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Propagation of synchronous spiking activity
in feedforward neural networks
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Summary — ‘Synfire’ activity has been proposed as a model for the experimentally observed accurate spike patterns in cortical activity.
We investigated the structural and dynamical aspects of this theory. To quantify the degree of synchrony in neural activity, we introduced
the concept of ‘pulse packets’. This enabled us to derive a novel neural transmission function which was used to assess the role of the single
neuron dynamics and to characterize the stability conditions for propagating synfire activity, Thus, we could demonstrate that the cortical
network is able to sustain synchronous spiking activity using local feedforward (synfire) connections, This new approach opens the way for
4 quantitative description of neural network dynamics, and enables us to test the synfire hypothesis on physiological data.
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Introduction

Recently, it was demonstrated that the activity of frontal
cortical neurons in the awake behaving monkey com-
prises excessive occurrences of highly accurate (£ 1
ms) spike patterns. Interestingly, these patterns can be
related to the behavioral state of the animal (Abeles er
al, 1993a, b; Griin er al, 1994; Griin, 1996; Riehle er
al, 1995, 1996). On the basis of the characteristic ana-
tomy and physiology of the cortex, it was proposed
that synfire activity, propagating through the sparsely
firing cortical neural network, presents a natural expla-
nation for this phenomenon (Abeles, 1991). In order
to test this hypothesis, we studied the dependence of
reliable synfire propagation on the structural and the
dynamical properties of a model cortical network. We
used the concept of pulse packets (Gewaltig et al, 1995
Diesmann er al, 1996) and investigated to what extent
this framework can be used to describe propagating
synchronous activity in a synfire chain.

Synfire chains

Synfire chains consist of diverging/converging links,
connecting groups of neurons. A link is characterized
by two structural parameters: the width w, defining the
number of neurons in a group and the multiplicity m,
the number of connections from a neuron to the next
group. Figure | (top row) depicts such a local feed-
forward chain of neurons. Activity, induced in a group
will trigger the neurons in the receiving group. Thus,
each group passes the activity on to the next one. The
activity, typically observed in such chain-like structures
of sparsely firing neurons are volleys of spikes, with

each neuron contributing at most one spike. Figure 2
shows two possible cases of propagating synfire activ-
ity: stable (left) and unstable transmission (right). In
simulation studies we found that successful trans-
mission from one group to the next depends on the
number of activated neurons and on the temporal dis-
tribution of their firing (Diesmann er al, 1994). Both
parameters exhibit a critical value which determines
whether transmission will be stable or not. These criti-
cal values depend on the structural parameters w and
m, as well as on the details of the single neuron dy-
namics.
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Fig 1. Synfire chains and pulse packets. The top row shows a sketch
of a synfire chain: groups of neurons are connected to form a feed-
forward chain. The second row illustrates the type of activity that
can be found in such a network: volleys of spikes propagate from one
group to the next. This situation is further elaborated in the bottom
row: a group receives a spike volley, idealized to a probability density
function called ‘pulse packet’, and passes it on to the next group.
Each pulse packet is characterized by two parameters: the activity a.
defining the number of active neurons in a group and the width o,
defining the temporal dispersion of the group activity.
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Fig 2. Transmission of synchronous spiking activity in a synfire chain. E
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ach row in the raster displays represents the spiking activity of the

neurons in a single synfire group. Below, the total network activity is shown in a PST-histogram. In the stable case (left panels) the neurons
of different groups become active at different times, corresponding to their relative position in the chain. In this case the activity is able 0
propagate through the entire chain, while maintaining its amplitude and temporal dispersion. In contrast. in the unstable case (right panels) the
activity deteriorates progressively with each stage. With decreasing activity. the temporal spread of the group response increases and the volley
eradually slows down. In the stable case, however. we observe no such widening of the activity and the velocity of propagation remains constant.

In order to characterize the network dynamics, we
need to assess the influence of the degree of synchrony
on the spike arrival time distribution. Unfortunately,
existing measures of neural transmission focus on two
limiting cases: full synchrony and random arrival
(Abeles, 1982, 1991). Intermediate cases with a finite
degree of temporal dispersion are not addressed. Two
recent studies (Murthy and Fetz, 1994; Bernander et
al. 1994) investigated the influence of input synchrony
on the activity of model cortical neurons. However,
both these studies described the output activity in terms
of firing rate, not as timing of individual spiking events.
The concept of pulse packets (Gewaltig e al, 1995;
Diesmann et al, 1996) overcomes these restrictions, and
enables us to quantify the degree of temporal synchrony
in propagating volleys of neural activity.

