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Abstract

Electrophysiological studies of cortical function on the basis of simuitaneous, separable multi-neuron recordings
reveal interactions between cortical neurons which strongly depend on the stimulus and behavioral context.
Moreover, these interactions exhibit dynamics on several different time scales, with time constants of modulation as
low as tens of milliseconds. Possible mechanisms underlying such dynamic organization of the cortical network
were investigated by simulations and analytic approaches. We review results from these different studies,
concentrating on a comparison of the correlation dynamics in real cortical activity and in various neural network
models. In particular, we discuss the influence of global network activity on the functional coupling between

neurons embedded in such networks.

1. Introduction

Ever since the times of Sherrington [1] and
Hebb [2], neurobiologists have pursued the idea
that neurons do not act in isolation, but rather
that they organize into assemblies for various
computational tasks (see also [3] for an early
formulation of this concept). Over the years, a
number of different definitions of ‘neural assem-
bly’ have been proposed. Some of these were
phrased in terms of anatomy, others in terms of
shared function or of-shared stimulus response
(see [4] for a review). One operational definition
for the cell assembly has been particularly in-
fluential: near-simultaneity or some other
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specific timing relation in the firing of the par-
ticipating neurons. As, for instance, elaborated
in the concept of the ‘synfire chain’ [5,6], the
synaptic influence of multiple neurons converg-
ing onto others in the cortical network is much
stronger if they fire in (near-)coincidence. Thus,
temporal coherence or synchronous firing, pos-
tulated as a mechanism for perceptual integra-
tion [2], is in fact directly available to the brain
as a potential neural code [7-9].

The notion that the functional organization of
the cortex is based upon interactions within and
among groups of cells in large neural networks is
supported by the anatomical structure and, in
particular, by the massive connectivity of this
part of the brain [10]. Until recently, however,
very few physiological data have directly ad-
dressed the cell assembly hypothesis. Neither the
study of global activity in large populations of
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neurons, nor the recording of single neuron
activity allow for a critical test of this concept.
Rather, one seeks to observe the activities of
many separate neurons simultaneously, preferab-
ly in awake, behaving animals, and to analyze
these ‘multi-neuron activities’ for possible signs
of (dynamic) interactions between the neurons.
Results of such analyses may then be used to
draw inference regarding the processes taking
place within and between hypothetical cell as-
semblies. In this paper we will review some of
the evidence produced in these experiments, and
discuss their interpretation against the back-
ground of a theoretical study on the activity
dynamics in biologically inspired neural network
models.

2. Interactions between cortical neurons

The conventional method to analyze neural
Interactions is to cross-correlate the spike trains,
usually from pairs of neurons, that were re-
corded simultaneously under some appropriate
stimulus and/or behavioral conditions, and to
inspect the results for departures of ‘indepen-
dence’ [11,12]. Following [13], peaks and troughs
in the cross-correlograms, after comparison with
appropriate control measurements, are char-
acterized by parameters describing their shape
(symmetry, width, sign) and delay, and their
possible dependence on stimulus or behavioral
features. On the basis of such descriptors, the
type and temporal acuity of the interaction
exhibited by the neurons are then interpreted in
terms of their ‘functional coupling’. Recent de-
velopments in analysis methodology have con-
siderably expanded the scope of these studies. It
is now possible to examine the. cooperativity in
larger groups of neurons [14-16], to study the
fine-temporal properties of firing correlation
between two or three neurons [17,18], and to
demonstrate the existence of accurate spatio-
temporal firing patterns in the activity of single
and multiple neurons [19-21].

In this paper we will focus on two of these
approaches, addressing two different levels of
spatio-temporal resolution. The first one is based
on the network correlation matrix, and provides a
condensed description of the functional cou-
plings among an entire group of simultaneously
recorded cortical neurons. The second one ap-
plies the Joint-PSTH, aiming at a fine-grained
dynamic analysis of the interactions among two
members of such a group. The salient result of
such direct assembly observation is that the
functional coupling among cortical neurons is
context-dependent and dynamic on several differ-
ent time scales. We will document these dynamic
and context-dependent assembly properties using
examples drawn from cat visual cortex record-
ings, made in the Kriiger laboratory [22]; similar
results have been reported for other cortical
areas [23-26].

3. Context-dependence of coupling among
groups of cortical neurons

When applied to the simultaneously recorded
activity of larger groups of neurons, the pairwise
analysis of cross-correlation inevitably leads to
sizable numbers of correlograms. Thus, it was
soon realized that there is a distinct need for a
more concise representation of results. A com-
pact way to present the coupling within a larger
group of neurons is in the form of a ‘connectivity
matrix’, in which the value at a particular entry
(i, j) denotes the strength of the coupling from
neuron i to neuron j. This representation is, in
fact, widely used in neural network theory. Note
that the connection between any two nodes in a
connectivity matrix needs not be symmetrical
(neither does the cross-correlogram): the cou-
pling from neuron i to neuron j is not necessarily
the same as from neuron j to neuron i. A visual
representation of the connectivity matrix is ob-
tained by displaying the matrix values using a
grey- or pseudo-color coding.

" We have adopted this concept of the connec-
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tivity matrix in the approach of the ‘network
correlation matrix’ [16}, a modified realization of
the ‘gravitational clustering’ algorithm [14,15].
Briefly, the algorithm ‘learns’ the coupling ma-
trix among the neurons by analyzing their pair-
wise spike correlations in running time. Initially,
all entries in the correlation matrix are set to
zero; this expresses the lack of knowledge on the
part of the experimenter at the onset of the
analysis. As the recording proceeds, the neural
activity is dynamically processed by the algo-
rithm, and the various entries in the matrix are
updated on the basis of (near) spike coincidences
occurring among the corresponding neuron
pairs. This updating takes the form of a Hebbian
or a covariance-type ‘learning rule’. Thus, a
relative abundance of spike—spike and silence—
silence coincidences among two neurons will give
rise to a positive ‘coupling’, a net surplus of
spike—silence combinations will lead to a nega-
tive value. In the course of time, the algorithm
thereby determines a coupling matrix, which
reflects the time-accumulated firing correlations
among the group of neurons under the con-
ditions prevailing during the recording. By com-
paring such correlation matrices for different
experimental conditions (e.g. different stimuli or
different modes of behavior), one obtains a
compact description of the coupling among the
entire group of observed neurons, and its pos-
sible dependence on stimulus and behavioral
parameters.

Different types of normalization in the ‘learn-
ing rule’ of the correlation algorithm reveal
different aspects of the network coupling: (1)
‘raw’ correlation values (i.e. without any nor-
malization) emphasize the full synchrony of
firing, not subdivided into its possible con-
stituents, such as co-modulation of firing rates
through common stimulus or neuronal drive and/
or spike correlation caused by inter-neuronal
connectivity, (2) ‘residual’ correlation (technical-
ly speaking, the cross-covariance), a differential
measure obtained after subtraction of the contri-
bution from firing rate co-variations, shows the

net effect of functional coupling, still ‘scaled’ by
the ongoing rates of the participating neurons,
and (3) the ‘normalized’ correlation (the normal-
ized cross-covariance), a relative measure ob-
tained after additional scaling for response
modulations, reflects the strength of functional
coupling, normalized for the time-varying rates
of the associated neurons. Calibration runs for
various types of simulated spike trains demon-
strated that this network correlation algorithm
(like the gravitational clustering) has superior
sensitivity as compared to conventional cross-
correlation analysis. Even under conditions of
sparse firing and moderately weak connectivity
(typical for cortical tissue), a mere few seconds
of recording suffice to acquire a reliable estimate
of the network coupling. (For a more extensive
description of the correlation matrix algorithm,
its mathematical formulation, and a discussion
on the various rules to ‘normalize’ for firing rate
modulations, we refer to [16].)

