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Recently, the classic idea of a ‘relational’ code in the brain received new 
impetus from the observation of stimulus-dependent synchronizations 
in the visual cortex. Work over the past two years has focused on 
documenting the functional dependencies of such synchronizations. We 
review and classify the experimental findings with respect to separate 
spatial and temporal schemes. Thus, we distinguish between different 
signal classes (spikes, continuous signals), and different types of time-locking 
to the stimulus. These various classes of synchronization phenomena are 
discussed with regard to their properties, the underlying mechanisms and 

their possible relevance for visual processing. 
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Ever since the time of Sherrington [ 11 and Hebb [ 21, neu- 
robiologists have pursued the idea that neurons do not 
act in isolation, but rather that they form into assemblies 
to organize perception and action, and to perform the 
various computational tasks involved (see also [ 31 for 
an early formulation of this concept). Over the years, 
a number of different, somewhat conflicting definitions 
of ‘neural assembly’ have been proposed, phrased in 
terms of anatomy, of shared function, of shared stimu- 
lus response, etc. (for a review see [4] ). One operational 
definition for neuron cell assembly has been particularly 
influential: ‘temporal coherence’ defined on the basis of 
near-simultaneity or some other specific timing relation 
in the firing of the participating neurons. This definition 
has been elaborated in the concept of the ‘synfire chain’ 
[ 5,61: the synaptic influence of multiple neurons converg- 
ing onto others in the cortical network is much stronger 
if they fire in (near-) coincidence. Thus, synchronized fir- 
ing is, in fact, directly available to the brain as a potential 
neural code [7,8] It has been speculated [9,10] that this 
code might sense as a mechanism for perceptual integra 
tion by ‘feature binding’: features of a particular object in 
a composite scene (e.g., in vision or audition) are func- 
tionally grouped by virtue of the correlated firing of the 
associated neurons. 

Synchrony of firing in the visual cortex was classically 
studied by cross-correlation analysis of simultaneously 
recorded multiple neuron spike trains [ 1 l&15]. Follow- 
ing Moore et al. [16], peaks and troughs in the cross- 
correlograms, after comparison with appropriate con- 
trol measurements [ 171, are characterized on the basis 
of parameters describing the shape (symmetry, width 

and sign) and delay, and the dependence of these de- 
scriptors on stimulus features. The interest in firing syn- 
chrony recently received new impetus from reports on 
stimulus-dependent oscillatory synchronizations in the 
visual cortex [ 18-201. Briefly, extracellularly recorded 
population activity - local field potentials (LFP) and 
multi-unit activity (MUA) - in the primary visual cortex 
of the anaesthetized cat showed oscillatory spindles with 
frequencies between 35 and 85 Hz upon presentation of 
moving bar and grating stimuli. In an earlier report [ 211, 
synchronized oscillatory responses had been observed 
in subdural EEG-recordings from the visual cortex of 
the awake monkey. In contrast to the well-known visual 
evoked potentials (VEP), these rhythmic events are not 
time-locked to the stimulus and, hence, not visible after 
stimulus-triggered signal averaging. Moreover, oscillatory 
spindles recorded from different electrodes were found 
to synchronize, depending on the coherence in orienta 
tion and direction of movement of the light bar stimuli. 
Thus, these findings triggered a still continuing debate 
on the potential role of synchronous brain activity in 
establishing a coherent percept by ‘feature binding’. In 
order to review the experimental evidence, we develop 
a classification scheme of synchronization phenomena, 
emphasizing their different levels of space-time resolu- 
tion. 

Timing, correlation and synchronization 

Synchronization on different spatial scales 

On closer inspection. the various reports on synchronous 
activity in the visual cortex pertain to neural activities at 
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widely different levels of spatial resolution, ranging from 
single neuron spike trains up to EEG recordings. The 
accompanying differences in signal characteristics, and 
hence in signal processing techniques, lead to character- 
istic differences in the nomenclature and interpretation 
of the temporal coherence phenomena found. Thus, 
these various differences provide a first means of clas 
sifying these coherence phenomena, as summarized in 
Table 1. 