Pulse packets

A pulse packet is a probabilistic description of the ac-
tivity of a group of neurons, represented by a pulse
density function p(t). This pulse density is determined
by two parameters: the activity a, defining the number
of active neurons in a group and the width o, defining

the temporal dispersion of the group’s spiking activity
(fig 1, bottom). If we assume all neurons to be identical
and the chain to be completely connected (ie all neu-
rons in a group receive the entire output activity of the
previous group), the statisitical properties of a group’s
response are determined by the single neuron para-
meters. Thus, instead of having to consider all member
neurons in a group, we may restrict ourselves to only
one neuron, and investigate how its firing probability
changes upon dynamic modification of the input. From
this description of the single neuron’s firing charac-
teristics, we can then extrapolate to the behaviour of
the entire group.

Adopting this approach, we studied the response of
a model cortical neuron (Gewaltig ef al, 1994) to input
activity with varying degrees of synchrony, using the
simulation tool SYNOD (Diesmann et al, 1995). The
model neuron (membrane time constant 10 ms) was
supplied with background noise (‘balanced’ excita-
tion/inhibition) from a large number (~20 000) of un-
correlated neurons, leading to a high variability of the
membrane potential (Gueny = 4 mV) and a Poissonian
spike interval distribution (rate A = 2 Hz). Time course
and amplitude of the PSPs were taken from the lit-
erature (Fetz et al, 1991), and are assumed to be the
same for background and intra-chain connections.




Neural transmission function

In simulations of this model neuron, we recorded the
response (time of first spike) in repeated trials, and col-
lected these in a PST-histogram. After normalization
for the number of trials, the resulting output distribution
describes the neuron’s firing probability density as a
function of time. This probability density was similarly
described as a pulse packet, and the associated pulse
density p(1), together with its values of a and ¢ were
determined. Thus, we could investigate how the output
distribution changed, depending on the input distribu-
tion (Gewaltig et al, 1995). Figure 3 shows the input
(A) and output (B) firing densities for four different
input activity distributions. Observe that narrowing the
input packet or increasing its size effectively speeds
up the transmission: the peak in the output distribution
is reached earlier, and also the relative amplitude is
enhanced. In order to cover a large section of the input
parameter space, the input was varied systematically
from a sharp synchronous volley of spikes (small o,
large a) to a slow asynchronous rate variation (large
o, small a).

Using an appropriate correction for the spontaneous
activity of the neuron, we measured for each pair of
input parameters (ai,, Gin). the corresponding output pair
(@ous Oow). The transmission function of the neuron for
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dynamic modulations of input synchrony is then given
by the mapping of the input pair (i, Gi,) to the output
pair (@ow, Gow). This mapping yields a compact char-
acterization of the neuron’s firing dynamics. In contrast
to earlier approaches where the neuron’s firing probability
is measured quasi-statically as a function of DC-current,
this new transmission function takes full account of the
dynamic properties of the input distribution.

The neural transmission function can be visualized
using iso-a;, and iso-o;, plots (fig 4), each one empha-
sizing a specific aspect of the synchronous trans-
mission. For example, panel D shows the output width
Gou versus the input width o;, for constant a;,. Observe
that for a;,, = 45 the outgoing pulse packet is always
wider than the incoming one. Synchronous input is
thereby dispersed in time. However, when the input
packet contains more spikes (here: a;,= 115) the curve
crosses the diagonal at some critical value for ;.. Be-
yond this intersection the curve remains below the di-
agonal, implying that the neuron exhibits a
synchronizing behavior. Panel A is comparable to the
traditional sigmoid transfer function, used in many neu-
ral network models. Note however, that the temporal
dispersion of the input (ie G;,) strongly influences the
magnitude a,, of the response. Also the remaining two
panels (B, C) demonstrate that the parameters size and
width cannot be treated separately. Each of these two
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Fig 3. Single neuron response to pulse packet input. The model neuron’s response to Gaussian shaped input pulse packets. for four different
choices of parameters: input packet widths are ¢ =1.5 ms (top) and 6 = 4.5 ms (bottom), the numbers of spikes in the input packets are
a= 45 (left) and @ = 115 (right). Note the different scaling of the ordinate in panel B. The upper right distribution in panel B is clipped:

the actual peak value is (.52 ms .




input parameters influences both parameters of the out-
put distribution, with especially the output width Gou
critically depending on the input size di.

