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SUMMARY

In a recent paper, Vaadia et al. demonstrated that patterns of firing correlation between single neurons
in the cortex of behaving monkeys can be modified within a fraction of a second. These changes occur
in relation to sensory stimuli and behavioral events, and even without modulations of the neurons’ firing
rates. These findings call for a revision of prevailing models of neural coding that solely rely on single
neuron firing rates. In a defense of these models, Friston put forward an alternative explanation,
proposing that the observed correlation dynamics emerge solely from co-modulations of the firing rates
of each of the neurons, while the strength of their interaction remains constant. To test this possibility we
re-examined the data, adopting Friston’s ‘neuronal transients’ model, and the associated equations and
procedures. We found that, to explain the dynamic correlation between a pair of neurons, the alternative
interpretation requires that each neuron’s response to a single stimulus is composed of a relatively large
number of independent components, which co-vary with their counterparts in the companion neuron.
This large number of components and their shapes lead us to conclude that, although in principle possible,
the neuronal transients model: (i) does not provide a simpler explanation of the experimental results; and

(ii) cannot explain these results without itself deviating significantly from most rate code models.

In his paper ‘Neuronal transients’ Friston (1995)
presents an alternative explanation of the results of the
joint peri-stimulus time (jpsT) analysis for the spike
trains of pairs of simultaneously recorded frontal cortex
neurons by Vaadia et al. (1995). One of the prime goals
of his explanation is to ‘reinstate’ prevailing models of
neuronal coding based on firing rates. To test if the
neuronal transient model provides an adequate ex-
planation for our experimental findings, we re-analysed
the data we presented by using the analysis and
equations (1), (2) and (4) in Friston’s paper (Friston
1995). First, we estimated the ‘non-specific corre-
lation’. Then, by using singular value decompostition
(svp) analysis (which is a generalization of principal
components analysis to non-symmetric and not-square
matrices; for more information see Press e al. 1988), we
computed the hypothetical ‘neuronal transients’ that
best explain the data. Finally, we computed the
correlation matrix, generated by the weighted contri-
butions of the ‘neuronal transients’ and the ‘non-
specific correlation”’ (see legend of figure 1 for details of
this inverse approach). We found that the neuronal
transients model does not provide a simple explanation
of our results.
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The results of the analysis for the spike trains of one
neuronal pair from figure 24 of Vaadia et al. (1995) are
compared to the results of jpsT analysis in figures 1-3.
We first examined the ‘non-specific’ (constant) cor-
relation. By its stationary nature, it cannot account for
dynamic modulation of correlation along the diagonal.
Rather, it changes the excess correlation along the
diagonal by a constant amount, without affecting its
time course. This is illustrated in figure 1 for the
example discussed here. The solid curve replicates the
coincidence-time histogram from our jpsT-matrix (the
green histogram in Vaadia et al. (1995), see figure 2a).
The correlation gradually builds up, starting 1000 ms
before the stimulus, and reaches a peak about 400 ms
after it. After subtraction of the estimated ‘non-
specific’ correlation (dotted line), the correlation
dynamics maintain a virtually identical time course
(dashed line). Thus, Friston’s proposition that non-
specific correlation would account for ‘marked cor-
relation before the stimulus arrives’ is not sub-
stantiated. We note in passing that event-related
‘anticipatory’ activity (be it rate or correlation)
preceding stimuli or other behavioral events is fre-
quently encountered in the frontal cortex of behaving
monkeys (Tanji & Evarts 1976; Vaadia et al. 1988).

To evaluate the combined contributions of non-
specific correlation and co-varying ‘neuronal transi-
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Figure 1. Dynamic modulation of correlated firing. The solid
line replicates the diagonal (green) coincidence-time his-
togram in Vaadia et al. (1995) figure 2a. The dotted line is
the estimated ‘non-specific correlation’ for the same data.
The difference between these two graphs is shown in the
dashed line. The small fluctuations of the ‘non-specific’
correlations are the result of fluctuations in the estimated
standard deviation (the non-specific covariance is constant,
but we divided it by the standard deviation to obtain the
non-specific correlation as follows. We re-analysed the data
in Vaadia et al.( 1995), figure 2a, using svb-analysis and the
model equations (1), (2) and (4) in Friston (1995). Since,
unlike Friston, because we based our analysis on physiological
data, the values of the ‘non-specific activities’ ¢; and ¢, were
not available. Therefore the non-specific covariance (y,;) was
estimated by computing the covariance between the two
spike trains over the time window between 1500-2500 ms
after the ‘ready’ signal (cf. figure 3a). During this interval
there is no discernible modulation in the jpst correlation
matrix. This estimate, extended along the entire diagonal,
was subtracted from the covariance matrix (the raw jpsT
minus the pst-predictor (Aertsen e al. 1989)), and the
resulting difference matrix was subjected to svp-analysis. The
first pair of singular vectors (see figure 2, top traces) were
taken as estimators of the hypothetical ‘rate transients’ (7,
and 7;). To produce the prediction of the svp-analysis for our
normalized correlation matrix, we first evaluated the
contribution of the first term in equation (2) of Friston (1995)
(the product of the first singular vectors, multiplied by the
corresponding singular value). We then added back the non-
specific covariance (y,). Finally, we divided the resulting
covariance matrix by the standard deviation matrix (Aertsen
et al. 1989) and obtained the predicted correlation matrix
(figure 34). We note that there are practical difficulties with
estimating the ‘nonspecific correlation’ from spike train
data. Experimental observations show different amounts of
correlation under different conditions and at different times,
even before or in the absence of a stimulus. This is also the
case in the present example. Had we taken, for example, the
1000 ms preceding the ready signal in figure 3a to estimate
Yy we would have arrived at a higher non-specific
correlation. This, however, would mainly shift the dashed
line downwards, and hardly affect its time course.)