At the lower end of the scale, single and multiple neuron 
spike trains present examples of discrete signals. They 
are classically treated as stochastic point processes; com- 
putational tools for analysis are usually based on averag- 
ing techniques. The internal time structure is evaluated 
by auto-correlation histograms (ACH) [22], the timing 
relation with respect to the stimulus is measured by 
the post-stimulus time histogram (PSTH) [ 231. The tim- 
ing relation between spike trains from different sources 
is analysed by cross-correlation histograms (CCH) [ 171, 
the dependence of joint firing on stimulus timing by the 
Joint-PSTH [ 241 or, for more than two neurons at a time, 
by ‘gravitational clustering’ [25,26] or related methods 
[ 151. Population signals (such as LFP and EEG), on the 
other hand, are classically treated as continuous signals, 
using tools from systems theory such as spectral analysis, 
auto- and cross-correlation functions (ACF, CCF) and co- 
herence function [ 271; the relation to stimulus events is 
studied by stimulus-locked signal averaging - a typical 
result being the VEP. 

Related to this distinction between discrete and contin- 
uous signals is the issue of ‘signal generators’. Discrete 
spike signals represent the output activity of neurons, 
whereas continuous population signals with a frequency 
content below some 100Hz are usually associated with 
dendritic potentials, i.e. the input signals to the neu- 
rons [28]. The transitional category of non-separated 
MUA is evaluated according to either one of the two 
signal classes - that is, as population spike activity 
[18] or as population rate activity [ 201 ~ depending 

on whether the discrete or the continuous aspects are 

emphasized. Often, the shift in spatial resolution from 
single neuron to population level is accompanied by a 
change in terminology for the associated temporal co- 
herence phenomena: the terms shift from ‘timing’ to 
‘coincidence’ and ‘correlation’, and on to ‘synchroniza- 
tion’. Similarly, the conceptual interpretation shifts from 
the atomistic view of the single neuron as a ‘cardinal cell’ 
[ 291, to the notion of the ‘functional group’ or cell assem- 
bly [ 2,9,10,30] and from there to the global dynamic state 
of the brain (or large parts of it) in relation to behavioral 
context [31]. 

Synchronization with different degrees of 

stimulus coupling 

A second classification of visual response synchroniza- 
tions is based on the degree of ‘time-locking’ to the 
stimulus (cf Table 2). Those events that re-occur in 
a time-locked fashion upon repeated presentation of 
a stimulus are called ‘stimulus-locked’, those that alter 
their frequency of occurrence in relation to the stim- 
ulus but without such precise timing-locking are called 
‘stimulus-related’. In practical terms, the degree to which 
these events show up after stimulus-triggered signal aver- 
aging (PSTH, VEP) determines into which category they 
are included. Thus, those events which do not survive 
trial averaging of the signal waveform are by definition 
classified as stimulus-related, 

This emphasis on reproducibility with respect to stimu- 
lus time creates a methodological problem with the class 
of stimulus-related synchronization events. The reason is 
that the definition given above is essentially a negative 
one. Clearly this implies that another criterion is needed 
to detect instances of stimulus-related synchronization in 
the first place. Marked features (e.g., damped oscilla- 
tory waveforms) in time- or trial-averaged cross-corre- 
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lations can be used to indicate the presence (but not 
necessarily the shape) of stimulus-related synchroniza- 
tions. Other methods, however, are needed to isolate 
the individual occurrences and to determine their pars 
tic&r properties (latency, duration, frequency content, 
etc.). Typically, some conspicuous feature in the time 
course of the signal under observation [32] or in the 
sliding cross-correlogram [33**] is used in a template- 
like fashion to define and detect the occurrence of an 
instance of synchronization on a single trial basis. Evi- 
dently, this procedure implies a considerable degree of 
subjective judgement and/or model dependence. For in- 
stance, the emphasis on oscillatory events as instances 
of stimulus-related synchronization is at least partly ex- 
plained by their eye-catching quality; other arguments 
come from the EEG literature, with its traditional inter- 
est in ‘rhythmic activities’ (e.g., [28,34]). The question 
remains, though, whether other instances of stimulus- 
related synchronization, possibly with a less periodic 
or otherwise striking time structure, may have escaped 
attention, with the danger of incompleteness and/or bias 
in the functional interpretation of stimulus-related syn- 
chronization phenomena (see also the methodological 
critique in [35**] ). In this context we note the exis- 
tence of a considerable body of recent literature, con- 
cerned with the definition, and detection of spatio-tem- 
poral activity patterns, not necessarily periodic, in single 
and multiple neuron activity, and their surprisingly high 
frequency of occurrence in relation to stimulus and be- 
havioral events [36,37,38-l 