Let us consider a representative example of
the assembly properties revealed by such net-
work correlation matrices. Physiological data
were taken from a set of experiments in a 12-
electrode recording from cat visual cortex (area
17), made in the Kriiger laboratory [22]. The
electrodes were a 12-fold linear, organ pipe-like
array of glass-coated Pt-Ir wires, with a spacing
of 160 microns. These were introduced into the
cortex such that their tips fell on a line perpen-
dicular to the cortical surface, i.e. within a single
cortical column. The top electrode was near the
pial surface, the lower electrode was just into the
white matter. 5 out of 12 electrodes (nrs. 3, 6, 7,
8, 9) each gave a reliable single unit recording,
the remaining ones were judged to be probably
single unit, with possibly additional spikes from
one or more other units. The stimulus in these
experiments consisted of a light bar (3° by 14'),
moving at constant velocity and perpendicular to
its orientation. The distance travelled was 3° in
1.8s, arranged to cover the entire receptive
fields of the neurons under study. At the end of
the movement the bar remained stationary for



106 A. Aertsen et al. | Physica D 75 (1994) 103-128

0.4s, after which it moved in the opposite
direction. Finally the bar was rotated by 22.5°
(duration 15s) after which another cycle of move-
ment back and forth, perpendicular to the new
orientation, was begun. This protocol was con-
tinued until after 8 cycles of 5s, the original
orientation was reached again. The complete
stimulus sequence, lasting 40 seconds, was pre-
sented repeatedly; in the example shown, the
first 16 trials (out of 22) were used for analysis
(this restriction was caused by memory limita-
tions of our computer).

The analysis of network coupling for the whole
spectrum of stimulus orientations and directions
of bar movement tested is summarized in Fig. 1.
Fig. la shows the ‘residual’ spike correlations,
i.e. the firing synchrony after subtraction of
stimulus-driven firing fire correlations, Fig. 1b
represents the ‘normalized’ correlations, proper-
ly scaled for the individual rates and their modu-
lations. The layout of these figures reflects the
different stimulus parameters used: they consist
of a ring-like arrangement of 16 correlation
matrices, each of which represents the network
coupling exhibited for a particular bar orienta-
tion. The individual 12X 12 matrices are
positioned at the tip of a vector representing the
associated direction -of bar movement. Values in
the ith column of a matrix (i numbered from left
to right) represent weight factors of ‘incoming
connections’, i.e. ending in neuron i; values in
the jth row (j numbered from bottom to top)
represent weight factors of ‘outgoing connect-
ions’, i.e. originating in neuron j. Values along
the diagonal (entries (i,i)) were not updated
and, thus, represent zero coupling. The strength
of coupling is coded in a linear grey-scale, with
larger values corresponding to darker grey. In
each figure, the 16 matrices were plotted using
the same scale, covering the entire range of
matrix values in that figure; this enables a direct
comparison of the network coupling under dif-
ferent experimental conditions.

Fig. 1a demonstrates the existence of a consid-
erable degree of residual correlation among the
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Fig. 1. Stimulus-dependence of network coupling in the cat
visual cortex (area 17; data from Kriger [22]). Matrices of
residual (A) and normalized (B) correlation between all 66
pairs of a 12-electrode recording for 16 directions of motion
of a light bar stimulus. Each single network correlation
matrix is positioned at the tip of a vector, indicating the
direction of bar motion for which the matrix was computed.
All matrices within a single panel are plotted with the same
grey-scale.

observed group of neurons. This is revealed by
the patch-like groupings of positive (i.e. darker
grey) matrix entries ‘inter-connecting’” most
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(though not all, and not in a symmetrical fash-
ion) of the neurons 4 to 9. Moreover, the degree
of temporal coherence among these neurons is
clearly stimulus-dependent: the strongest excess
correlation is found for movements to the lower
right, somewhat less strong for movements to the
upper left, while the correlation decreases con-
tinuously the more the orientation and the direc-
tion of motion deviate from the optimal ones.
Some degree of residual correlation, however,
remains even in the weakest cases. Notice also
that the distribution of high correlation values is
not ‘spatially’ uniform over the matrix, but
rather comes in the form of a compact block
surrounding the diagonal. Recalling that the
ordering of the neurons is according to their
location in a linear, vertical array across the
cortical depth, this strongly suggests that the
coupling between neurons is not homogeneously
distributed, but rather obeys the local neigh-
borhood relations imposed by the cortical layer-
ing.

We should point out that some of the observed
stimulus-dependence in Fig. 1la might be over-
estimated, even though the ‘residual’ correla-
tions show the excess of spike correlation after
subtraction of direct stimulus influences on the
individual firing rates. The reason is that the
cross-covariance presents an absolute measure of
correlation, rather than a relative one. Thus, it is
sensitive to the magnitude of the auto-covar-
iances of the individual spike trains, which, in
turn, might depend on the firing rate variations
of the associated neurons. As we have demon-
strated elsewhere [16-18], such dependence can
be accounted for by proper normalization. Basi-
cally, this normalization amounts to a dynamical
scaling of entries in the residual correlation
matrix by the appropriate time-dependent auto-
covariances of the spike trains involved. The
result of this scaling operation is the ‘normalized’
correlation mentioned earlier. It is a relative
measure of spike coherence, with values by
definition restricted to the range between —1 and
+1.

The normalized correlation matrices for the
present example are shown in Fig. 1b. One
observes that these reveal a much more differen-
tiated picture of the network interactions, and
especially of their stimulus-dependence, than
Fig. 1la. Nevertheless, our findings from Fig. la
are essentially confirmed. The dark patch of
positive inter-group coupling among the record-
ing sites 4 to 9 remains present, as well as its
stimulus-dependence, with a preference for
stimulus movements to the lower.right, to a
lesser  degree for- motion to the top left, and
gradually decreasing for directions inbetween. In
contrast to Fig. 1a, however, the coupling among
this subgroup is not so dominant anymore. In
addition one also observes interactions among
other neuron pairs and/or for other stimulus
orientations which so far escaped our attention,
presumably because they were masked by cou-
pling among more strongly firing neurons. Cou-
pling :on the whole, although being quite wide-
spread, assumes only moderate values between
—0.06 (white) and +0.16 (black). The
asymmetry of this range with respect to the value
zero may reflect a true asymmetry in the cou-
pling, although we suspect that at least part of it
is due to a preferential sensitivity of our algo-
rithm for ‘positive’ coupling in the case of low
firing rates (see a discussion on this issue in [12]).

We found the present example to be quite
typical for these visual cortex experiments. In
general, the network coupling as revealed by
such correlation matrices involves a considerable
fraction of the recorded neurons, is confined to
moderately low values (usually between —0.1
and +0.3), and shows distinct stimulus-depen-
dences. Taken together, these findings are not so
much indicative of small, dedicated local cortical
circuits, but rather point at relatively diffuse
distributions of coupling, involving considerable
fractions of the neurons in the cortical network.
Note, however, that this observation may well
depend on the geometrical arrangement of the
recording sites: in all these experiments they
were aligned linearly in a vertical cross section of
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the cortex, presumably located within a single
cortical column.

4. Dynamics of functional coupling between
cortical neurons

So far our discussion focused on the global
properties of network coupling, such as the
degree of (dis)similarity of entire correlation
matrices compared across different stimulus con-
ditions. It should be born in mind, however, that
this analysis addresses the interactions in the
network only at the most general levgl. In fact,
the temporal development of each individual
grey pixel in each single matrix represents highly
condensed information regarding the dynamics
of interaction among a specific pair of neurons
under certain experimental conditions. We will
now turn to a much more detailed level of
analysis, and study the modulations of functional
coupling among pairs of neurons on a much
faster time scale. There are a number of possible
approaches to this problem; here we will use the
Joint Peri Stimulus Time Histogram [18]. The
Joint-PSTH is a temporal decomposition matrix
of the ordinary cross-correlogram, and was speci-
fically designed to describe the dynamical aspects
of the firing correlation that are time-locked to a
stimulus or behavioral event. Moreover, appro-
priate normalization of the Joint-PSTH enables
us to distinguish contributions due to stimulus-
or behavior-induced modulations of the individ-
ual neuron firing rates from these of inter-neuro-
nal spike correlations, and to -evaluate these
differences for statistical significance [17]. Simi-
larly to the case of the network correlation
matrices, the normalization scales the cross-co-
variance for the associated pair of auto-covar-
iances. For the Joint-PSTH this involves sub-
tracting from each bin in the Joint-PSTH matrix
the product of the two corresponding bins in the
individual PST histograms, and dividing the
result by the product of the standard deviations
of these same PST bins. Subsequent summations

over appropriate diagonal and para-diagonal bins
in the matrix plane give us the appropriately
normalized, ‘neuronal interactions only’, PST-
coincidence histogram and cross-correlogram.
Thus, we can examine fast, stimulus-related
changes in the interactions between two ob-
served neurons. (For a more detailed account
and mathematical formulations the reader is
referred to [17,18].)