Activity propagation in synfire chains

Under certain assumptions, these single neuron dy-
namics can be carried over to describe the behavior of
groups of neurons in a synfire chain. In the simplest
case we assumed that the chain is completly connected
and that all neurons in the chain are identical. The
transmission function for a group can then be inter-
preted as a linear superposition of the single neuron
transmission functions. If the width of the neural
groups is sufficiently large, the propagation of activity
through the chain can directly be described by pulse
packets: scaling the ordinate of figure 4A with the num-
ber of neurons in the group yields the transformation
of packet size from one group to the next. Thus, the
pair (A, D) can be interpreted as an iterative map, de-
scribing the evolution of synchronization along the chain.
The diagonal intersection in figure 4D corresponds to an
invariant pulse packet, defining the stable state of the sys-
tem. In this context we note that multiplying the ordinates
in figure 3B by a factor of about 100, we arrive at the
same order of magnitude as in figure 3A. Given the neu-
ron properties and the weight of the synaptic connections,
this is indeed the number of neurons required for stable
transmission of synfire activity.

However, since the width of a synfire group is finite,
there will be a deviation of the actual input a neuron
receives from the theoretical pulse density function p(z).
Thus. the width of a group also determines its syn-
chronization properties. In the case of incompletely
connected chains, ie m < w, another problem arises.
Each neuron in a group receives a different fraction of
the propagating pulse packet. As a result of the non-
identical inputs, the neurons will also have non-ident-
ical response properties, introducing a further deviation
from the idealized transmission function as given by
the pulse packet approach. Both these effects, finite
width and incomplete connectivity, introduce ‘errors’
in the neuron groups’ ‘estimate’ of the incoming pulse
packet. As a result, the same synfire chain will not be-
have exactly identical in different trials. Pulse packets
activated simultaneously in two identical synfire chains
will develop a time lag with respect to each other that
may become successively larger with each group it has
passed, comparable to a random walk (see also Bienen-
stock, 1995).

Another, though unrelated, effect is caused by the
embedding of the local feedforward synfire chain struc-
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Fig 4. Different views of the neural transmission function. The four
panels show the dependence of the size dou (left) and the width
Gou (right) of the output packet on the size ain (top) and the width
G (bottom) of the input packet, for two different choices of the
parameter held constant. These values (indicated in the graphs)
correspond 1o the parameter values used in figure 3.

wre in the network environment. In our simulations,
cach neuron received independent background activity.
Accordingly, for the pulse packet theory, we considered
the neurons within a group as being independent with
respect to their stochastic properties. In a more realistic
situation, however, it is likely that neighbouring neu-
rons have considerable correlations in their background
inputs. This will result in correlations of their firing
behaviour. Hence, the neurons in a group are not
necessarily independent. Furthermore, these correla-
tions will depend on the actual embedding in the cor-
tical network.

Discussion

The approach outlined here opens the way for a quan-
titative description of network dynamics beyond the
single neuron level. It provides a parametric language
to describe the propagation of synchronous activity in
networks that can be characterized as ‘local feedfor-
ward’, ie locally composed of chains of groups of neu-
rons. The formalism of pulse packets presents a
conceptual bridge to link the single neuron dynamics
to the mechanisms involved in stable transmission of




information in such networks. Using this approach we
have shown that a moderately realistic model of a cor-
tical pyramidal neuron is capable of sustaining highly
precise (£ 1 ms) synchronous firing in concert with
other neurons, provided the network allows for suffi-
cient convergence. Our simulations indicate that for the
synaptic efficacies used, packets with about 100 spikes
are needed to ascertain stable transmission.

The formalism of pulse packets provides the appro-
priate framework to clarify the notion of ‘coincident’
firing (Aertsen er al, 1995). This yields a natural sol-
ution to the question whether the cortical neuron acts
as an ‘integrator’ or as a ‘coincidence detector’ — a
question which was raised many years ago (Abeles,
1982), and was revived recently (eg Bernander er al,
1994; Shadlen and Newsome, 1994). The notion of
pulse packets conveniently embeds these two different
modes into one unified concept. Our investigation
shows that the neuron may behave as either of the two,
depending on the degree of synchrony of the input ac-
tivity. The temporal structure of the input determines
which of the two aspects is emphasized.

The results of our simulations indicate that this
framework can be extended to the case of incompletely
connected chains with finite width. Current work fo-
cuses on the validity of the pulse packet approach in
the setting of more realistic assumptions regarding cor-
tical anatomy and correlations in background activity.
Finally, and most interestingly from the experimental
point of view, the spike time distributions obtained in
our simulations can be compared to the temporal stat-
istics in recurring spike patterns in physiological data,
and thus be used to test the synfire hypothesis for ac-
tivity in the working brain (Aertsen e al, 1995).
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