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Abstract. We propose a formal framework for the
description of interactions among groups of neurons.
This framework is not restricted to the common case of
pair interactions, but also incorporates higher-order in-
teractions, which cannot be reduced to lower-order ones.
We derive quantitative measures to detect the presence of
such interactions in experimental data, by statistical
analysis of the frequency distribution of higher-order
correlations in multiple neuron spike train data. Our first
step is to represent a frequency distribution as a Markov
field on the minimal graph it induces. We then show the
invariance of this graph with regard to changes of state.
Clearly, only linear Markov fields can be adequately
represented by graphs. Higher-order interdependencies,
which are reflected by the energy expansion of the distri-
bution, require more complex graphical schemes, like
constellations or assembly diagrams, which we introduce
and discuss. The coefficients of the energy expansion not
only point to the interactions among neurons but are
also a measure of their strength. We investigate the
statistical meaning of detected interactions in an in-
formation theoretic sense and propose minimum relative
entropy approximations as null hypotheses for signifi-
cance tests. We demonstrate the various steps of our
method in the situation of an empirical frequency distri-
bution on six neurons, extracted from data on simulta-
neous multineuron recordings from the frontal cortex of
a behaving monkey and close with a brief outlook on
future work.

1 Introduction

There is a growing consensus that processing in the brain
is organized in functional groups of neurons. Following
Hebb (1949), these groups are commonly referred to as
‘cell assemblies’. Over the years, a number of different,

Correspondence to: L. Martignon

somewhat conflicting definitions of ‘neuron assembly’
have been proposed. Some of these were phrased in terms
of anatomy, others in terms of shared function (e.g.
motor), or shared stimulus response (for a review, see
Gerstein et al. 1989). One operational definition for the
cell assembly has been particularly influential: near-sim-
ultaneity or some other specific timing relation in the
firing of the participating neurons. Such temporal coher-
ence is at least in principle important to brain function: if
two neurons converge on a third one, their synaptic
influence is much larger for near-coincident firing, due to
the spatiotemporal summation in the dendrite. Thus,
synchrony of firing is directly available to the brain as
a potential neural code (Abeles 1991).

In pursuit of experimental evidence for cell assembly
activity in the brain, physiologists thus seek to observe
the activities of many separate neurons simultaneously,
preferably in awake, behaving animals. These ‘multi-
neuron activities’ are then inspected for possible signs of
interactions between the neurons. Results of such ana-
lyses may be used to draw inferences regarding the pro-
cesses taking place within and between hypothetical cell
assemblies. The conventional approach to study neu-
ronal interactions is based on the use of cross-correlation
techniques, usually applied to the activity of pairs (some-
times triplets) of neurons recorded under some appropri-
ate stimulus conditions. The result is a time-averaged
measure of the temporal correlation among the spiking
events of the observed neurons under those conditions.
Recent developments in analysis methodology have con-
siderably expanded the scope of these studies. Thus, it is
now possible to examine cooperativity in larger groups of
neurons (Gerstein and Aertsen 1985; Aertsen et al. 1987),
and to study the dynamic properties of the firing correla-
tion between two neurons in fine detail (Aertsen et al.
1989). Application of these new measures has revealed
interesting instances of time- and context-dependent
synchronization dynamics in different cortical areas,
particularly in awake, behaving animals (e.g. Aertsen and
Gerstein 1991; Vaadia and Aertsen 1992; Vaadia et al.
1995).
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Most of the above-described approaches were based
on some form of averaging, either over time or over trials.
In a real working brain, however, there is clearly no time
for averaging: problems are solved as they come, without
repetition and as singular events. Thus, recent investiga-
tions have focussed on the detection of individual instan-
ces of synchronized activity: ‘unitary events’, consisting of
precise spike patterns in multiple-neuron activity, occur-
ring more frequently than expected by chance (Abeles and
Gerstein 1988; Griin et al. 1994). Indeed, recently many
instances of such excessively repeating spike patterns were
found in multineuron activity in the frontal cortex of
behaving monkeys (Abeles et al. 1993a, b). These spa-
tiotemporal patterns typically lasted up to a few hundreds
of milliseconds, with an individual spike timing precision
of 2-3 ms. Moreover, the composition, frequency and
timing of these constellations of multiple spiking events
were often associated with the occurrence of external
(stimulus or behavioral) events. These findings indicate
that precisely timed, higher-order interactions among
groups of neurons may effectively be involved in the func-
tional organization of assembly activity in the brain.

In view of these results, we set out to develop a con-
ceptual framework that should enable us to capture the
interactions among multiple neurons in a more formal
sense. Evidently, this framework should not be restricted
to the conventional case of interactions among pairs of
cells, but also incorporate higher-order interactions,
which cannot be reduced to lower-order ones. Finally, it
should allow one to derive quantitative measures to
detect the presence of such interactions in experimental
data, by careful analysis of the statistical properties of
various order correlations among multiple neuron spike
train data. Here, we propose such a framework, based on
the probabilistic formalism of a Markov random field,
the geometric formulation of connectivity graphs, and
the information theoretical measure of entropy. We will
illustrate these various ideas by their application to data
from physiological multiple neuron recordings in the
cortex of the awake, behaving monkey.

1.1 Formulation of the problem: neuronal interactions and
probability measures

It was Caianiello’s idea (1975, 1986) to make systematic
use of what he called the #- and y-expansions of the
signum function on binary artificial neurons, aiming at
linearizing his neuronic equations. In his original nota-
tion the n-expansion corresponded to the choice of the
bipolar states + 1, whereas the y-expansion was deter-
mined by the choice of the base-two states, 0, 1. He also
studied the problem of the invariance of certain struc-
tural features expressed by the properties of these poly-
nomial expansions with respect to changes of state.

In this paper we apply his approach to the non-
deterministic version of the same situation, that is to say,
we investigate the n- and y-expansions of the negative
natural logarithm of a strictly positive probability distri-
bution on the configurations of a set of binary nodes.

More generally, we look at the polynomial expansion
of the negative natural logarithm of such a distribution in

terms of any pair of states a # b. It is an elementary but
useful observation that its coefficients determine — unam-
biguously — the minimal graph on which the starting
probability distribution satisfies the Markov property
(i.e. the induced graph is the one with the least number of
edges among those graphs, on which the distribution is
a Markov field). The connectivity structure of the graph
is not dependent on the particular choice of the states
a, b. On this graph the distribution is a Markov field, and
the polynomial expansion of its negative natural logar-
ithm is its energy, with simple expressions for the poten-
tials. The geometric and information theoretic properties
of the manifold of these distributions have been explored
in detail by Amari in a sequence of fundamental articles
{Amari 1982, 1985, 1991, 1994; Amari and SunHan 1989;
Amari et al. 1992), which form part of the theoretical
basis of this work. In our approach, which is Markovian
as well as information theoretic, we will work with the
concept of energy, i.e. the natural logarithm of the distri-
bution, and the concept of surprise, i.e. the logarithm in
base 2 of the distribution, inspired by the terminology
developed by Palm (1981).