Fig. 3 shows the results of Joint-PSTH analysis
of the activity of two neurons, 7 and 8, taken
from the interacting subgroup in Fig. 1. Spike
train data, shown in Fig. 2, were taken from time
sections of 5 seconds each (number of trials =
22), during which the light bar stimulus was
moving back and forth in opposite directions,
corresponding to  “south—south—east” and
“north-north-west” in Figs. la,b. The two
panels in this figure show the ‘raw’ (Fig. 3a) and
the normalized Joint-PSTH (Fig. 3b), together
with the associated marginal distributions for the
selected two neurons. Within each panel, the
individual PST histograms, displaying the indi-
vidual firing rates, are shown along the horizon-
tal and vertical axes. The density of coincident
firing is indicated in the Joint-PSTH matrix,
according to the grey code above the matrix. At
the right of each panel are respectively the PST-
coincidence histogram (along the diagonal rising

0 ' T 5000 ms

Fig. 2. Spike activity from a 12-electrode recording in the cat
visual cortex. The dot display shows a selected portion of the
spike train data used in Fig. 1. Data were taken from time
sections of 5 seconds each (number of trials =22), during
which the light bar stimulus moved back and forth in
opposite directions, corresponding to “south—south—east”
(first half of the trial) and “north-north—-west” (second half)
in the matrix arrangement in Fig. 1.
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Fig. 3. Stimulus-locked dynamic correlation of firing for two single neurons (7 and 8), recorded simultaneously from the cat
visual cortex during repeated presentation of a moving bar stimulus. The corresponding spike data are shown in Fig. 2. The upper
panel (A) shows the ‘raw’ Joint-PSTH; the lower panel (B) shows the Joint-PSTH after normalijzation for stimulus-induced
non-stationarities in the single neuron firing rates. The latter is calculated by subtracting from the ‘raw’ Joint-PSTH the
cross-product matrix of the individual PST histograms, and by dividing the resulting difference matrix (bin by bin) by the
cross-product matrix of the standard deviations of the PST histograms. The display format of both panels is the same. The
left-hand half of the panel shows the Joint-PSTH matrix and the two ordinary PST histograms along its x- and y-axes (binwidth:
25 ms). Values in the Joint-PSTH matrix are coded in grey as indicated in the bar above the matrix. The tic mark above the grey
bar corresponds to the value zero. All counts were divided by the number of stimulus presentations. The right-hand half of the
panel shows the PST-coincidence histogram (running along the diagonal from lower left to upper right) and the conventional
cross-correlation histogram (perpendicular to the diagonal, and running from upper left to lower right). The PST-coincidence
histogram was smoothed using a Gaussian with a sigma of four bins; this particular value (gs4), as well as the location and width
of the selected diagonal band are indicated in each panel. The position of true coincidence (zero delay) in the cross-correlogram
coincides with the intersection point of the PST-coincidence histogram and the cross-correlogram; it is indicated by a tic mark
above the diagonal band marker above the correlogram. Numbers of spikes: 1420 (neuron 7, x-axis), 788 (neuron 8, y-axis),
recorded during 22 stimulus trials of 5 seconds each.
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to the right) and the conventional cross-correlo-
gram (perpendicular to the diagonal and de-
scending to the right). The PST-coincidence
histogram measures the counts near the diagonal
of the Joint matrix and represents the time-
locked rate of near-coincident firing of the two
neurons, in the same sense as the ordinary PST
histogram represents the stimulus time-locked
rate of the individual neuron’s firing.

In the ‘raw’ Joint-PSTH panel (Fig. 3a) we
note that the individual PST histograms show a
strong time-locked increase in firing for both
neurons as the stimulus enters their receptive
fields, with a clear preference for the first direc-
tion of motion (compare also Fig. 2). These are
direction (as well as orientation) sensitive neu-
rons. Similarly, the ‘raw’ Joint-PSTH matrix
shows considerable hills at locations matching
the PST peaks, and corresponding peaks are
visible in the PST-coincidence histogram. In
other words, individual, joint, and near-coinci-
dence firings are all increased during portions of
both directions of movement, but more so in the
first direction. Note also that the time-averaged
cross-correlogram (top right) is fully dominated
by the co-modulation of firing rates, thus effec-
tively masking any possible sign of neural inter-
action. The contribution of these stimulus time-
locked modulations of the individual firing rates
have been removed in the normalized Joint-
PSTH, shown in Fig. 3b. Note first that after
normalization, the time-averaged cross-correlo-
gram shows a distinct peak, straddling the origin.
This clearly points at the presence of spike
synchronization exceeding the mere co-variation
of rates. In order to find out the time course of
this excess spike correlation, we concentrate our
attention on the normalized PST-coincidence
histogram along the diagonal. Note that during
most of the time of the second direction of
movement (roughly, between 3000 and 4000 ms),
there is a positive level of excess near-coinci-
dence firing. This level is not constant, though,
but rather follows the time course of the in-
dividual neurons’ firing rates. Note, however,

the brief, but strong burst of excess co-firing
around 2500 ms, just when the responses to the
second direction of motion start to develop. The
situation is much more complicated during the
first, and opposite, direction of movement
(roughly, between 0 and 2000 ms). Here we also
observe a varying level of correlated firing, but
its time course is altogether different from the
individual neurons’ responses. After an initial,
large positive peak, coinciding with the rising
phase of the individual responses, the correlation
breaks down to zero and even becomes negative
(i.e. there is a lower than expected amount of
near-coincidence firing) as the individual firing
rates reach their maximum. This stage of zero or
negative interaction lasts for most of the dura-
tion of the peak response rates. Finally, the
correlation again climbs to large positive values
when the responses have reached their declining
phase. (For a similar, even more pronounced,
case of coupling with sign-reversal among visual
cortex neurons see [23].)

In the example shown here, the switching from
a condition of co-firing to one of anti-co-firing
seems to be associated, at least roughly, with the
transitions of low to high firing rate of the two
observed neurons (compare the time course of
the PST histograms with that of the normalized
PST-coincidence histogram). This pattern is, in
fact, very suggestive of a non-monotonic relation
between the degree of spike synchrony and the
amplitude of the single neuron responses. The
spike correlation is positive when firing is weak
to moderately strong (i.e. during the rising and
falling stages of the first response and throughout
most of the second response), whereas it be-
comes zero or even negative when the firing
rates are high (as during the peak of the first
response). For the first (and stronger) response,
this non-monotonicity causes the interaction to
behave essentially like a ‘transient’ version of the
individual responses. Thus, it has the quality of a
‘time derivative’ (or, rather, its absolute value),
‘signalling’ the changes (rise and fall) of the
responses, rather than their magnitude. Since the
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second response does not reach such high values,
the non-monotonicity does not take such strong
effect and, correspondingly, the individual re-
sponse waveforms are more closely reflected in
the time course of the interaction (although some
of the above described ‘transiency’ is also pres-
ent here).

