indicating the
95% range, dark grey the 70% range). This visualization
of the distribution once more underlines the importance
of choosing an adequate time resolution for the analysis:
when adopting a conservative threshold of 0.01, about
15% of the simulations with injected coincidences are not
detected as UEs at an optimal analysis resolution, for
non-optimal time resolution the amount of false nega-
tives may even be considerably higher. Compared to the
specificity of the method (cf. Fig. 11C), the sensitivity
(Fig. 11F) is distinctly lower at a threshold level of 0.01.
Obviously, on the basis of model simulations as in Fig.
11C and F, a more optimal choice of threshold level can
be tuned that simultaneously optimizes sensitivity and
specificity (Grün, 1996; Grün and Aertsen, 1999a).

6. Conclusions

We examined two alternative methods, the disjunct
binning and the multiple shifts, to detect excessive
coincidences and their coincidence width. The perfor-
mance of these methods was tested using surrogate data
sets. In the case of disjunct binning, the number of
detected coincidences is reduced considerably (for small
bin sizes) by splitting coincidences due to the application
of the binning grid. This effect decreases with increasing
bin size. Binning followed by clipping leads to an increase
of occupied bins. This reduces the number of observed
coincidences as well as the amount of expected coinci-
dences, and yields a non-linear increase of both counts
for increasing bin sizes. For analysis bin sizes larger than
the injected coincidence width (b−1\s), the difference
of the observed and the expected number of coincidences
decreases non-linearly with increasing bin size, and thus
leads to a reduced sensitivity for excess coincident events.
These two effects are antagonistic and lead to a maxi-
mum of the significance at b−1=s.

In contrast, in the case of the multiple shifts, the
number of expected coincidences increases linearly with
increasing analysis bin width. For analysis bin widths
smaller than the injected scatter (b %Bs), a fraction of the
coincidences cannot be detected. However, if the maxi-
mal analysis shift equals the coincidence width (b %=s)
all injected coincidences are detected. For larger shifts
(b %\s) also chance coincidences (due to background
activity) reach a considerable count. At b %=s the differ-
ence of actual and expected coincidences reaches its
maximum, leading to a maximum of the joint-surprise
function. From there on (b %\s) the difference remains
constant, since both measures increase further (linearly)
by the same amount of background coincidences. This
leads to a decrease of the significance (note significance
curve for 9s=0, for b %]s all curves are identical).

Both methods allow to detect the temporal scatter of
near-coincident spike events in neuronal data. They
detect near-coincidences best at analysis widths just
covering the width of the injected scatter (i.e. disjunct
binning at b=s+1, multiple shifts at b %=s). Both
methods are comparable for b %=b+1. However, for
higher temporal scatter only the multiple shifts method
is suited to detect excess coincidences reliably as signifi-
cant events. Thus, the multiple shifts is a tool to detect
the precision of coincident activity in neuronal processes,
and, in addition, may be used to derive the underlying
coincidence rate.
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Appendix A. List of symbols used

temporal duration of the observation in-T
terval, [T ]=unit of time

h original time resolution, [h ]=unit of time
total number of binsN

b size of a bin in the disjunct binning
method in units of h, [b ]=1
largest absolute time shift in the multipleb %
shift method in units of h, [b %]=1

s largest absolute time difference between
spikes in an injected coincidence in units
of h, [s ]=1

lr, lc background, coincidence rate, [lr ]=
[lc ]=1/unit of time
probability for the 2nd coincidence spikeps

to be placed at any of the positions
within the scatter range

pr, pr
j probability of finding a bin occupied,

contributions of background, rate for
neuron j
probability of finding a bin occupied,pc

contributions of coincidence rate
probability for finding a coincidence inp %c
MS
probability of finding a bin occupied forprc

the combined processes (background and
injected)
analysis method dependent marginalpo

probability for the combined processes
expected joint probabilityP.
marginal firing probability of neuron jpj

number of coincidences, contributions ofn, nr, nc

background and injected coincidences
n̂ expected number of coincidences

fission probability for near-coincidencesF
in the disjunct binning method

p %r probability of finding a bin (on the origi-
nal time scale) occupied by a back
ground spike, corrected for debris and
collision for DB
probability of finding a bin occupied bypr¦
a background spike after binning and
clipping (corrected for debris and colli-
sion) for DB