In Sect. 2 we illustrate the construction of the minim-
al graph guided by the coefficients of the energy expan-
sion. Once the graph is constructed, the theorem of
Hammersley and Clifford (see Griffeath 1976; Grimmet
1973; Hammersley and Clifford 1968) or the polynomial
version of this theorem given by Besag (1974) can be
invoked to prove the Markov field property. Yet, in the
case of binary neurons, things are so transparent that we
present a short proof of the asserted property, for the
sake of completeness. The invariance of the graph with
respect to changes of states is also checked directly.

A straightforward interpretation of the energy coeffi-
cients as weights of the graph’s edges only makes sense in
the linear situation, i.e. when the energy expansion is of
order 2. Thus, distributions which happen to have linear
energies are in one-to-one correspondence with the
weighted graphs that represent them. Clearly, in this case
all weights are strictly dependent on the choice of the
numerical values taken by the states (they could be 0, 1 in
the binary case or — 1, 1 in the bipolar case and, more
generally, any a, b e R). In general, Markov graphs are
not apt to reflect the amount of information contained in
a density distribution, since they represent higher-order
terms simply as cliques, which are unions of edges. In
order to represent higher-order terms of non-linear ener-
gies, we use constellations, sets of edges and star-shapd
connections of more than two nodes, and assembly dia-
grams, which are schemes conceived to represent interac-
tions due to simultaneous activation and their intensities.

In specific situations, like modeling databases for
classification tasks (see, for instance, Miller and Good-
man 1993), it is appropriate to approximate the density
distribution determined by empirical data by means of
a linear Markov field. Obviously, linear and, in general,
low-order approximations have the advantage of reduc-
ing the computational complexity of the energy expan-
sion. But there are also contexts in which the information
carried by higher-order terms is of intrinsic relevance, as
is the case in the neurobiological scenario, where it is



important to detect significant simultaneous activity of
groups of neurons (due, for example, to common input
activation or some other form of activity synchronization).

Following both the classical statistical approach of
Kullback (1968) and the geometric-information theoretic
approach of Csiszar (1975) and Amari (1991, 1994), Ama-
riet al. (1992), we analyse in Sect. 3 the interaction degree
of a distribution, which can be defined as the order of the
polynomial expansion of the energy. Equivalent defini-
tions can be formulated in terms of the marginals and of
the frequencies of configurations. The distributions
whose interaction degree is less than or equal to a fixed
number also form a special submanifold; and the collec-
tion of these submanifolds satisfies interesting geometric
properties. A fundamental result (see Csiszar 1975; Kull-
back 1968) is the following:

given a distribution of interaction degree of at least
i, there exists a unique distribution of interaction
degree i, whose marginals or order i coincide with
those of the given distribution and whose relative
entropy from it is minimal. The two distributions
coincide if among those with an energy expansion
of order i they have the same degree of interaction.

An iterative algorithm that finds this ith degree best
approximation with the same ith order marginals of
a given distribution was provided in the late 1960 by
Kullback et al. (Csiszar 1975; Gokhale and Kullback
1978; Ireland and Kullback 1968; Ku and Kullback
1969), dating back to an earlier work of Deming and
Stephan (1940). A rigorous proof of its convergence was
given by Csiszar (1975). Optimal low-degree approxima-
tions of high-degree distributions become adequate null
hypotheses for the significance tests of detected
higher-order interactions. Thus, the Markov field ap-
proach to the interpretation of the frequency distribution
is combined with an information theoretic Ansatz in the
application of Fisher’s significance tests.

A natural context of applicability of our method is the
neurobiological scenario, where interactions among
neuronal spike trains have been analysed in a variety of
settings and mathematical formalisms. Significant
correlations, as treated by Palm, Aertsen and Gerstein
(1988) and by Griin et al. (1994) and significant
interactions, as we treat them here, describe strongly
interrelated notions, as will become evident in the forth-
coming sections. For reasons of consistency, we will use
the term ‘correlations’ when referring to the phenomenon
of time-related firing of spiking events and to ‘interac-
tions’ as the underlying mechanism giving rise to these
‘correlations’.

In Sect. 4 we provide a new methodology to analyse
data on multiunit recordings in a Markov field frame,
aiming at detecting interactions of all orders. We illus-
trate our method with empirical data on the frequencies
of simultaneous activity of a set of neurons obtained by
Griin et al. (1994) from the statistical analysis of experi-
mental results on multiunit recordings by Vaadia et al.
(1989, 1991).
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2 The mathematical model

The model we use to represent distributions of fre-
quencies consists of Markov fields as developed in Grif-
feath (1976). Since our aim is to model higher-order inter-
actions, we will not restrict ourselves to Markov fields on
graphs. After characterizing the class of distributions
adequately modelled by graphs, we will go on to construct
what we will call constellations and assembly diagrams.

2.1 Graphs

Assume that we are given a set of neurons (nodes, sites,
predicates, . . .) labelled 1 through N, which at each time
point can be in one of two possible states a or b, where q,
b are real numbers and a # b. With Q@ we denote the
space of all configurations of a’s and b’s on the neurons,
and with x;, 1 <i < N, the ith evaluation function that
maps each configuration on its ith component, and by
X = (xq,...,Xy) a vector in .

Let = be any strictly probability distribution on  and
denote with H the (well-defined) negative, natural logar-
ithm of 7. In terms of x;, 1 i < N, H= — In 7 admits
a unique expansion

Hx)=Go+ Y Gx;+

I<i<N

Y Giyxix;+ >

1<i<j<N I<i<j<k<N

XGijkxinXk+...+G12.”Nx1...XN (1)

(Note that we have incorporated the normalization of
7 in Gy, which in statistical physics terms is the negative
of the free energy.) This follows from the fact that H is
a vector in the 2¥-dimensional vector space R*?"" of all
functions of {a,b}" into R and that the 2" functions

{1, X1, X0, X1 X, «+ s X1 X5 ... Xy}

form a basis of R*?". Following Caianiello we use the
terms n-expansion and y-expansion for the special cases
a=1b=—1and a=0, b =1, respectively.!

We recall that a graph ¢ on A is just any set of edges
or pairs (i, j) of elements of A. If neurons i and j are
connected by an edge they are said to be neighbours; the
set of neighbours of k is denoted by A4 and is called the
neighbourhood of k. A clique is a subset of 4 whose
neurons are all neighbours of each other. A clique is
maximal if it is not strictly contained in any other one.
Let k € A and x € Q. We denote with %* the configuration
that differs from x only in the kth component and thus
attains on it the complementary value b if x, = a and vice
versa. For any fixed x € Q and ke A, we denote with
V¥(x) the set of all y € Q such that x; = y; for all j € A
We say that V*(x) is the kth vicinity of x.