Summarizing, the example in Fig. 3 clearly
demonstrates that near-coincidence firing can be
strongly modulated by the stimulus presentation.
These two neurons are repeatedly switching from
a condition of co-incident firing to a stimulus-
related period of uncorrelated or even anti-
coincident firing. We have observed and reported
similar phenomena in other recordings, both
from the visual cortex [23] and other cortical
areas, such as the prefrontal cortex [24-26]. (A
review on experimental results, based on record-
ings from a variety of regions in the CNS of
different animal species, made in several differ-
ent laboratories, is currently in progress; Ger-
stein and Aertsen, in preparation.) These find-
ings demonstrate that cortical neurons may ex-
hibit rapid modulations of discharge synchroniza-
tion that are related to stimulus context and
behavioral state. Such modulations — which
could not be inferred from single neuron obser-
vations — may switch the neurons’ firing behavior
from being mutually incoherent into a particular
coherent state of joint synchrony, or, alternative-
ly, from one particular pattern of mutual coher-
ence into a different one. Each such pattern may
last for only a few tens to hundreds of milli-
seconds. Finally, the observed modulations in
synchronous firing may be, but need not be,
associated with changes in either of the neurons’
individual firing rates. In fact, the correlation of
firing may follow a time course that deviates
appreciably from that of the firing rate of either
of the individual neurons. In general, therefore,
rate coherence and spike correlation present two
instances of firing synchrony at different levels of
temporal acuity. At a coarse level of temporal
resolution the correlation of firing is governed by
the co-variation of the firing rates (‘rate coher-
ence’), at a more fine-grained level of time

resolution, the detailed spike correlation (‘event
coherence’) becomes the dominant term [27]. In
any specific case, these different types of correla-
tion may be, but need not be, correlated. These
various phenomena appear to be robust across
different regions in the brain, and across a
variety of animal species. Thus, we conclude that
dynamic cooperativity presents an emergent
property of neuronal assembly organization in
the brain.

5. Functional coupling in model neural
networks

These findings in cortical multi-neuron record-
ings suggest that the usual concept of neurons
with static inter-connections of fixed or only
slowly changing efficacy (during learning, for
example) is no longer appropriate. Instead, one
should distinguish between structural (or ana-
tomical) connectivity on the one hand and func-
tional coupling (or effective connectivity) on the
other [23,28]. Whereas the former can presumab-
ly be described as (quasi)stationary, the latter
may be highly dynamic and context-sensitive.
These findings raise a two-fold question: what is
the nature of the underlying mechanisms, and
what are the functional implications? In a num-
ber of theoretical studies we have sought to
elucidate these issues. Several different mecha-
nisms may be invoked to mediate the transition
from static, anatomic connectivity to dynamic,
functional coupling. On the one hand, the under-
lying mechanism may be local, as in von der
Malsburg’s proposal of rapid modulation of
synaptic efficacy [29,30]. On the other hand,
more global network effects might be involved,
as for instance in Sejnowski’s notion of the
‘skeleton filter’ [31].

In order to obtain more insight into these
different alternatives, we investigated the activity
dynamics in various physiology-oriented net-
works of model neurons, both of the spiking and
of the analog type [32--34]. These networks were
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designed to capture the typical features of real
cortical networks, both in terms of anatomy and
of physiology. Of special importance in this
context is the physiological constraint of ‘sparse’
firing, i.e. that the activity in the network is
required to be of low firing rate, such as typically
observed in the neocortex [35]. As it turned out,
maintaining stability in such a feedback system
of sparsely firing neurons is by no means a trivial
problem [36]. In fact, a stable solutions could
only be obtained for very confined ‘islands’ in
parameter space. Qutside this restricted range,
the network activity either died, exploded or
developed strong, coherent oscillations, with
frequency and amplitude dynamics governed
predominantly by the inhibition parameters, and
much less dependent of (1) the network architec-
ture (uniform, random or structured), (2) the
spiking or analog nature of the neural activity,
and (3) the linear or nonlinear nature of the
neural threshold function. A more extensive
discussion on this stability issue and on the
critical role that inhibition plays in the synchroni-
zation dynamics has been provided elsewhere
[36]. In the present report we focus on the issues
of stimulus-dependence and the dynamics of
functional coupling. We took great care to select
parameter values such that the network was
operating in a regime of stable, sparse firing
under non-stimulus conditions (low rate ‘sponta-
neous’ activity).

6. A feedback neural network model of spiking
neurons

The model we investigated for the present
purpose consisted of a feedback neural network
of 100 spiking model neurons with fixed synaptic
connections [36]. The layout of the network is
shown in Fig. 4a, the corresponding equations
are given in Fig. 4b. In this model, the neurons
are inter-connected by excitatory synapses, in-
spired by neuroanatomical findings that about
90% of the cortical synapses are of this type [10].

The intra-cortical inhibition was modeled in a
different way, as will be described later. The
excitatory synapses are modeled as lowpass fil-
ters with delayed response, transforming the
incoming spike activity into EPSPs. These are
summated linearly on the dendritic tree to yield
the instantaneous value of the membrane po-
tential at the cell body. The probability of spike
generation is modeled by a sigmoid function of
this membrane potential; this probability, in
turn, is modulated by a refractory mechanism,
driven by the recent spike history of the neuron.
The final spike output is obtained by using the
firing probability as the instantaneous rate of a
stochastic event generator.

In addition to this basic network of spiking
neurons, the pyramidal cells, the model com-
prises a global inhibitory mechanism. This re-
flects our view that one of the principal tasks of
intracortical inhibition is to keep the cortical
network from “exploding into a condition of
global, senseless activity”” [10]. This inhibition is
implemented in the form of two parallel, linear
branches: a fast one, with a time constant in the
range of that for the excitatory synapses (5ms),
and a slow one with a considerably larger time
constant (200 ms). The fast branch is intended to
mimic the action of the inhibitory non-pyramidal
neurons, the slow one serves to regulate the
overall activity in the network towards a preset
value (threshold control [37,38]). In the experi-
ments reported here, parameter values were
chosen such that they obey physiological reality,
while ensuring stability under sparse firing con-
ditions, with an overall network activity in the
order of 10-20 spikes per neuron per second on
average (see [36] for more details).

For the present simulations we used a network
with a fixed connectivity matrix, derived from a
preceding study of associative memory and the
performance of different types of learning rules
[34,39-41]. In particular, we used a connectivity
matrix in which were embedded the memory
traces of a set of 10 sparsely occupied, randomly
distributed input patterns. Briefly, the ‘learning’
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Fig. 4. Scheme (a) and equations (b) of the model neural network. Further explanation in text.

phase proceeded as follows. Initially, the connec-
tivity of the network was given by a random
matrix with connection strengths uniformly dis-
tributed between 0.25 and 0.35. The 10 input
patterns, shown in the bottom panel of Fig. 5a,

were presented to the network one by one in the
order 1 to 10, each for a duration of 100 ms.
Using ‘analog’ neurons and a covariance learning
rule with clipping at connectivities 0 and 1, the
initial random matrix gradually evolved during
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Fig. 5. ‘Synaptic’ connectivity matrix (top panels) of the model neural network after ‘learning’ 10 randomly generated input
patterns (bottom panels) during 100 ms each. Initially, the connectivity of the 100 neuron network was a random matrix, with
connection strength uniformly distributed between 0.25 and 0.35. In order to visualize the functional associations ‘hidden’ in the
input pattern and the associated connectivity matrix (A), we re-sorted the neurons, such that the input patterns were more or less
optimally segregated (B). Observe that after this permutation, groups of strongly interconnected model neurons (‘“‘cell
assemblies””) pop out, with (usually weaker) connections between the groups.

this 1s of learning to the shape shown in the top
panel in Fig. 5a. Clearly, the final connectivity
has obtained a certain degree of structure,
which, however, is hard to interpret in this
random ordering. Unlike for the array of cortical
recordings in Fig. 1, we now have no natural
ordering scheme to guide our ‘reading’ of the
connection matrix. In order to overcome this
problem and to obtain a better overview of the
functional associations hidden in the matrix, we
re-sorted the neurons, such that the input pat-
terns were more or less optimally segregated. In
the present case, this sorting was done in two
stages. First, we resorted all neurons, such that
those ‘belonging to’ pattern 1 came first, fol-
lowed by those that belonged to pattern 2 and
were not already included in the first selection,
then the same for those in pattern 3 and not
already included in patterns 1 and 2, and so on
for all 10 input patterns. The partial segregation
of the connectivity matrix thus obtained was then
improved ‘by hand’, by additional shuffling of

individual neurons until the (largest) connection
values were reasonably well concentrated in the
form of compact blocks lying along the main
diagonal of the matrix. The result of this permu-
tation is shown in Fig. 5b, with the rearranged
input patterns in the bottom panel, and the
rearranged connectivity matrix above it. Notice
the clear block-like structure along the diagonal,
with each compact block (containing on the
average some 7 neurons) denoting a heavily
interconnected ‘cell assembly’, preferentially as-
sociated with one of the input patterns. Clearly,
the segregation is not complete, as the input
patterns are random, not orthogonal. Hence,
associations do overlap, as is indicated by the
(usually weaker) connections between the
groups. Observe also that a fraction of almost
25% of the neurons (the outermost ones in Fig.
5b) is not dedicated to any one of the patterns-in
particular. They rather provide a diffuse back-
ground connectivity to each of the assemblies,
while being driven by several of them. ‘On
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average, each assembly involves some 10 neu-
rons, having an overlap of 2 to 3 neurons with
one or more of the other assemblies.