A distinction between stimulus-locked and stimulus-re- 
lated forms of synchronization is also made in cross- 
correlation studies of simultaneously recorded multiple 
spike trains. Synchronization, defined on the basis of 
departures from baseline firing in time-averaged cross- 
correlograms, is separated into a stimulus-locked con- 
tribution and a residual component, the latter presum 
ably mediated by network effects. Those instances in 
which synchronization can be fully explained by stim- 
ulus time-locking of the individual responses alone are 
called ‘stimulus-locked’; those in which other sources 
of synchronization have to be invoked are usually called 
‘neural coordination’ or ‘functional coupling’. The degree 
of stimulus-locked synchronization is typically measured 
by the correlation of stimulus-locked individual averages 
(‘shift’ or ‘shuffle predictor’ [ 171, ‘PST-predictor’ [ 391). 
The amount of residual correlation, possibly after appro 
priate normalization, measures the degree of neuronal 
coordination [24] Clearly, this distinction is somewhat 
different from the one made above. Cross-correlograms 
present a time-averaged measure of time-delay between 
firings of different sources; hence, they cannot spec- 
ify when the instances constituting the correlation oc- 
curred. Thus, it is conceivable that the above defined 
stimulus-locked .synchronizations are accompanied b) 
some stimulus-related contribution in the cross-correla- 
tion sense, and slice zwsa. In spite of these differences, 
though, we will treat residual correlations as equivalent 
to stimulus-related synchronizations, bearing in mind the 
possibility that these classes do not fully overlap, 

An intermediate position is taken by cross-correlation 
analysis using the Joint-PSTH and gravitational cluster- 
ing. These measures, using stimulus-locked trial averaging 
rather than time averaging, retain the full resolution of the 
correlation phenomena along the time axis. Thus, resid- 
ual correlations measured by these methods present a 
time-resolved net result of stimulus-triggered averaging. 
At first sight this would seem to fdvour their inclusion 
among the stimulus-locked synchronizations. Neverthe- 
less, and mainly for rczons of consistency, we also 
classify such residual correlations as signifying instances 
of stimulus-related synchronizations. 

At this point, and not without a certain sense of embar- 
rassment, we note that we have carefully avoided to pro- 
vide a precise and operational definition of the notion 
of ‘synchronization’. At least at this point the need for 
a single more precise definition becomes rather press- 
ing. Instead, we have encountered a number of different 
definitions and associated measurement protocols, each 
one applicable to a different class of neural signals. This, 
evidently, makes it hard to compare results across signal 
classes. Ilnfortunately, the neuroscience literature is of lit- 
tle avail here, although the term is, in fact, widely used, as 
testified by the reference list. Perhaps the situation is best 
illustrated by a quotation from Ted Bullock: “Synchrony 
would appear to be a major variable, one about which 
we understand little and for which there is no accepted 
measure of quantification” (from [40] ). Or, even more 
drastically, in Fowler’s Dictionary of Modern English Lk 
age (Oxford llniversity Press, 1969: “synchronize is not 
a word that we need regret the existence of, since there 
is useful work that it can do better than any other (e.g., 
synchronized clocks, gears, television records); but it is 
a word that we may fairly desire to see as seldom as we 
may, one of the learned terms that make a passage in 
which they are not the best possible words stodgy and 
repellent”. 