'In order to determine the 2" coefficients of H, we formally expand
H(x), for each configuration x according to (1), obtaining 2" linear
equations, whose variables are the coefficients. This system has
a unique solution. If a =0 and b =1, the computations are quite

simple. By replacing x=(0, 0,...,0), we obtain —In =n(0,
0,...,0)=G,. By replacing x =(1,0,0,,...,0), we obtain —In
7(1,0,0,...,0) =Gy + G;, and so on {(compare with (7) in Sect. 3)
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Given a graph ¢ on a set of N nodes A with possible
states a, b and a strictly positive distribution = on the
space 2 of all configurations, we say that = satisfies the
Markov property on ¢ if

‘@r(xi|xj>j #'_ l:JEA)
= Pr(x;|x;, j # i, j is a neighbour of i). (2)

fori, 1 <i< N, x varying in . Here, as usual 2r(A|B)
stand for the probability of event 4 given event B. If
r satisfies the Markov property on ¥, it is a Markov field
on A.

We now go back to the general situation where 7 is
just any strictly positive distribution on © and give
a simple rule for the construction of the graph induced by
7. Observe that = obviously has the Markov property on
the fully connected graph & = {(i,j): i #J, i,j € A}.

The graph ¢ induced by = is obtained by drawing
every edge (i, j) such that the labels i and j appear as
subindices of a non-zero coefficient of H = — In 7.

Remark 1. We will not graphically represent the self-
loops corresponding to terms G; x;, since we are
mainly concerned with interactions between two or more
neurons.

If % denotes the graph obtained according to the method
given above, then = has the Markov property on 4.
Furthermore, ¢ is the graph with the least number of
edges satisfying this property.

Example 1. (i) The distribution
T=e" Ind0 + x;In2 + x,1n2 + (x;x;x3x4) In2 ‘induces the graph:

2

4

Observe that, in this case, 4 is connected, in fact, fully

connected.
(ii) The distribution 1t = ¢ =K #x1¥a + xaxe +x3%) where K {s
the normalizing constant, induces the graph

1.\.
2 ~e3

6

w> &

5

Theorem 1. If % is the graph induced on A by a strictly
positive distribution 7 on @, then

(1) = satisfies the Markov property on 4.

(i) % is the smallest graph on the nodes of A on which
7 satisfies the Markov property.

(iii) The graph ¢ induced by = is invariant with respect
to changes of states, i.e. if a is replaced by a’ and b by b,
where a' # b, the graph ¢’ induced by n — redefined
accordingly on the new configuration space Q' — co-
incides with 4.

Proof. (i) We set

N, ={j: j and k are sub-indices of a coefficient
G, ., #0}

and

VEx) = {y: x; = yi,i € Ny}

Given the form of H(x), we have

H(x) - H(&") = H(y) - HF") VyeV*x) 3)
Therefore

Pr(xi|x;, ie Ny)

Zy evix CXP — H(y)
Zye VE(x) €xXp — H(y) + Zye V*(x) eXp — H(yk)

- Zys vix CXP — H(y)
[1 4 exp(H(y) — HF*)IT,cpimexp — H(y)

1
~ l+exp(H(y) — HFY)

where we used (3) in passing from the second to the third
line. Thus, 7 has the Markov property on %, and N,
coincides with the set A", of neighbours of k, as defined
above. In order to prove (ii), we observe that (3) ceases to
hold if we eliminate an edge (i, j) from 4.

(iii) We begin by remarking that there exist o, f € R
such that aa + f =& and ab + § = b'. If X is any vector
in Q, we write X' for ax + . On Q' we define 7'(x') = n(x)
and write H = — In n". The coefficients of H' are given
by

' —— S
iy g X <Gi1iz...

2
+ ﬁ Z Gfll'z NP 8 P A

I iy <he2 SN

+ B3 Y Gy .

[<igy <z <saa €N

= Pr(x| xi, i # k) 4)

i:+ﬂ Z Gi,iz,..i,iHl

1<ie; <N

Isiseidsezises

+ ... +,BNG,-1,-2___,-N> (5)
Clearly, if G, ; is the non-zero coefficient of highest
order in the expansion of H we necessarily have
G,  ,#0. For a lower-order non-zero coefficient
G, . .., wemay have G; , =0, yet this happens only if
some other coefficient G; ; of H, such that
{iy, ...,i,} = {iy, ... .0} is non-zero. We deduce that



some coefficient of H' whose sub-indices include those of
G . ., is necessarily non-zero. This proves our asser-
tion. O

Remark 2. Observe that the y-expansion of — In & rep-
resents the energy in terms of the canonical potential of
this Markov field (see Griffeath 1976).

The simplest way to determine the graph induced by
7 is to make use of the y-expansion of — In 7. In fact, in
the case of the bipolar states { — 1, 1}, the functions

{ifA: Ac A}, where fs = [] x;

N
2 icAd

form an orthonormal basis of R{ ~ 1", Thus, the coeffi-
cients of the #-expansion H are given by

1 1
Gy= <ﬁfA: H> = — N {fa,Inm>

I

1
— 55 LS Inm(x)

and H(x) =Y, ., G4-fa(x), where { ... ) denotes the
usual scalar product in R~ 51",

2.2 Constellations and assembly diagrams

We saw that the minimal graph induced by a
strictly positive distribution © on @ is uniquely
determined by the distribution and invariant with
respect to changes of state. The converse is not
true; take for instance m, = e =K1 T xixe +xixex) gpd g, =
g~ (K+xxetxx+nxt+xx) Both induce the same graph:

2 3

In certain contexts this can be a drawback of the graphs
constructed above. Another problem is that, in general,
there is no 1 — 1 identification of the coefficients of
H with the edges of 4. However, for distributions with
linear energies, i.c. energies of the form

H(x) = GO + Z Gixi + Z

I1<ig<N I1<i<j<N

Gixix; (6)

the situation is simple. In this case there is a natural 1 — 1
correspondence between weights of edges and second-
order coefficients of H. This leads to the following
definition.

Definition 1. Let = be a strictly positive distribution on
Q. We say that =z is a linear Markov field if H = — In
7 has a polynomial expansion of degree two.
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If 7 is a linear Markov field on A and {a,b} is the set of
states considered, each coefficient G, ; # 0 of H= —1In
7 will be identified with the weight of the edge (i, ).
Obviously, the set of weights is strictly dependent on the
choice of a, b.

Linear Markov fields include e.g. discrete Hopfield
models and Boltzmann machines. In both cases the third
term of (6) is written as x* Jx, where J is an n x n matrix;
our G;; is then 3(J;; + J;), and J;; = J .

Our purpose is now to discuss more complex graphi-
cal schemes that represent higher-order interactions. The
first one we propose is a mathematical generalization of
graph, called constellation.

Definition 2. Let © be a strictly positive distribution on
2 and H= —In =n. For every non-zero coefficient
G, . ., in H, we say that the r-tuple (iy, . . . ,i,) is a star.
In the case of two nodes only, we represent the corres-
ponding star by an edge. If a star has more than two
elements, or vertices, we represent it graphically by con-
necting the vertices iy, . .., i, with an additional point
¢;, ., which is not in A, as below:

iy

t

We denote by &% the set of all stars corresponding
to maximal cliques in the graph determined by H and
call the union of ¢ and % the constellation induced

by =

Example 2. Take ¢~ *x% +xx%) where K is the nor-
malizing constant. The constellation ¥ induced by 7 is

A moment’s reflection proves the following theorem.