7. Stimulus-dependence of coupling in the
model neural network

In the following simulations, we proceeded
with the spiking network with the fixed connec-
tivity matrix of Fig. 5 (i.e. learning was termi-
nated), and investigated the flow of activity upon
dynamic manipulation of the input stimuli. These
‘experiments’ were designed to mimic the phys-
iological situation. By adopting this approach,
we could apply the same analytical tools as
described in the foregoing sections and, thus,
directly confront the outcome of the physiologi-
cal experiments with that of the theoretical
investigation. We refer to such experiments on
theoretical constructs as ‘in virtu’ recordings, to
distinguish them from their in vivo and in vitro
physiological counterparts.

In our experiments we continuously varied the
stimulus to ‘travel’ between the stored input
patterns. The associated excursions through the
attractor landscape of the neural network were
monitored by observing the variations in spike
activity among a selected subgroup of neurons.
The stimulus protocol is schematically illustrated
in Fig. 6a. The symbols A, B and C denote any
triplet from the stored input patterns; the con-
tinuous hexagon symbolizes the path taken by
the stimulus. This path was designed to investi-
gate the switching behavior of the network to
varying mixtures of stored input patterns. To this
end, we concentrated our attention on the
boundary regions and avoided the attractors
themselves. For instance, at any point in time
along the branch AB-BA, the stimulus consists
of a superposition of the two input patterns A
and B, with weights linearly varying from a ratio
2:1 to 1:2. One such branch has a duration of
100 ms, sampled in steps of 1ms. Thus, one
‘round-trip’ along the hexagon takes 600 ms. By

b

A B C
SE1 9 4 2
SE2 3 7 10
SE3 4 2 10
SE4 9 8 7
SES 9 2 4
SE6 8 10 7
SE7 4 10 2
SE8 9 7 8

Fig. 6. Composition of the stimulus ensembles, used to test
the model neural network. The symbols A, B and C denote
three different input patterns, selected from the stored set of
ten (Fig. 5; bottom panels); the hexagon symbolizes the
stimulus trajectory (a). Along each side of this hexagon, the
stimulus consists of a superposition of two of these input
patterns, with weights linearly moving from ratio 2:1 to 1:2.
Each branch lasts 100 ms, sampled in steps of 1ms; a
complete ‘round-trip’ along the hexagon takes 600 ms. Four
different choices of the triplet (A, B, C) lead to four different
stimuli, each of which comes in two versions, depending on
whether the hexagon is travelled ‘clockwise’ (SE1 to SE4) or
‘counter-clockwise’ (SES to SE8) (b).

making different selections for the triplet
(A,B,C), we generated four different stimulus
ensembles; by additional variation of the direc-
tion of the path taken (‘clockwise’ or ‘counter-
clockwise’), we arrived at a total of eight differ-
ent stimulus ensembles (SE1 to SE4, and SES to
SES; cf. Fig. 6b).

The response of the network to these various
stimuli was investigated by recording the spike
activity of a subgroup of 16 of the 100 model
neurons, in much the same way a physiological
multi-neuron recording would pick up a fraction
of the entire population of neurons. These 16
neurons were chosen such that each of them
belonged to one or two assemblies, associated
with the stored input patterns used for generat-
ing the stimulus ensembles SE1 to SE8. The
‘synaptic’ connectivity matrix for this subset of
16 neurons, a submatrix from the one in Fig. 5,
is shown at the bottom left of Fig. 8. Notice
again the block-like associations of the various
cell assemblies and the overlap between them.
This is summarized in the simplified membership
diagram depicting three dominant assemblies
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(numbered 1, 2, 3) within the group of 16. Note,
however, that the actual assembly structure is
more complex, and that more than three, partly
overlapping, assemblies can be discerned in the
synaptic connectivity matrix.

Fig. 7 shows the temporal variation of the
input to the selected 16 neurons for two different
stimuli (SE1 and SE3; top panels) and the
associated spike activities, collected over 10 trials
of 600ms each (bottom panels). Notice the
qualitative similarity of this picture with the
physiological recording (Fig. 2) and, particularly,
how the various neurons reflect the time course
of their input in the temporal modulation of their
(generally low) firing rates. We made simulations
like these for each of the eight different stimulus
ensembles SE1 to SE8. The multi-neuron spike
trains ‘recorded’ during these simulations were
analyzed for neural interactions using the net-
work correlation matrix algorithm described in
connection to Fig. 1. The ‘normalized’ correla-
tion matrices, representing the time-averaged
functional coupling among the neurons for each
of these 8 different stimuli, are shown in the top
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Fig. 7. ‘In virtu’ recordings from 16 out of 100 neurons in the
model network upon presentation of two different test stimuli
(SE1 and SE3; Fig. 6). The top panels show the inputs to
each of these 16 neurons, the bottom panels show the spike
trains these neurons generate in response to 10 consecutive
stimulus presentations. Compare these dot displays to the
cortical recordings in Fig. 2.

synaptic connectivity

3-1 32 3-8
21 2-2 [2-3
1-1 1-2 [1-3] -0.15 0.45

Fig. 8. Network correlation matrices (top eight panels),
representing the functional coupling among a subset of 16
neurons in the model network in response to eight different
test stimuli (SE1 to SE8; Fig. 6). All stimuli were presented
at equal input strength of 0.25 (cf. Fig. 9). The synaptic
connectivity matrix for these 16 neurons (a sub-matrix from
the one in Fig. 5) is shown in the bottom panel (left),
together with a simplified diagram of the three dominant cell
assembilies (1, 2, 3), present in this group of 16 neurons. The
format of the matrices is the same as in Figs. 1 and 5; the
strength of coupling is coded in grey according to the grey
bar (bottom right).

two rows of Fig. 8, in a format identical to that
of Fig. 1b.

Two interesting comparisons can be made at
this point. First, the network correlation ma-
trices for these eight different stimulus ensem-
bles reveal distinct stimulus-dependent differ-
ences in the degree of coupling among the
neurons. Different subgroups of neurons more
or less clearly pop out, depending on the
stimulus used. These results are highly remin-
iscent of the stimulus-dependent coupling we
observed in the physiological recordings in Fig.
1. In addition, however, we can also compare
the correlation matrices with the synaptic con-
nectivity matrix in the bottom panel. Note that
this second comparison is usually not possible in
the physiological context and, thus, presents a
distinct advantage of such ‘in virtu’ experiments.
In particular, it demonstrates how, depending on
the stimulus context, different portions of the
underlying synaptic network express themselves



A. Aertsen et al. | Physica D 75 (1994) 103-128 117

in the correlation matrix, whereas others, in
spite of their strong and persistent synaptic
connectivity, do not show up at all. For instance,
the stimulus ensemble SE3 mainly reveals cou-
pling among the first assembly (neurons 1 to 7),
stimulus ensemble SE2 predominantly shows
interactions in the second group (neurons 8 to
13), whereas both the first and second assembly
(or, rather, different portions of the latter) are
manifest with stimulus ensembles SE1 and SE4.
None of these four stimuli is apparently able to
reveal the third assembly. Observe also how the
time-reversed stimulus ensembles SES and SE7
give rise to distinct differences as compared to
their counterparts SE1 and SE3; such hysteresis
effects are less visible for the stimuli SE6 and
SE8. Finally, we note an interesting case of
‘pattern completion’, revealed by comparison of
Figs. 7 and 8. Inspection of Fig. 7 shows that
neurons 1 to 5 receive no direct input from
stimulus SE3, whereas neurons 6 and 7 do.
Accordingly, these first five neurons fire at very
low rate, whereas neurons 6 and 7 more or less
faithfully reflect the time course of the input in
the elevation of their firing rates (cf. the dot
display in Fig. 7). In spite of this difference in
activation, however, the entire assembly lights up
more or less uniformly coupled in the network
correlation matrix in Fig. 8. Apparently, the
synaptic interactions within cell group 1 suffice to
recruit these first five neurons into coincident
firing with the other members of the group, even
though only part of the assembly was activated
by the stimulus. Moreover, the pattern comple-
tion in this case is expressed in an increased
correlation of firing, rather than in an increased
rate of firing.