ents’, we constructed the correlation matrix in figure
3b, out of the first pair of singular vectors (shown in
figure 2, top traces). This matrix should be compared
with the normalized jpsT matrix in figure 34. The
‘neuronal transient’ model predicts a constant di-
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Figure 2. The first five pairs of singular vectors computed by
svp-analysis of the spike train data presented in figure 24 of
Vaadia et al. (1995). The corresponding singular values
decay slowly (A,—A;: 256, 227, 200, 169, 148). Accordingly,
there is only a slow increase in the variance accounted for by
the first few singular vectors (the fraction of the variance
contributed by each of the first five vectors are: 17%,, 149,
1094, 8%, 6%)-

agonal (the ‘non-specific correlation’) with a wide
square ‘hot spot’ around time 500 ms (see figure 35),
corresponding to the peak of the jpsT matrix (figure
3a). By contrast, the main feature of the jpsT matrix is
the gradual, elongated build-up of correlation along
the diagonal, described above (cf. solid curve in figure
1). This elongated feature is conspicuously absent in
figure 3 4. In fact, such elongated features can never be
explained by a single transient. Overall, figure 34
accounts for only 17 9%, of the variance in figure 3a. Full
reconstruction of the normalized jpsT would require
additional transients, contributing multiple hot spots
along the diagonal (strung like beads on a chain).
Indeed, additional singular vectors gradually improve
the performance of the neuronal transient model.
Visual inspection suggests that between 5-10 singular
vectors are required to recreate the diagonal buildup:
five vectors (shown in figure 2) explain 559, of the
variance in figure 34, ten vectors are needed to account
for 74 9. Clearly, such large numbers of transients are
hard to reconcile with the conventional notion of rate
coding, which assumes that the firing rate, averaged
over some appropriate time window, carries the
information. There have been indeed proposals to
broaden this definition to incorporate also the time
course (waveform) of neuronal responses. In these
cases, principal components analysis revealed that the
meaningful information was contained in the first three
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Figure 3. (a) Normalized jpst correlation matrix from figure
2a of Vaadia et al. (1995). (b) Estimation of the correlation
matrix in (a), based on the combined contributions of non-
specific correlation and the first pair of singular vectors
weighted by the corresponding singular value (constructed as
described in the legend of figure 1).

components (Richmond & Optican 1987), whereas in
the present case, even ten components are not sufficient.
Moreover, examining the nondescript waveforms of
the higher order neuronal transients (figure 2¢—¢), we
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find it hard to associate them with any consistent
modulation of the firing rates, let alone to a physio-
logical process that would be linked with them.

Thus, our analysis indicates that the neuronal
transients model can explain the experimental data
only if four conditions are met: (i) the responses of
the two neurons : and j to a specific stimulus are
characterized by 5-10 different ‘ transients’ (firing rate
modulations 7 and 7}, £ = 1-10); (ii) each stimulus
presentation evokes a mixture of these transients with
random weight factors of and af; (iii) the weight
factors of the two neurons are uncorrelated for different
k’s; but, (iv) they are correlated for the same £ (the
singular value A* is a measure of this correlation). We
conclude that Friston‘s alternative interpretation is, in
principle, possible but is not ‘a simpler explanation’
(Friston 1995) of our results.

Under these conditions, and particularly in view
of the need to invoke relatively large numbers of
transients, the neuronal transients model deviates
significantly from most rate code models. Also, pre-
liminary svp-analysis of pair correlations among a
simultaneously recorded triplet of neurons suggests
that the dominant singular vectors of a given neuron
may be different, depending on the selected ‘partner’
neuron. This would imply that the ‘transients’ are not
only a property of the single neuron, but also of the
selected pair. Evidently, this is not what could be
expected from a rate code model.

Nevertheless, we do believe that Friston makes two
important points, that provide valuable suggestions for
future studies.

l. svp-analysis is certainly a helpful tool for the
analysis of neuronal activity. It could be used to
evaluate typical temporal patterns of firing rate
modulations, and to characterize and quantify the
variability of these modulations across repeated pre-
sentations of the same stimulus. A combination of svp-
analysis with measurements of spike correlation can be
used to assess the relative contributions of these
modulations to the neural code.

2. The incorporation of ‘nonspecific correlation’
provides an attractive alternative null hypothesis for
the study of neuronal interactions. Rather than to test
against the classical null hypothesis of zero correlation
(independent firing) as the current jpst-analysis does,
it might indeed be more appropriate (stronger) to test
for the presence of correlation dynamics against the
null hypothesis of constant correlation, provided a
good experimental estimate of this constant correlation
can be obtained.

In spite of this, however, the prime objective of
Friston’s proposal is not met. The potential attraction
of his model would be that it might explain our
experimental results without the need to go beyond
the widely accepted firing rate models. As we have
demonstrated, however, this appears to be impossible,
without deviating from the conventional rate model.
We maintain that a more attractive alternative is, in
fact, to venture beyond single neuron rate coding and
to incorporate the correlation of spike firing as a
promising new mechanism to dynamically organize
neurons into functional groups.
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