Theorem 2. The constellation induced by a strictly posit-
ive distribution on a binary configuration space is invari-
ant with respect to changes of state.
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Constellations share with graphs the invariance property
and are useful in contexts where changes of state are
necessary. But there are situations in which only a fixed
pair of states makes sense, and the important issue is to
represent all interactions, and only the interactions. In
this case an assembly diagram, like the following, seems
appropriate:

Gmopz

Gijk Giimn

Here we arrange the neurons in a horizontal array
and connect the subsets corresponding to non-zero co-
efficients of H to external points. It is possible to intro-
duce a vertical dimension in the scheme, in order to
represent the numerical values of the coefficients, as we
will do in Sect. 3. Obviously, interactions between two
neurons are also representable as connected by an ex-
ternal point. Thus, assembly diagrams will be useful in
the neurobiological scenario in those situations in which
simultaneous activation, even of two neurons, is the phe-
nomenon being investigated, rather than mono-synapti-
cal connections.

Remarks. Whereas in specific situations in the neuro-
biological context higher-order coefficients may carry
fundamental information, in other scenarios the tendency
is to linearize the Markov field, ie. to replace it by
another one with a second-order energy. This mainly
reflects the wish of reducing the computational complex-
ity. Such a replacement inevitably causes losses, and the
effort is to minimize them. If the purpose is to model
databases in order to perform classification tasks, trun-
cating the energy expansion after the second-order coeffi-
cients and renormalizing provide an adequate linear ap-
proximation. Another way of reducing higher-order to
second-order energies was proposed and used by Pinkas
(1991) in the context of propositional calculus. In his
approach propositions are embedded in an energy ex-
pansion. The advantage of this embedding is that energy
minimization is equivalent to satisfiability. In this con-
text, what has to be preserved when replacing a higher-
order energy by a second-order one is the set of global
minima. Pinka’s strategy is to adjoin hidden units to the
original set of nodes and determine the weights of the
resulting edges in such a way that the new energy has the
same set of minima as the original one.

In the information theoretic approach, as developed
by Kullback et al. (Gokhale and Kullback 1978§; Ireland

and Kullback 1968; Ku and Kullback 1969) and Csiszar
(1975), the effort is to linearize with a minimal loss of
relative information. Kullback et al. found algorithms
that approximate higher-order energies by means of
lower-order ones, minimizing the loss of relative entropy.
We will discuss their results in the next section. Amari
(Amari 1982, 1985, 1991, 1994; Amari and SunHan 1989;
Amari et al. 1992) unified the statistical, the information
theoretic and the geometric approches of the exponential
family of probability distributions by conceiving a math-
ematical model whose structural aspects reflect the prop-
erties investigated in each approach. In this framework,
Amari also discussed the approximation of distributions
by Boltzmann machines (Hinton and Sejnowski 1986),
minimizing relative entropy.

3 The meaning of the energy coeflicients
in the y-expansion

As we have seen, weighted graphs are adequate repres-
entations of linear Markov fields. In this section we
propose assembly diagrams as adequate models for small
sets of neurons embedded in larger nets, aiming at repres-
enting all possible simultaneous activations due to com-
mon inputs. Thus, we start with a list of (strictly positive)
frequencies of configurations of zeros and ones on a set of
N neurons and calculate the energy expansion of this
distribution. We proceed by drawing an assembly dia-
gram like the following:

Y Strength

where the joining points above the neuron-array repres-
ent positive coefficients and joining points below the
neuron-array represent negative ones. The heights (and
depths) of the joining points correspond to the absolute
numerical values of the coefficients.

3.1 Positive and negative interactions

Our wish is now to extract from the energy coefficients
all the information they contain on possible inter-
actions. Amari et al. (1989) investigated the informa-
tion on stochastic interactions contained in the second-
order coeflicients of a linear Markov field on binary
(0, 1)-neurons. Their assertion is that G;; represents



the degree of conditional dependence of the firing of
the ith and jth neurons. In what follows, we generalize
this statement. Assume that we have a strictly positive
probability distribution = on N neurons, with possible
states 0 and 1, and that the negative logarithm H of = is
expanded as in Sect. 2. An easy computation shows that
if 4 is any subset of {1, ... N}, then

—Ga= ) (=D % Inn(y,) (7
ac 4

where y, denotes the vector having ones at the compo-

nents belonging to a © A and zeros else where. Suppose,

for instance, that we are dealing with six neurons and

A ={1,2,3}. Solving for n(1,1,1,0,0,0) in the equation

above, we get
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3.2 The interaction degree of a distribution

Assume that six coins are tossed together over and over
again and that we are informed about the outcomes of
each trial, but we cannot see the coins. These coins might
be all connected to each other by threads we are not able
to see, or perhaps an influence on the outcome. This is, at
least, our conjecture. If after a large number of trials we
observe that the outcomes are uniformly distributed, our
tendency will be to imagine that there are no connections
between the coins and that all coins are fair coins.
Clearly, the energy expansion of the uniform distribution
is reduced to the constant term G,. If the coins are not

7(1,1,1,0,0,0) = (exp — G123)[

The ratio on the right-hand side will be called interaction
threshold of neurons 1, 2, 3. If G;,3 = 0, then the prob-
ability of the first three neurons firing simultaneously can
be expressed exactly in terms of the probabilities of the
simultaneous firings of their strict subsets. Loosely
“speaking, the interaction of these three neurons is not
real since it is made up of the interactions of their subsets
of two and one neurons. Thus, we declare that our data
do not represent an interaction of this triplet of neurons.
If — G1,3>0, the interaction threshold of the three neu-
rons is dominated by the probability of.their simulta-
neous firing, which is adequately interpreted as triple
correlation or positive interaction of the triplet. Conse-
quently, a negative interaction or an anticorrelation will
correspond to a positive coefficient G ,5.
These considerations are easily generalized to the
case of any finite number of neurons. They lead to the
following definitions.

Definition 3. Let n be a strictly positive distribution on
the 0, 1-configuration of a set of N neurons. Furthermore,
assume that the energy H = — In 7 has been expanded as
in (1). A subset 4 of neurons is

(1) correlated if — G,>0

(1) uncorrelated if G4 =0
(i) anticorrelated if — G 4«0

Inspired by the ideas developed in Palm et al. (1988),
— G4 will be called the interaction surprise of the set of
neurons A.

Remark 3.2 The G’s are quantities which express the
‘direct’ interaction of neurons in A4, which cannot be
reduced to those of partial interaction (so that 4 is what
we call a ‘star’). From the geometrical point of view, the
direction in which G, changes but no marginals 7y
(where B < A, properly) change is orthogonal in the
manifold of probability distributions (in the sense of the
Fisher information metric, or equivalently in the sense of
correlations of the corresponding score functions) to any
changes of the marginal distributions g, B = 4 (B # A)
(see Amari and SunHan 19§9).