8. Dependence of coupling on stimulus strength

In a second series of simulations we investi-
gated the statistical significance of individual
values in the network correlation matrix. To this
end we presented a stimulus ensemble repeated-

ly, and collected data from 10 such experiments,
each one consisting of a sequence of 10 trials as
before. For each of these experiments we mea-
sured the normalized correlation matrix and,
thus, obtained 10 statistically independent reali-
zations of the same coupling matrix. The degree
of statistical variation was assessed for each
individual matrix entry by determining the mean
value and the standard deviation. By averaging
these standard deviations for the entire matrix,
we obtained the overall mean standard devia-
tion. Assuming a Gaussian distribution, we de-
fined a 5% significance level for deviations from
zero coupling by setting a threshold at twice this
mean standard deviation. This statistical analysis
was performed for two different stimulus ensem-
bles SE1 and SE2. In the same series of experi-
ments we also studied the effect of changing the
amplitude of stimuli presented to the network.
The implicit assumption here is, of course, that
such changes of input strength are monotonically
related to changes in the intensity (or contrast,
or some other appropriate parameter) of sensory
stimuli in physiological experiments.

Fig. 9 presents a summary of our findings. For
each of the stimuli SE1 and SE2, a triplet of
panels in the top row shows superimposed plots
of the mean values of selected matrix entries as a
function of input strength. The left-hand panel of
each triplet (Figs. 9a resp. 9d) contains the
curves for all matrix entries within a single plot;
the two pairs of right-hand panels (Figs. 9b,c,
respectively 9e,f) consider only those matrix
entries that correspond to coupling within each
of the two dominant cell assemblies 1 and 2, i.e.
those situated within the confines of the matrix
blocks (1-1 and 2-2) around the diagonal in the
bottom panel of Fig. 8. We found the mean
standard deviation to be 0.04, only weakly de-
pendent on the input strength and of the
stimulus ensemble used. Hence, we set the 5%
significance level for coupling at a constant
correlation threshold of 0.08, indicated by the
dashed line in the various plots. Several observa-
tions can be made from these results. We concen-
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Fig. 9. Dependence of the functional coupling in the model neural network on stimulus composition and intensity. The top panels
show the values of individual entries in the network correlation matrix as a function of the strength of the input stimuli SE1 (a—c)
and SE2 (d—f). Each curve represents the mean of 10 statistically independent repetitions of the experiment. Panels (a) and (d)
show the superimposed curves for all neuron pairs in the correlation matrix, panels (b,c) and (e,f) only for these pairs that belong
to the two dominant assemblies (cell groups 1 and 2), as judged from the synaptic connectivity matrix (Fig. 8). The dashed line
(sig) marks the 5% level of significance for deviation from zero coupling. The histograms in the bottom panels (g) show the
distributions of values in the network correlation matrix for different values of input strength of the stimulus SE1 (scaling, as in

(a—f) from —0.15 to +0.45; binwidth 0.025).

trate first on the separate sets of curves for the
coupling within each of the assemblies 1 and 2.
The narrow spread among the curves in each
single panel (Figs. 9b,c and 9e,f) reveals that the
coupling between the various members of an
assembly is essentially uniform, and shows
identical dependence on input strength. General-
ly, this dependence is non-monotonic, with a
maximum at some intermediate value of stimulus
intensity, and consistent fall-off at larger am-
plitudes. This suggests that there exists a re-
stricted range of intermediate amplitude values
in which the assembly organization can unfold
most clearly (our examples of Fig. 8 were mea-
sured at an input strength of 0.25). Very weak or
very strong input strengths, however, either do

not adequately address the network or enslave it
to such an extent that no room is left for the
assemblies to organize. Apart from these com-
mon properties of the various sets of curves,
there are also clear differences in the amplitudes
and the shapes. This applies both when different
assemblies are compared for the same stimulus
(Fig. 9b vs. 9c; Fig. 9¢ vs. 9f), and for each
single assembly compared across different stimuli
(Fig. 9b vs. 9e; Fig. 9c vs. 9f). This differential
dependence on the composition as well as on the
strength of the input stimuli once more dem-
onstrates how the network may drastically
change its appearance, depending on the stimuli
used to investigate its performance. Stated in
more functional terms, it explains how the net-
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work reorganizes the topology of its functional
coupling, depending on the computational task it
is faced with.

9. On ‘reading’ the network correlation matrix

Our interpretation of these differential depen-
dences of spike correlations on stimulus prop-
erties was certainly facilitated by our knowledge
of the synaptic connectivity matrix. Particularly,
the ability to assign the individual neurons to
different assemblies and to investigate their
coupling in appropriately separated groups
proved most helpful. Unfortunately, in the phys-
iological setting such information is usually not
available. The result is that a separation as in
Figs. 9b,c resp. Figs. 9e,f is generally not pos-
sible. Rather, the experimenter is faced with the
task to make sense out of entire collections of
curves, such as shown in Figs. 9a and 9d.
Clearly, the variance as well as the overlap of so
many different shapes of curves make plots like
these very hard to interpret, even more so as
sampling at so many different intensity levels as
done here is experimentally usually not feasible.

We see essentially two approaches to alleviate
this dilemma. First, as illustrated in the permuta-
tion of the connectivity matrix in Fig. 5, consid-
erable insight can be gained by taking into
account the ‘functional neighborhood’ of the
neurons and to use this to reorganize the ‘spatial’
arrangement of the coupling matrix. Such reor-
ganization may provide useful hints how to
subdivide the observed neurons into separate
functional groups. We are currently investigating
such re-sorting algorithms and their performance
when applied to network correlation matrices of
physiological multi-neuron recordings. A second
approach is illustrated in Fig. 9g. This shows, in
the form of a series of histograms, the distribu-
tion of values in the entire network correlation
matrix, determined at different input strengths of
the stimulus ensemble SE1. By inspecting these
distributions for possible clustering of correlation

values, one may obtain further evidence for
functional subgroups in the population of ob-
served neurons. Notice, for instance, that the
collection of correlation values that significantly
deviate from zero comes in two or three separate
clusters for certain values of the stimulus am-
plitude (e.g. 0.03, 0.05), whereas for other
amplitudes this distribution is more or less con-
tinuous. Thus, it appears that the combination of
these two sources of evidence, one from the
topology of the coupling matrix, the other from
the distribution of coupling strengths, may in-
deed help in defining the functional grouping of
the neurons and their individual alliances.

Summarizing, these simulations demonstrate
that a network with fixed synaptic connectivity
can exhibit strong context-dependence of func-
tional coupling, expressed in the neuronal spike
correlations. Thus, considerable and rapid
changes in coupling may occur, without any
associated changes in local connectivity. In con-
trast, our findings rather point at a more global
mechanism, in which the instantaneous degree of
coupling among the neurons is controlled by the
stimulus-dependent flow of activity in the entire
feedback network. Such global mechanisms do
not have to invoke rapid modulations of synaptic
efficacy [29,30], although they obviously do not
exclude them as an additional mechanism either.
Further experimental evidence is required to
clear this issue.