S joint surprise function
b�, b %� analysis width at which the joint-surprise

is maximal
cumulative probability of observing theP
measured number of coincidences or even
a larger one

a significance level
pb probability for finding a bin occupied af-

ter binning and clipping

Appendix B. The ‘Unitary Events’ method (Grün, 1996)

Action potentials (spikes) elicited by M simultaneously
recorded neurons are transformed, using an appropriate
binning, to M-dimensional joint-activity vectors consist-
ing of ones (spike) and zeros (no spike). The composition
of these vectors represents the various constellations of
coincident spiking activity across the M neurons (mea-
sured coincidences). Under the null-hypothesis that the
M neurons fire independently, the expected number of
occurrences of any joint spike constellation is calculated
as the product of the individual firing probabilities. The
measured number of coincidences (n) is then compared
with the expected number of coincidences (n̂).

The statistical significance for a positive difference
between the numbers of measured and expected coinci-
dences is calculated from a Poisson distribution (with the
mean being set to the expected coincidence number) as
the cumulative probability P of observing the measured
number of coincidences (or an even larger one) by
chance.

P(n �n̂)= %
�

r=n

n̂ r

r !
· e− n̂ (26)

The larger the number of excess coincidences, i.e. more
coincidences are measured than expected by chance, the
closer P approaches 0. Similarly, the larger the number
of lacking coincidences, i.e. less coincidences are mea-
sured than expected by chance, the closer its complement
1−P approaches 0, while P approaches 1. In order to
enhance visual resolution at the relevant low probability
values of P or 1−P, we calculate a logarithmic function,
the ‘joint-surprise’ (S), of the two:

S(P)= log10

1−P
P

(27)

It is derived from the ‘surprise’ measure (Palm, 1981;
Palm et al., 1988; Aertsen et al., 1989) and is comparable
to measuring significance on a dB-scale. For excessive
coincidences, this function is dominated by P, for lacking
coincidences by 1−P. One obtains positive values for
excessive coincidences, negative values for lacking coin-
cidences, and zero at chance level (P=0.5). Whenever
the significance value of an excess number of measured
coincidences exceeds a fixed threshold a (here: a=0.01,
corresponding to a joint-surprise value of 2), this defines
an epoch containing significantly more coincidences than
expected by chance. These instances of excessive coinci-
dent spiking are referred to as epochs with ‘Unitary
Events’ (UEs).

The dependence of the sensitivity/specificity of the UE
method on the firing rates and the coincidences contained



S. Grün et al. / Journal of Neuroscience Methods 94 (1999) 67–79 79

in the data is discussed in Grün (1996) and Grün et al.
(1999a).

In order to account for non-stationarities in the
discharge rates of the observed neurons, modulations in
spike rates and coincidence rates are determined on the
basis of short data segments by sliding a fixed time
window (typically 100 ms wide) along the data in steps
of the coincidence binwidth. This timing segmentation
is applied to each trial, and the data of corresponding
segments in all trials are then analyzed as one quasi-sta-
tionary data set, using the appropriate estimation of the
time-varying rates. Conventional approaches to esti-
mate time-varying firing rates are based on trial-averag-
ing (PSTH; Gerstein and Kiang, 1960). This, however,
makes the strong assumption of stationarity across
trials. If this condition is not fulfilled, more sophisti-
cated analyses are required to estimate the dynamic
firing rates from single-trial data, on which to base the
expected coincidence counts. We are currently evaluat-
ing the applicability of a newly developed method for
single-trial rate estimation (Nawrot et al., 1999) for this
purpose.

Appendix C. Spike reduction by binning and clipping

In order to be able to treat a binned spike train as a
binary process, we clip the data to 1 in the case of more
than one spike within a bin. In a single bin, the
probability of finding any event combination (i.e. 0’s
and 1’s) is given by the binomial distribution, summing
up to 1. Thus, the probability of finding one or more
spikes (k) within a single bin b · h, given the probability
p for a spike per time step h on the original spike train,
is given by:

pb(k]1)= %
b

k=1

�b
k
�

pk · (1−p)b−k=1− (1−p)b (28)

As a result, the marginal probability of finding a 1 in a
bin is increased as compared to the original spike train,
converging to 1 for very large bin sizes (see Fig. 5A).
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