2 This fact was kindly pointed out by the referee

7(1,1,0,0,0,0)7(1,0,1,0,0,0)7(0, 1, 1,0,0,0)n(0, 0,0, 0,0, 0) .
(1,0,0,0,0,0,0)7(0, 1,0,0,0,0)7(0,0, 1,0,0,0)

interconnected but some of them are ‘unfair’, we will
eventually have an energy expansion of polynomial
degree 1.

In order to discuss interactions of degree higher than
1 1n a formal way, we must make use of the elementary
concept of marginals of a distribution. Let us briefly
recall some basic facts on probability distributions in the
restricted context of configuration spaces on binary
nodes.

Let 7 be a strictly positive distribution on the set of 0,
I-configurations of a set A of N neurons. The marginals
of the distribution are defined as the probabilities of
configurations taking fixed pre-established values at
some fixed components. The marginal functions are de-
fined as follows:

Definition 4. Let A = A. If A = 0, we define 7y = 1, For
A # 0, we define

4(x) = Prob(x;, i€ A)
for every x € Q.

The marginal functions have a dual character with
regard to the products of components in the y-expansion
of the energy. Amari investigated this duality in an
information geometric framework. The interesting aspect
in our context is that the marginal functions allow us
to construct another important potential, which again
reflects the interactions of sets of neurons. For every
A € A define

Jax) = Y (= D"~ "nm(x)

bc 4

Combining the usual terminology of information theory
(see e.g. Cover and Thomas 1991} and the concept of
surprise (Palm 1981), we call J , the mutual surprise of the
subset A of A. We set J, = 1 and observe that the family
Ji, A = A forms a potential of our Markov field (Grif-
feath 1976), since the sum of all mutual surprises is the
energy of m. The canonical potential is related to the
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mutual surprise potential by means of the following
equation:

Gyl xi= Y

icAd bcAcdc A

(= D7) ©)

where A # @ and x” is the configuration that coincides
with x at the components in b and takes the value
0 elsewhere. The proof of this fact can be found in
Griffeath (1976), Prop. 12.14.> We are now ready to
define the degree of interaction of a distribution in terms
of marginals. The definition we present here follows the
classical approach of Ku and Kullback (1968):

Definition 5. For a fixed k with 1 < k < N, let .#, be the
set of all ith order marginals of = for 1 < i < k. Assume
that k is the first number between 1 and N for which .#,
determines the distribution, in the sense that it represents
sufficient statistics for . Then k is called the interaction
degree of 7 or the dependence degree of =. It will be
denoted with deg(n).

Clearly, deg(n) is well and uniquely defined. The follow-
ing theorem is from Kullback and Csiszar.

Theorem 3. Given a distribution = with deg(n) > i, there
exists a unique distribution of interaction degree i, whose
marginals of order i coincide with those of the given
distribution and whose relative entropy from it is minim-
al, among those with an energy expansion of order i. This
distribution is the one with maximal entropy among
those of degree i and same i-marginals as 7. .

An iterative algorithm that finds this ith degree best
approximation of a given distribution maintaining its ith
order marginals was provided in the late 1960s by Kull-
back et al. (Csiszar 1975; Gokhale and Kullback 1978;
Ireland and Kullback 1968; Ku and Kullback 1969; see
also Bishop et al. 1989). A rigorous proof of its conver-
gence was given by Csiszar (1975). The following theorem
combines the concepts of ‘sufficient statistics’ and ‘log-
linear models’ in classical multivariate analysis (see
Bishop et al. 1989; Martignon and Laskey 1995).

Theorem 4. For every strictly positive distribution =,
deg(n) coincides with the order of the polynomial expan-
sion of the energy.

Although deg(n) does not depend upon the choice of
states, we usually refer to the y-expansion of the energy.

We are now ready to tackle the problem of establish-
ing the significance of the coefficients of the y-expansion
of the energy, which, as we have seen, reflect the interac-
tions implicit in the frequencies. Of course, these detected

31et 1 denote the configuration whose components are all equal to 1.
The numbers J4(1), for 4 = A, have interesting properties, which are an
analogon — at the level of expectations — of the numbers G,4. But if we
want to detect the interaction of the neurons A, G4 is more exactly
a measure than J 4(1), since the latter takes into account information on
the simultaneous firing of neurons in sets larger than 4

interactions are reliable only if the data are reliable. The
experimenter who provides us with the data may always
fear that the frequencies he or she counted were the result
of pure chance. This is one of the classical problems of
data analysis or hypothesis testing in statistics, and there
are classical methodologies to handle them. Fisher’s
methodology, which is perhaps the most popular, con-
sists of a comparison of the frequency data with those
that would arise under a so-called null hypothesis. In
Palm et al. (1988) the significance of correlations of two
neurons was established by using the null hypotheses of
independence. In other words a null hypothesis of degree
1 with the same first-order marginals of the data was used
to test the significance of second-order correlations.

If we want to test the significance of triplets instead of
couples, we have to go one step further and search for the
most adequate null hypothesis of degree 2. The natural
approach is to use the minimum relative entropy
approximation of degree 2 given by the iterative propor-
tional fitting procedure (IPFP, see Appendix A). This
procedure can obviously be used for every degree of
interaction. The method we just described can be called
the IPFP method for significance testing of interactions
detected from empirical data. It is based on the principle
of minimum discrimination information or minimum
relative entropy.

We recall that if p is any strictly positive distribution
on Q, the relative entropy, or relative information, or
even, in Kullback’s wording, the discrimination informa-
tion of p with respect to 7 is given by

i) = X ) ln%

4 Detecting interactions among six neurons

The method we developed was tailored for a specific task
in data analysis, which arises in experimental situations,
where the inner structure of a system can only be
‘guessed’ from outcomes of phenomena that, according
to our hypothesis, reflect this structure. In the preceding
section we discussed the paradigmatic situation of coins
being tossed in such a way that we do not see them, but
we know the outcome of each trial.

Another example is the following: suppose we want to
detect the associations existing among six people, by
observing, through a long period of time, the frequency
with which subsets of them have lunch together. If we
observe that three of them meet for lunch often, we will
tend to think that they are associated, even more so if the
subsets of order two of this triplet of persons meet for
tunch seldom. Every meeting for lunch may be encoded
as a vector of 0’s and 1’s, where each O represents an
absent person and each 1 a present person. The coeffi-
cients of the energy expansion of the frequency distribu-
tion of these vectors will give us an idea of all possible
associations.

The concrete application we will discuss here con-
cerns data analysis of ‘real neurons’. For an analysis of
neurobiological scenarios, the nodes and connections of



our abstract model must be adequately specified. The
straightforward correspondence attributes nodes to
neurons and the states 0, 1 to the neurons outputs. This
means that a neuron is in state 1 whenever it generates an
action potential and in state 0 if it is silent.