10. Dynamics of functional coupling in the
model neural network

Similarly to our approach in the physiological
recordings, we now turn our attention to the
dynamics of coupling between individual neurons
in the model network using the Joint-PSTH. We
will consider the interactions both within and
across different cell assemblies. In order to
obtain reliable statistics, we presented the
stimulus ensemble SE1 to the network for a total
of 250 consecutive trials. Fig. 10 shows the
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Fig. 10. Stimulus-locked dynamic correlation of firing between selected pairs of neurons from the model network during repeated
presentation of the test stimulus SE1. The ‘raw’ (A) and the normalized (B) Joint-PSTH were determined for the pair (6,7), both
members of the same assembly (cell group 1; Fig. 8). A similar result is obtained in the normalized Joint-PSTH (C) of another
‘within-assembly’ pair (8,9), selected from the assembly (2). Observe that quite different coupling dynamics are exhibited by the
‘across-assembly’ pair (6,8) (D). The format of these figures is the same as in Fig. 3, with a binwidth of 6 ms. Numbers of spikes:
9244 (neuron 6), 8426 (neuron 7), 4136 (neuron 8), 2390 (neuron 9), recorded during 250 stimulus trials of 600 ms each.
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Fig. 10 (Cont.)

results of Joint-PSTH analysis of selected pairs
of model neurons. The raw and the normalized
Joint-PSTH for the pair (6,7), both from cell
assembly 1, are shown in Figs. 10a and 10b.
Further normalized Joint-PSTHs are shown for

the pair (8, 9) from cell group 2 in Fig. 10c, and,
finally, for the across-group pair (6,8) in Fig.
10d. All three normalized Joint-PSTHs are dis-
played using the same scales, in order to enable
comparison across neuron pairs.
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Similarly to Fig. 3a, we observe that the
individual PST histograms in the ‘raw’ Joint-
PSTH (Fig. 10a) show a strong stimulus-locked
modulation of firing for both neurons, and an
accompanying increase in ‘raw’ correlation in the
Joint-PSTH matrix and in the PST-coincidence
histogram. Again, individual, joint, and near-
coincidence firings all are increased in parallel
during a portion of the stimulus trial. Also, as in
Fig. 3a, the time-averaged cross-correlogram
(top right) is dominated by the rate coherence,
thereby virtually masking the signs of spike
correlation. Inspection of the normalized Joint-
PSTH, however, demonstrates that also here the
normalization has an ‘unmasking’ effect, as is
attested by the — hitherto invisible — symmetrical
and moderately narrow positive peak in the
time-averaged cross-correlogram. More interest-
ingly, though, also the detailed time course of
the excess spike correlation between the two
model neurons is very similar to that between
the cortical neurons. As in Fig. 3b, the normal-
ized PST-coincidence histogram along the diag-
onal of Fig. 10b reveals positive correlation in
the rising and falling phases of the responses,
while the correlation breaks down to zero inbet-
ween, and stays down for most of the duration of
the peak response rates.

This behaviour is essentially reproduced by the
pair (8,9), taken from cell group 2 (Fig. 10c).
Also these two model neurons co-vary in their
response rates, albeit with a smaller dynamic
range than the pair (6, 7). Similarly to the first
pair, the normalized correlation reaches its maxi-
mum not during the peak response rates, but
rather in the declining phase and, albeit to a
smaller extent, in the rising phase. Comparison
with further pairs showed that the behavior
exhibited by these two pairs, each taken from a
different cell group, is representative for the
interactions taking place within a model assem-
bly. The situation is quite different, however, for
the interactions between model neurons that
belong to different assemblies. This is illustrated
for the pair (6, 8) in Fig. 10d. Observe that in

this case the time-averaged normalized correla-
tion (top right) equals zero. This explains the
zero coupling among such across-assembly neu-
rons in the network correlation matrix (Fig. 8,
SE1), as this matrix essentially represents a time-
averaged measure of excess correlation. Interest-
ingly, this absence of time-averaged correlation
does not imply that the coupling between the
neurons is constantly zero throughout the
stimulus trial. Instead, the normalized PST-
coincidence histogram along the diagonal ex-
hibits an alternating trajectory. It passes through
a prolonged, shallow negativity during most of
the elevated single neuron responses, before
rising to a brief burst of positive spike correla-
tion as the responses have almost decayed down
to background level. This result once more
demonstrates the dangers of taking the usual,
time-averaged cross-correlogram as evidence for
the presence or absence of neural interactions.
Contributions of opposite sign may cancel in the
time integral and, hence, leave no trace in the
correlogram (see also [23]). More interestingly,
though, are the functional implications of this
type of interaction. Apparently the two model
assemblies compete with each other during most
of the time they are both strongly activated by
the stimulus. This competition is presumably a
consequence of the mean field coupling, me-
diated by the global inhibition in our model
network. It only ceases to exist, or, rather, it is
overridden by the positive cross-coupling be-
tween the assemblies, after the firing rates have
decayed so much that the simultaneous co-exist-
ence of two active assemblies no longer poses a
challenge to the activity regulation by the slow
inhibition.

In summary, many of the features we en-
countered in our study of interactions among
cortical neurons are reproduced in our simula-
tions in remarkable detail. This is all the more
surprising, since our model network was not
designed with that particular purpose in mind.
Rather, it was inspired by much more general
considerations, originating from statistical neuro-
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anatomy and basic physiology. Thus, we con-
clude that the observed consistency with the
physiological interactions clearly speaks in favor
of the biological plausibility of this type of neural
network model. Moreover, it lends support to
our thesis that most, if not all, of the dynamic
context-dependence of cortical coupling can, in
fact, be attributed to the global mechanisms
embedded in such probabilistic feedback net-
works. In this context, it is interesting to note
that remarkably similar phenomena of clustering
and dynamic reorganization have been reported
in other coupled nonlinear dynamical systems
(see e.g. the contributions by Tsuda and Kaneko
in these proceedings).

11. Modulation of functional coupling by
background activity

In a final chapter we wish to quantify the
influence of the overall network activity on the
effective strength of an individual synapse. To
this end we performed additional, more specifi-
cally designed simulations and analytical calcula-
tions [42]. The model system consisted of two
neurons, with neuron 1 driving neuron 2 via a
single synapse of fixed strength « (see Fig. 11a,
inset). In addition, neuron 2 receives input from
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a pool of N independent, spontaneously firing
neurons, each of them connected to 2 with
strength B. All synaptic connections « and S
have fixed and moderately weak strength, i.e.
spikes arriving at any particular junction give rise
to EPSPs with a constant, subthreshold mag-
nitude. We studied the behavior of the efficacy of
the connection between neurons 1 and 2 as a
function of the background activity arriving at 2
from the neuron pool, for constant connectivity
a and different values of pool coupling B.

This model system was investigated using
equations and simulation algorithms adopted
from [43]. The mean firing rate. A of all sponta-
neously active neurons- was set to about 10
spikes/s (‘sparse’ firing). The pool activity could
be varied by changing either the number of
neurons N or the firing rate A of each of the
member neurons. The latter manipulation
mimics the effect of driving the neuron pool with
a stimulus S (Fig. 1la, inset). The effective
coupling a’ between neurons 1 and 2 was mea-
sured by cross-correlating the spike activity from
the two: a’ equals the number of correlated
events N, (i.e. the net area of the peak in the
correlogram) divided by the number of presynap-
tic events N, [12]. Curves of the behavior of the
effective connectivity a’ as a function of pool
activity NA for various choices of pool coupling 8

0.4

0.5

2000
0 NA (1)

0

NA (o) 2000

Fig. 11. Functional coupling &’ as a function of background pool activity NA, for different values of pool coupling 8. The two
panels show results from network simulations (A) and from analytic calculations for a simplified version of the network model
(B). The structure of the network is shown in the inset of (A). Further explanation in text..
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are shown in Fig. 11a. Two observations can be
made:

(1) The efficacy ' varies in a non-monotonic
fashion with pool activity NA, even though the
synapse itself is kept at a fixed strength « (=0.2)
throughout all simulations. With increasing pool
activity, the efficacy of the coupling initially
increases strongly to reach a maximum, after
which it slowly decays again. Dynamic changes
of pool activity, reflected in excursions along the
horizontal axis of Fig. 11a, thus would result in
equally fast, but distorted excursions along the
vertical axis, causing corresponding changes in
effective coupling.

