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1 Introduction

During the last years, several models and related theories discussed the possible
functional role of synchronized neuronal activity in cortical function. Here, we
focus on recent findings by Abeles and colleagues on the abundance of accurate
spatio-temporal spike patterns in the activity of neurons in the prefrontal cortex of
awake behaving monkey, and their dependence on stimulus and behavioral context
[1,2]. These findings support the hypothesis, that synchronous spike volleys
propagate through the cortex in ‘reverberating synfire chains’ (RSC): feedforward
networks with additional feedback connections. Using simulations of simplified,
purely feedforward ‘synfire chains’, Diesmann and Gewaltig could demonstrate [3]
that the stability of propagation of ‘synfire volleys’ in such chains strongly depends
on the density of inter-node connectivity. Thus, the stability properties of these
systems are described by iterative maps, which exhibit stable and instable fixpoints
for the mean activity and the temporal width of the propagating ‘pulse packet’.
Motivated by these results we set out to develop a theoretical analysis of the
stability properties of synfire propagations based on dynamical systems theory.

2 The ‘Synfire chain’ Model

The theory we present here is designed to describe the propagation of synchronous
spike activity in a simple feedforward ‘synfire chain’ [4] without reverberating
connections (Fig. 1). The network consists of a number of layers with w neurons per
layer. Each neuron receives m inputs from the neurons of the preceding node. For a
fully connected (‘complete’) chain the multiplicity of interlayer connectivity is
equal to the number of neurons per node, i. e. m=w.
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Fig. 1: Graph of a complete feedforward ‘synfire chain’ with the main structural
parameters
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For the individual model neuron we chose an ‘integrate-and-fire’ neuron for which
the postsynaptic potential u is modeled by a leaky integrator. The firing probability
is described by a sigmoid function (threshold @), the refractory dynamics v by a
second leaky integrator. This leads to the following set of equations for the single
neuron dynamics:
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3 Stability of Synfire Propagation
3.1 Results from Simulation

We studied the activity dynamics in such simplified synfire chains by stimulating
the first layer of the network with a brief volley of 1 ms . As a result, synchronous
spike activity propagates along the network. The parameter varied during the
simulation was the threshold level of the single neuron. The dynamics of synfire
activity are described by the velocity (Fig. 2) and the temporal width of the
propagating volley (Fig. 3) are shown below.
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Fig. 2: Volley velocity vs. threshold Fig. 3: Volley width vs. threshold

We found that for increasing threshold the velocity of the volley steadily decreases
to zero up to the critical threshold value. Similarly, the width of the volley
decreases to zero. Below the critical threshold stable propagations exist. If the
threshold value is further increased the propagation becomes instable, i. e. the
volley amplitude decreases to zero. Motivated by these separate ranges of stable and
instable synfire propagations we developed a theoretical analysis using dynamical
systems theory to predict velocity and width of the volley.
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3.2  Results from Theory

For the case of a ‘complete synfire chain’, i. e. with fully connected nodes, the
network can be simplified to a chain of single neurons, since every neuron in the
complete chain receives the same input. This simplification allows a transition from
the description of neuronal activity by discrete firings of single neurons to a
continuous mean field description in terms of the interacting dynamics of
membrane potential u and threshold v.
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Fig. 4: Graph of a complete feedforward ‘synfire chain’ reduced to a chain of node
neurons

The interaction of the neurons is described by a convolution (%) between the
neuronal output and a gaussian kernel that describes the local neighborhood
connectivity This leads to a neural field description as given by Amari [5]:
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Transformation to a reaction-diffusion-system yields a system that is similar to
Fitzhugh-Nagumo equations [6,7], developed to describe the propagation of action
potentials along the axon:
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Further analysis of the corresponding characteristic equation following the work of
Rinzel and Terman [8] yields velocity (Fig. 5) and width (Fig. 6) of the volley
solution as a function of the threshold level ©.
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Fig. 5: Volley velocity vs. threshold Fig. 6: Volley width vs. threshold
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Together with the stable solutions (solid curves in Figs. 5 and 6) there exist also
instable solutions (dashed curves in Figs. 5 and 6) with lower propagation velocities
and smaller widths of the volley. The knee of the curves marks the critical
threshold above which a stable propagation is no longer possible.

4 Discussion

We developed a theoretical description of the dynamics of activity propagation in
simplified ‘synfire chains’. The results of the analysis allow the prediction of
propagation stability depending on single neuron parameters, i. e. threshold level.

In a related simulation study [3] it was shown that stable propagation requires a
minimum amount of coincident activation at the input. In a related paper at this
conference [9] they give an alternative analytical approach by using a statistical
description for the shape of their puls packets.

The discrete spike dynamics in a discrete network of ‘complete synfire chains’ was
analytically transformed to continuous field dynamics. After further transformation
to a reaction-diffusion-system, the propagation of ‘synfire’ activity could be
described by Fitzhugh-Nagumo like dynamics. The range of stable propagation can
therefore be predicted. The analysis of the propagation velocities for stable and
instable solutions provides a basis for the understanding of synchronization and
binding phenomena. We are currently investigating whether this theory can also
describe the shape of the stable solution and synchronization effects in incompletely
connected chains.
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