The specific experimental situation we are investigat-
ing here is the following. While a monkey was performing
a delayed sensory-motor association task (data from
Vaadia et al. 1989, 1991, 1995), the simultaneous spiking
activity of several neurons was recorded. The monkey
had to localize stimuli (visual or auditory, data are
pooled) by putting his hand on a touch bar after a GO
signal. The data for analysis (see Appendix B) were taken
from time sections around the GO signal in trials selected
for one particular spatial location. We normalized for
stationarities of firing rates as follows: for each of the
neurons, we estimated the instantaneous firing rates
by evaluating the time-dependent probability of spike
occurrences, averaged over trials (so-called PSTH). Ob-
serving these firing rates for all neurons in parallel and at
discrete time steps (bins), we obtain a series of vectors,
each one containing the instantaneous firing rates of the
several neurons at the particular instant in time. These
vectors are clustered by use of the k-means cluster algo-
rithm. Vectors within a cluster define the time segment, in
which the rates of the contributing neurons are (quasi)
stationary in parallel, and thus represent a ‘joint-station-
ary’ regime (S. Griin, manuscript in preparation).

The simultaneous observation of the spiking events of
N, e.g. six, neurons can be mathematically described as
N-parallel point processes (Griin et al. 1994). By appro-
priate binning (here 3 ms), this can be transformed to an
N-fold (0, 1) process. We can describe the joint activity of
the N neurons for each time step (bin) as an N-vector,
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least once. This has been our approach, and in the third
column of Appendix B.1 we have listed the values of
a strictly positive approximation of our original frequency
distribution. Modifying the experimental data is a delicate
matter. We have chosen the naive attitude of introducing
a small quantity ¢ (here ¢ = 1.0 x 10~ 1) as the frequency
of all ‘silent’ configurations. We are aware that equal
treatment of all silent configurations is against the experi-
mental evidence. In fact, from the data we have, we see that
frequencies of configurations dramatically decrease as the
number of 1’s in them increases. A sounder way to produce
an adequate strictly positive approximation of the empirical
distribution would be to set &2 for silent configurations with
two 1’s, &* for silent configurations with three 1’s, and so on.
There are, of course, even better statistical strategies based
on the analysis of available data. Yet for the moment, since
we are essentially illustrating a methodology, we will work
with this rough approximation.

The interaction surprises of couples and triplets for
the strictly positive approximation of the frequency dis-
tribution are listed in Appendix B.2. These numbers will
be helpful for the analysis of those couples and triplets
that are not silent, i.e. those whose coincident firing has
a strictly positive ‘real’ frequency. For those which were
silent during the observation interval, we have to declare
that we have insufficient data. We begin by examing, for
example, triplet {2,4,5}, which is non-silent (in fact,
it occurred twice during the 930 time steps). We observe
that one of its subsets of order two is silent, namely
{2,5}. All other subsets are non-silent. If we were to
calculate G,,5 by (7) for the empirical distribution
7, we would get infinity. Writing down (8) for the triplet
{2,4, 5} for the empirical distribution n, we obtain the
formal expression

7[(0, 1’ O, 1’ 150) = (exp - G245) I:

containing the 0’s and 1's across the neurons. For
N neurons, this vector can take any of 2¥ possible values;
coincident activity of any subgroup of neurons is repre-
sented by those vectors which contain multiple occurren-
ces of 1’s in their respective coordinates. By counting the
number of times such configurations occur during the
recording, we can experimentally determine the fre-
quency of occurrence of such coincident events. In Ap-
pendix B.1 we have listed in a table all 64 theoretically
possible configurations for the six neurons examined
(first column), together with their computed frequencies
of occurrence during the selected time interval of 930
time steps (second column). Observe that only 16 of 64
possible configurations did indeed occur at least once
during this time period; for the remaining 48 configura-
tions the empirical frequency of occurrence equals zero.
Since our approach is based on expanding the negative
logarithm of the distribution, these zero frequencies evi-
dently pose a serious problem. One could argue that the
zero frequencies are, in fact, due to the finite duration of
observation, and that for a long enough measurement
each possible configuration would eventually occur at

7(0,1,0,1,0,0)(0,0,0, 1,1,0)n(0, 1,0,0, 1,0)x(0, 0, 0, 0,0,0) 1)
(0,1,0,0,0,0)7(0,0,0, 1,0,0)7(0,0,0,0, 1, 0)

Since 7(0,1,0,0, 1, 0) is zero and no other frequencies are
zero, we see that 7(0, 1,0, 1, 1, 0) definitely dominates the
interaction threshold of this triplet. If we replace
7(0,1,0,0, 1,0) by a small quantity ¢ and let ¢ tend to zero,
then the interaction threshold tends to zero. This asymp-
totic study based on the empirical distribution indicates
that our triplet {2,4, 5} has a relevant interaction. A look
at G,45 in the energy expansion of the strictly positive
approximation p of 7= shows us that, as expected, the
interaction surprise of {2,4,5} is high. For the other
non-silent triplet {1, 2, 5}, we can perform a similar analy-
sis. There are two silent subsets, which are the pairs {1, 2}
and {2,5}, and the approximated interaction threshold,
obtained by replacing those two zero-frequencies by e,
tend to zero as ¢ tend to zero. It is important to note that
this would be so even if we had chosen different small
quantities for the two silent configurations. The coeffic-
ient Gy,5 in Appendix B.2 denotes a very high interac-
tion, even higher than that of triplet {2,4,5}. This is
plausible since {1,2, 5} has more silent sub-pairs.

The next step is to estimate the significance of these
triplet correlations. An adequate measure for the global
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presence of triple correlation in our empirical frequency
distribution is the relative entropy of its strictly positive
approximation p from the distribution of interaction
degree 2 which has its same second-order information,
that is, its same second-order marginals. The IPFP ap-
proximation of degree 2 of the strictly positive approxi-
mation p, which maintains its same second-order mar-
ginals, is given by p* in the fourth column of Appendix
B.1. The relative entropy of p from p* is

J(p; p*) = 0.00805694

This number indicates the presence of triple interaction
[the relative entropy test is equivalent to the G-test (see
Bishop et al. 1989) and approximately equivalent to the
x? test]. The Fisher significance test shows that triplet
{2,4,5} has a significant triple interaction at the 0.05
level. In fact, if p* denotes the model obtained by
performing IPFP on the set

{p1<i<6}U{p; 1 <i<j<6}U{paas}

it can be calculated that p* cannot be rejected at the 0.05
level.