(2) The dynamic range of the efficacy o'
increases with decreasing pool coupling 8. More-
over, for smaller 8 the maximum of the effective
coupling «' is actually higher, but is only reached
at Jarger values of the pool activity. This finding
is especially relevant for large, weakly coupled
nets, of which the mammalian neo-cortex is a
typical example.

The explanation of these phenomena is actual-
ly quite simple. Due to the subthreshold nature
of the EPSPs, action potentials from neuron 1 by
themselves will not suffice to make neuron 2 fire.
For this they need the coincident arrival of
spikes at the other synapses of neuron 2. These
are provided by the diffuse background activity
reaching 2 from the remainder of the network.
The pool activity thus provides’ a background
level, which, depending on its magnitude, will
make activity from the driver neuron 1 more (or
less) viable in eliciting activity from its target
neuron 2. Hence, the background activity func-
tions as a control parameter, determining the
operating point of the receiver neuron, and,
thereby, the efficacy of the otherwise subthres-
hold connections. This also explains our second
observation; i.e. why the dynamic range in-
creases with decreasing pool coupling. Due to
the stochastic and pulse-like nature of the pool
activity arriving at the target neuron, the back-
ground level of the membrane potential of 2 will
fluctuate and, hence, occasionally reach thres-

hold, causing neuron 2 to fire. Since these
‘accidental’ firings do not require coincident
arrival of spikes from neuron 1, they do not
contribute to the efficacy of the 1-2 connection.
On the contrary, they are counterproductive
since they cause spikes from 1 to arrive more
often at its target neuron when this is in a
non-responsive state (‘refractoriness’). The size
of the membrane potential fluctuations and,
hence, the amount of occasional firing of 2 is
proportional to the pool coupling B. This implies
that the smaller this pool coupling, the closer
one can regulate the operating point of the target
neuron towards being liable to fire upon arrival
of spikes from the driver neuron, without the
danger of eliciting too many counteractive ac-
cidental firings. Rather than a ‘noisy’ control
parameter, one thus obtains a smooth, and
thereby more influential regulation of synaptic
efficacy.

In order to investigate this background firing
mechanism quantitatively, we analyzed a sim-
plified model by analytic means [42,28]. An
explicit expression for the effective coupling can
be obtained by assuming (1) that the membrane
potential at the site of spike initiation is the
result of linear, spatio-temporal integration of
incoming spike trains, and (2) that a spike is
generated whenever this membrane potential
crosses a fixed threshold level 6. The contribu-
tion to the membrane potential of neuron 2, due
to the pool of N independent Poisson processes,
each with constant rate A, connected to neuron 2
with strength B can then be described as ‘shot-
noise’ (i.e. a linearly filtered (time constant 7)
Poisson process). For reasonably large N, the
resulting distribution of membrane potential
values can be approximated by a Gaussian dis-
tribution with mean value u = NAB and variance
o’ = NAB?/2r. Following Abeles [5], the firing
A, of neuron 2 can then be calculated as

)

[ exp- 1y

O—p)lo

1
A==

2

The effective coupling «’' from neuron 1 to



A. Aertsen et al. | Physica D 75 (1994) 103-128 125

neuron 2 equals the increase in firing rate A,
upon the arrival of a spike from neuron 1, i.e.
upon a shift of the membrane potential over an
amount «:

©@-w)o
a== | e 1y
Vs :
-—p—a)o

The resulting curves for the effective coupling a”
are shown in Fig. 11b. Notice that they exhibit -

essentially the same non-monotonic behavior as
the simulation results in Fig. 11a: an initial fast
increase until 2 maximum is reached, followed
by a slower decay. Also, the influence of the
strength of pool coupling on the dynamic range
of the effective coupling is reproduced, with
smaller pool coupling leading to a larger modula-
tion range. Finally, we note that the shape of the
curves in Fig. 11 bears a surprising resemblance
to the non-monotonicities we measured in the
amplitude-dependence of coupling in the feed-
back model network (Fig. 9). Also, some of the
non-monotonic behavior we observed in the
dynamics of coupling in the Joint-PSTHs, both
for the physiological (Fig. 3) and for the model
spike trains (Fig. 10), fits these curves remark-
ably well. This, once more, suggests that rapid
variations of background activity may indeed be
instrumental in dynamically regulating the ef-
ficiency of synaptic coupling between cortical
neurons.

The principal cause of these various dynamic
effects resides in modulations of the rate of
background activity projecting onto the target
neurons. In another, related study it could be
shown that very similar and equally rapid effects
can be obtained by dynamically manipulating the
internal correlation structure of the background
activity, while keeping its magnitude constant
[4,44,45]. We conclude that, even with the highly
simplifying assumptions in this model, we have
captured the essence of a nonlinear mechanism
by which ‘diffuse’ background activity may gov-
ern the dynamic linking of neurons into func-
tional groups. It is based on activity variations in

the entire network, being ‘projected down’ onto
the connections among the recipient neurons. As
a result, rapid changes in activity in the entire
network induce equally fast, nonlinearly dis-
torted modulations of synaptic efficacy (see also
[46,47]). These, in turn, are expressed in rapid
modulations of spike correlation in the cortical
activity, as can be observed in multi-neuron
recordings.

12. Discussion

Whatever the mechanism underlying the
stimulus-driven and behavior-related modula-
tions of functional coupling ultimately turns out
to be, these modulations form an interesting
feature of cortical organization. In particular,
they are the signature of an ongoing process of
dynamical and activity-related ‘linking’ and ‘un-
linking’” of neurons into varying, coherent
groups. This process may have interesting func-
tional implications at different levels of observa-
tion. At the single neuron level, it may explain
how even little specificity in anatomical con-
nections could be dynamically sorted out to yield
the complex functional properties that have been
observed for cortical neurons. Thus, it might
provide a natural mechanism for the physiologi-
cally measured context-dependence and intrinsic
dynamics of receptive fields in central sensory
neurons [48-51]. At the multi-neuron level,
dynamic coupling may account for coherence
variations in a spatially distributed neural code.
Several recently observed phenomena in cortical
activity point at possible candidates for such a
distributed code. One example is the observation
of stimulus-specific oscillatory events in the cat
visual cortex, with coherence properties that may
extend over wide ranges of cortex [52-54]. A
second is the relative exuberance of highly accur-
ate and behavior-related spatio-temporal spike
patterns in cortical activity, pointing at the
presence of ‘synfire reverberations’ [55,56]. Dy-
namic coupling is, almost by definition, a natural
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candidate to mediate the general process of
‘temporal binding’ [29,30]; an example is the
task of object recognition by the visual nervous
system [57-59]. Recent model work along these
lines, e.g. [60-65], demonstrated that stimulus-
related modulations of activity coherence, pos-
sibly differentiated into rate coherence and event
coherence [27], may indeed subserve such bind-
ing functions (see also [9]). Finally, at the level
of the organization of perception and action,
modulation of functional coupling in inter-con-
nected neural networks may provide a mecha-
nism for the selection and successive ignition of
neural assemblies within and across such net-
works. Spatio-temporal variation of input activi-
ty, carried onto the target networks by divergen-
t—convergent projections, could modulate the
activity levels in these networks and, hence,
provide the means to select and dynamically
switch from activation of one cell assembly to the
next. Such ‘threshold control’-like [37,38] mech-
anisms for the generation of ‘phase sequences’
[2] of cell assemblies have been invoked in
recent theories of learning on the basis of ‘effects
of actions’, such as presumably mediated by
cortico-striatal interactions [66—68].
Summarizing, the highly dynamic interplay of
activity and connectivity in the cortex gives rise
to an ongoing process of functional reorganiza-
tion. Everchanging groups of neurons, each one
recruited for brief periods of time, become co-
activated and again de-activated, following each
other in rapid succession. It is our conjecture
that this dynamic reorganization provides the
substrate to implement the neural computations
involved in ‘higher brain function’, including the
capacity to perceive, to behave, and to learn.
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