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1 Introduction

Recently it was demonstrated that the activity of frontal cortical neurons in
the awake behaving monkey comprises excessive occurrences of highly accu-
rate (~1-3 ms) spatio-temporal firing patterns. Moreover, these patterns can
be related to the behavioral state of the animal [1, 10]. On the basis of the
characteristic anatomy and physiology of the cortex, it was proposed that syn-
fire activity, propagating through the sparsely firing cortical neural network,
presents a natural explanation for this phenomenon [2, 1]. In order to test this
hypothesis, we investigated the dependence of reliable synfire propagation on
the structural and the dynamical properties of a model cortical network, using
the newly developed simulation tool SYNOD [6].

2 Synfire Chains

Synfire chains consist of diverging/converging links connecting a number of
groups of neurons. A diverging/converging link can be described by two struc-
tural parameters, the width w and the multiplicity m, defining the number of
neurons in a group and the minimum number of connections from a member
neuron to the next group.

In simulation studies we found, that successful transmission from one group
to the next requires two conditions to be fulfilled. First, the number of firing
neurons within the sending group has to be larger than some minimum number
ao. Second, their spike time distribution must be narrower than some critical
width og. These critical values ap and oo depend both on the structural pa-
rameters w and m, as well as on the details of the single neuron dynamics [7].
In order to characterize the dynamics, we need to assess the influence of the
degree of synchrony in the spike arrival time distribution. Unfortunately, exist-
ing measures of neural transmission focus on two limiting cases, full synchrony
and random arrival [2, 3]. Intermediate cases with a finite degree of temporal
dispersion are not addressed.
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3 Pulse-Packets

We introduce here the concept of pulse packets [7, 8], in order to overcome
these restrictions and to quantify the degree of temporal synchrony in propa-
gating volleys of neural activity. A pulse packet is a probabilistic description of
the activity of a group of neurons, represented by a pulse density function p(t).
This pulse density function is determined by two parameters: the activiiy a,
defining the number of active neurons | p(t)
in a group and the width o, defining
the temporal dispersion of the group
activity (Fig. 1). This parametric de-
scription of synfire activity provides a
conceptual framework that allows us
to derive an appropriate neural trans-
mission function and, thereby, to en-
hance our analytical insight into the o ,; time
role of the single neuron dynamics. Figure 1: a pulse packet, the area under the
Using this approach, we investigated graph represents the activity a.
the response of a model neuron [9] to input activity with varying degrees of
synchrony. From the model neuron we recorded the response (time of first
spike), collected in a PST-histogram over many trials. After normalization for
the number of trials, the resulting output distribution was similarly described
as a pulse packet, and the associated pulse density p (t) along with the values of
a and ¢ were determined. Thus, we could investigate how the output distribu-
tion changed, depending on the input distribution. To this end, the input was
varied systematically from a sharp synchronous volley of spikes (small o, large
a) to an asynchronous rate variation (large o, small a). For each pair of input
parameters (ain, 0in), we measured the corresponding output pair (@out, Tout)-
As an alternative approach, we simplified the model neuron such that an ana-
lytical treatment was possible. This yielded a relationship for the input-output
relation of pulse packets that could be solved numerically. Again, for each
pair of input parameters (@in, 0in), we measured the corresponding output pair
(aouh Uout)-

4 Results

The resulting input-output relation between incoming and outgoing pulse
packets can be visualized in so-called iterative maps. These yield a compact
characterization of the neuron’s firing dynamics. In contrast to earlier ap-
proaches where the neuron’s firing probability is measured quasi-statically as a
function of DC-current, this new transmission function takes full account of the
dynamic properties of the input distribution p(t). One appropriate way to look
at it is to plot o.y: versus o;, for constant a;,. The result from the numerical
study is shown in Fig. 2; observe that for small values of o;,, the outgoing
pulse packet is wider than the incoming one. Synchronous input is thereby
dispersed in time. With increasing o;,, however, the curve crosses the diagonal
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and runs below it. Thus, beyond this inter-
section the neuron exhibits a synchronizing
behavior, the intersection itself represents a
stable attractor of an invariant pulse packet. )
These features of the single neuron dynamics 3 ]
can be carried over to describe the behavior o
of groups of neurons. In the simplest case of > A~
completely connected groups, the above dis- /
tribution, appropriately scaled for the num- 1P B
ber of neurons in a group, directly describes
the group’s temporal response. This frame- il
work can be extended to the case of incom-
pletely connected groups, where every neu-
ron ’sees’ only a fraction of the pulse packet.
Hence, we can determine the stable point of synfire activity traveling along a
chain of such groups, and investigate its dependence on the neuron parameters
and those of the chain.

5 Conclusions
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Figure 2: Iterative map for o

The formalism of pulse packets provides the appropriate framework to clarify
the notion of coincident firing. This yields a natural solution to the question
whether the cortical neuron acts as an ’integrator’ or as a ’coincidence detector’
- a question which was raised many years ago [3] and was revived recently [5, 11].
The notion of pulse packets conveniently embeds these two different modes into
one unified concept. Our investigation shows that the neuron may behave as
either of the two, depending on the degree of synchrony of the input activity.
The temporal structure of the input determines which of the two aspects is
emphasized.

The approach outlined here opens the way for a quantitative description
of network dynamics beyond the single neuron level. It provides a parametric
language to describe the propagation of synchronous activity in networks, that
can be characterized as ’locally feed-forward’, i.e. locally composed of chains
of groups of neurons. At the same time, it provides a conceptual bridge to link
the single neuron dynamics to the mechanisms involved in stable transmission
of information in such networks. Both aspects accommodate an analytic treat-
ment of the model. An example for such analytic treatment is the stability
analysis, using a dynamical systems approach [4] (see also Arndt et al. in this
Volume). Finally, and most interestingly from the experimental point of view,
the spike time distributions obtained in our simulations can be compared with
the spike time statistics in recurring patterns in physiological data, and thus
be used to test the synfire hypothesis for activity in the working brain.
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