If we are interested in a local analysis of the inter-
action of triplet {2,4,5}, we can again make use
of the second-degree approximation p* of p. The prob-
ability of obtaining the frequency 335 = 0.00215054
of configuration (0,1,0,1,1,0) in independent trials,
assuming that the chances of success are
p*(0,1,0,1,1,0) = 0.000379707, is

C5%° x (0.00037907)% x (1 — 0.00037907)°28 (11)

This probability is low (0.05 is the usual threshold for
significance). If our empirical frequencies for triplets were
higher (= 0.01), we would feel able to declare that the
simultaneous firing of neurons {2, 4, 5} is significant. But
we are in a quite different situation since more than half
of all configurations are silent. What we can do is to
compare the probability obtained in (11) with the maxi-
mal possible probability of obtaining configuration
(0,1,0,1,1,0) twice in 930 independent trials. This maxi-
mal probability is attained for the case that the chances
of success are exactly 535 and is given by

030 2 2 928 928
C2 X<93o> 8 <930> (12)
The ratio of (11) over (12) is approximately 0.25. The
analysis of non-silent couples is more rewarding. From
the data we see, for instance, that {3, 5} has a frequency of
0.00752688 and that its subsets (i.e. the single neurons) in
this case are obviously also non-silent. In this case we can
easily compute the empirical interaction surprise from
the data since here there are no silent conclusions in-
volved. We determine the distribution of degree 1 with
the same first-order marginals of the strictly positive
approximation p (which is simply the product of the
first-order marginals of p) and perform the same analysis
that was performed for the second-degree interactions.
We see that the relative entropy of p from the first-degree
approximation is ~ 0.7, and that there are quite a few
significantly interacting couples. An interesting couple is

{3,4}, since its interaction surprise is almost zero, which
means that these two neurons are nearly independent.
Independence, i.e. lack of a positive or negative inter-
action, is also an important phenomenon in the study of
coincident firing in biological neural nets.

As a result of this analysis, we feel that for the study of
empirical data we need a more subtle concept of ‘inter-
action degree’, which will take into account the informa-
tion theoretical aspects discussed above. The following
definition seems natural:

Definition 6. Let p be a strictly positive approximation.
We will say that the interaction character of p at the
¢-level is k, if k 1s the maximal number of simultaneously
non-silent with the following property: the relative
entropy of p from the IPFP approximation of degree
(k — 1) of p is greater or equal to «.

If we are dealing with an empirical distribution with
silent configurations, we will have to refer to the inter-
action character of its strictly positive approximations.

5 Discussion and outlook

After a formal treatment of graphical schemes associated
with the energy expansion of the frequency distribution,
we investigated the meaning of the coefficients of this
expansion in detail. We propose what might be a meth-
odology for analysing interactions indicated by the co-
efficients of the energy expansion. We are aware that
other methodologies with a more subtle significance test
are possible. We only claim that IPFP approximations
provide the adequate substitute of the degree 1 null
hypothesis which has been used so far to estimate the
significance of second-order correlations. There are es-
sentially two cases:

(I) The frequency distribution is strictly positive.
(IT)y Some configurations are silent.

In the first we perform the following steps:

(i) We expand the negative logarithm of the distribution.
(i) We draw the assembly diagram corresponding to the
expansion.

(iti) For every non-zero coefficient of order k > 2 of the
energy expansion, we calculate the IPFP approximation
of order k — 1 of the distribution.

(iv) We calculate the interaction character of p.

(v) We perform significance tests using the models
obtained through the application of IPFP as null-
hypotheses.

In the second case we begin by declaring that for all silent
configurations we have ‘insufficient data’. Then we pro-
ceed as follows:

(i) We approximate the empirical frequency distribution
by means of a strictly positive one, obtained by adding
a quantity ¢ to every zero-frequency and renormalizing.
(i) We expand the negative logarithm of this approxima-
tion.



(1)) We proceed as in case (I) and calculate the inter-
actions character of the approximation.

(iv) For every non-silent configuration we look at the
interaction threshold [see (8) in the text] . If both numer-
ator and denominator contain &’s, we are unable to
continue our analysis. If not, we check whether the fre-
quency of the configuration dominates or is dominated
by the threshold. The associated coefficient will be an
indicator of correlation or anti-correlation of the corres-
ponding set of neurons.

(v) Of those subsets of neurons which admitted a com-
plete interaction analysis (i.e. the experimental frequency
of their simultaneous firing was strictly positive, and the
interaction threshold calculated in terms of the strictly
positive approximation did not contain ¢&'s in both
numerator and denominator), we calculate the signifi-
cance using the corresponding IPFP approximation.

As already mentioned, our attitude of choosing an equal
quantity ¢ as the frequency of all silent configurations in
the strictly positive approximation of the experimental
frequency distribution is very naive. Yet, in the analysis of
our data [see (iii)], we have been careful enough to not
make a statement concerning the interaction of those
groups of neurons whose interaction threshold does not
tend to a defined limit, as ¢ tends to 0. There are methods
to decide how to choose ¢ based on a statistical or even
a purely Bayesian analysis of the data. This detailed analy-
sis of the optimal ways to approximate the experimental
frequency distribution is the object of future work.

Also, the significance tests we proposed can be re-
placed by more sophisticated ones. The criteria for
establishing sound significance tests in this empirical
situation are far from being clear. Ours is just the effort
to begin a formal discussion on the subject. In our set
of data, non-silent configurations with two or more 1’s
were either silent or had very low frequencies. To declare
them as ‘significant’ seems somewhat risky. The problem
of establishing which should be the lowest frequency
to be taken seriously is unsolved. There are both strictly
statistical and strictly bayesian efforts towards a solution.
In the meantime, before a consolidated strategy is gener-
ally agreed upon, one might decide to introduce a thre-
shold of relevance in purely absolute terms and consider
as candidates for significance testings only ‘relevant’
interactions. In our example, 535 or even 35 could
be the threshold of relevance. In this case we would be
forced to admit that our data do not indicate significant
interactions of triplets. This type of discussion is still
at a speculative level.

In the case of strictly positive frequency distribu-
tions, though, we have shown that Markov fields
and assembly diagrams provide a theoretically justified,
conceptually meaningful and computationally tractable
framework for data analysis of coincident firing. The next
steps are to perform this type of analysis on larger sets of
data on the one hand and to check its efficiency in the
case of simulated spiking neurons on the other. We are
currently elaborating such a more detailed study of the
significance of correlations and fully bayesian treatment
of neural interactions.
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Appendix

A The iterative proportional fitting procedure (IPFP)

We sketch the iterative procedure we use in order to obtain the
minimum relative entropy estimate of interaction degree 2 of a distribu-
tion, keeping all its second-order marginals fixed. This is a special case
of an approximation algorithm proposed by Kullback et al. (Gokhale
and Kullback 1978; Ireland and Kullback 1968; Ku and Kullback 1969;
Kullback 1948) for the purpose of hypothesis testing in multidimen-
sional contingency tables. A detailed treatment of this kind of algorithm
can be found in Bishop et al. (1989).

Assuming that we have a distribution n on the space Q of all
configurations of 0’s and 1’s on N neurons and maintaining all nota-
tions introduced through the article, we state the problem of con-
strained probability estimation as follows: Let k be an integer with
1 €k < N and let 2% be the manifold of all distributions with an
energy expansion of order k or less. For any fixed set of marginals of
order less than or equal to k, find the (unique!) distribution p* ¢ 2®
that minimizes the discrimination information from n defined by

F(pm) =Y p(x)In )

n(x)

and maintains the fixed set of marginals. That this problem is well
posed and solvable is the statement of a fundamental result with a long
history (see Bishop et al. 1989, Sects. 10.2 and 10.2-1). We present the
iterative solution given in Ku and Kullback (1968, 1969) and Csiszar
(1975), concentrating on the case k = 2, which is of interest for us. With
all second-order marginals fixed, p* is obtained as the limit of the
iterates described by the equations:

KS+ 1(x) - pill}(x) KS(X)

14 =
Pl

KS+2 p(lvﬂ(x) KS+1

prTAX) =T o (%)
PR

¢ P(N»x,N}(x) -

p(I\S+l)S(X): KT (K+1)S l(x)

ot )

where § = N(N —1)/2, K =0,1,2, ... (the cycle index), p" is the rth
probability distribution in the iteration and p° is the uniform distribu-
tion. The convergence of this sequence of iterates was first rigorously
shown by Csiszar (1975).

B Example

B.1 The experimental frequency distribution, the strictly positive approxi-
mation, and its IPFP approximation of degree 2, which fixes second-order
marginals

4Preliminary versions of this work were published in the proceedings
of the Workshop ‘Wissensverarbeitung mit neuronalen Netzen’, 17.
Fachtagung fiir kiinstliche Intelligenz (see Martignon et al. 1993) and in
the proceedings of the Biocybernetics Seminar of the Istituto di Ciber-
netica del CNR, Naples, September 1993 (see Martignon et al. 1994)
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Note: The zeros of the original distribution are approximated by
a small ¢, which yields the (normalized) distribution p. The distribution
p* denotes the minimum discrimination information estimate of p. After
10 cycles there were no changes at the 8th digit of the value of relative
entropy. The low value of the relative entropy is also an indicator of the
weakness of triple interaction.

Number of cycles: 10
rel. Entropy I(p; p*) = 0.00805694

Configurations Original P - p*
distribution
000000 0.744086 0.744086 0.74569
000001 0.00322581 0.00322581 0.00322581
000010 0.0462366 0.0462366 0.0445135
000011 0 1+10(~ 11) 1.6%10( — 10)
000100 0.0698925 0.0698925 0.0687409
000101 0 1%10(—11) 1.6%10( — 10)
000110 0.00107527 0.00107527 0.0023463
000111 0 1+10(—11) 4.5x10(— 18)
001000 0.0354839 0.0354839 0.0361773
001001 0 1x10(—11) 1.6+ 10(— 10)
001010 0.00752688 0.00752688 0.00686222
001011 0 1x10(—11) 2.5x10(—17)
001100 0.00322581 0.00322581 0.00288421
001101 0 1%10(—11) 6.8 x10(— 18)
001110 0 1x10(— 11) 0.000312817
001111 0 1+10(—11) 6.1%10( — 25)
010000 0.0215054 0.0215054 0.0190213
010001 0 1x10(—11) 1.6%10( — 10)
010010 0 1x10(—11) 0.00257471
010011 0 1x10(—11) 1.7%10(— 17)
010100 0.00322581 0.00322581 0.00490597
010101 0 1x10(—11) 2.2%10(—17)
010110 0.00215054 0.00215054 0.000379707
010111 0 1x10(—11) 1.4%10( — 24)
011000 0 1410(—11) 9.2%10(— 11)
011001 0 1x10(—11) 7.9%10( — 25)
011010 0 1%10(—11) 3.9+ 10(—11)
011011 0 1x10(—11) 2.8+ 10(— 31)
011100 0 1+10(—11) 2.0%10(—11)
011101 0 1+10(—11) 9.5%10(— 32)
011110 0 1+10(—11) 5.0%10(— 12)
011111 0 1%10(—11) 1.9%10(— 38)
100000 0.050376 0.0505376 0.0503705
100001 0 1x10(—11) 1.6+ 10( — 10)
100010 0.00752688 0.00752688 0.00781345
100011 0 1+10(—11) 2.0%10(— 17)
100100 0.00215054 0.00215054 0.00186562
100101 0 1x10(—11) 3.1+10(— 18)
100110 0 1x10(—11) 0.000165472
100111 0 1%10(—11) 2.3%10( — 25)
101000 0.00107527 0.00107527 0.000700975
101001 0 1+10(—11) 2.2+10(— 18)
101010 0 1x10(—11) 0.000345513
101011 0 1+10(—11) 9.3%10(— 25)
101100 0 1+10(—11) 0.0000224534
101101 0 1+10(—11) 3.9%10( — 26)
101110 0 1%10(— 11) 6.3x10(— 6)
101111 0 1%10(—11) 9.1x10(— 33)
110000 0 1x10(—11) 0.000728399
110001 0 1+10(—11) 4.4510( - 18)
110010 0.00107527 0.00107527 0.000256207
110011 0 1+10(—-11) 1.3+10(— 24)
110100 0 1x10(—11) 0.0000754821
110101 0 1x10(— 11) 2.5%10(— 25)
110110 0 1x10(—11) 0.000015181
110111 0 1%10(— 11) 4.1%10(— 32)
111000 0 1x10(—11) 1.0%10(— 12)
111001 0 1£10(—11) 6.4%10( — 33)
111010 0 1+10(—11) 1.1x10(— 12)
111011 0 1x10(— 11) 5.9%10(— 39)
111100 0 1%10(—11) 9.0x10( — 14)

Configurations Original 4 - p*
distribution

111101 0 1%10(— 11) 3.0 10(— 40)

111110 0 1%10(— 11) 58+10(— 14)

111111 0 1%10(— 11) 1.6 % 10( ~ 46)

B.2 Coefficients of the energy expansion of p (the strictly positive approxi-
mation of the experimental frequency distribution)
Note that we have only listed the coefficients up to order 3.

G[1,2,3] = — 22296053 G[1,2] = 18.799545
G[1,24] = — 2.688922 G[1,3] =0.807069 G[2] = 3.543854
G[1,2,5] = — 39.108087 G[1,4] =0.791802 G[3] = 3.043078
G[1,2,6] = — 38391409 G[1,5] = — 0874148 G[4] = 2365199

G[1] = 2.689438

G[1,34]= 15303554 G[L1,6] =16902425  G[5] =2.778386
G[1,35]= 17816802 G[2,3] = 18445905  G[6] = 5.440974
G[1,3,6] = — 20398933  G[24] = — 0468079 G[0] = 0.295599
G[145]= 15886159 G[2,5] = 18.710598

G[1,4,6] = — 20.383665
G[1,56] = — 18.717715
G[234] = — 1.929817
G[2,3,5] = — 20261195
G[2,3,6] = — 38.037769
G[24,5] = — 22.479520
G[24,6] = — 19.123785
G[2,56] = — 38.302462
G[34,5] = 16.645265
G[34,6] = — 19.624560
G[3,56] = — 18.364075
G[4,56] = — 20.987865

G[2,6] = 16.048010
G[3,4] = 0.032697
G[3,5] = — 1.227788
G[3,6] = 16.548785
G[4,5] = 1.396001
G[4,6] = 17.226665
G[56] = 16.813478
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