In summary, we conclude that there is a distinct need for 
more precise and unified measures of synchronization. 
Such measures should be able to deal with all dift‘erent 
levels of spatio-temporal resolution (from spikes to con- 
tinuous signals), give an adequate description of phase 
relationships, including the case of multiple frequencies 
or aperiodic signals, and must be applicable both in sin- 
gle and in multiple trial conditions. 

Response synchronization in the visual cortex 

Table 2 summarizes the various apes of stimulus syn- 
chronizations observed in visual cortex. classified ac- 
cording to both the spatial and the temporal schemes 
developed above, and with an emphasis on the results 
from the past year. 

The notion of stimulus-locked .synchronization forms the 
underlying model for most, if not all, single neuron 
experiments. In these experiments it is (at least im- 
plicitly) assumed that all structure in the time course 
of visual responses can be attributed to direct stimu- 
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rable 2. Stimulus dependent synchronizations in the visual cortex with different degrees of stimulus locking. 
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lus effects, and that possible synchronizations among 
neurons can be reduced to synchronization of the in- 
dividual firing processes to the stimulus itself. We re- 
fer to this level of response synchronization as ‘rate 
coherence’ [41*], Thus, at the level of single neuron 
spike trains, the class of stimulus-locked synchroniza- 
tions is particularly concerned with the dynamic coding 
of stimulus features in the time course of firing rate 
profiles (e.g., [42-44,45*,46-l ). Recently, several multi- 
neuron studies in the visual cortex have expanded this 
approach to incorporate ensemble coding schemes, all 
based on some form of trial-averaged, dynamic meas- 
ure of stimulus-evoked activity in groups of neurons 
[47,48,49*-51-l. In the domain of dendritic signals, the 
occurrence of stimulus-locked SJmchronizations is well 
documented along the entire spatial range, from cur- 
rent source density (CSD)-measurements (reviewed in 
[52] ) via LFPs [ 321 up to the VEP in the EEG (re- 
views in [ 53,541). The importance of timing aspects in 
the VEP is reflected in the differential dependence of in- 
dividual components in the VEP waveform on stimulus 
properties like contrast and spatial frequency. 

Most of the recent studies on synchronizations in visual 
cortex responses fall into the second class, the stimulus- 
related synchronizations. At the level of multiple single- 

neuron spike trains we have the classical cross-corrcla- 
tion studies already mentioned in the introduction. More 
recent reports focus on the relation between correlated 
firing and receptive field properties [55,56-l and on the 
appearance of distinct levels of timing precision in corre- 
lated firing (at roughly 5, 50 and 500 ms in the cat [57*-l 
and similarly at about 5 and 50 ms in the monkey [ 581). 
Dynamic correlations revealed by the Joint-PSTH and by 
gravitational clustering analysis [ 15,24,59] demonstrated 
that synchronizations are clearly dependent on stimulus 
features. Moreover, they may overlap in time with, but fol- 
low an altogether different time course than, the stimulus- 
locked components, with time constants of modulation 
as low as tens of milliseconds. This type of synchroniza- 
tion, referred to as ‘event coherence’ [41*], has also been 
observed in the inferotemporal cortex [60], as well as in 
stimulus- and behavior-related responses in the frontal 
cortex [61-l of awake, behaving monkeys. Similar dy- 
namic correlation studies in population activity are not 
known to us, but in our opinion they should be poten- 
tially quite rewarding. 

At the level of population signals, the initial reports on 
oscillatory synchronizations in the cat primary visual cor- 
tex were followed by a series of papers in the last few 
years, describing these phenomena in more detail (for 
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excellent reviews see [62**,63**]). Typically (different 
authors give slightly different numbers), the duration 
of spindles, either in single-electrode LFPs [32] or in 
correlated population spike activity from dual electrodes 
[33**], varies between 50 and 900 ms; their latency with 
respect to stimulus onset is well above 100 ms [32]. Spin- 
dle frequencies vary between 35 and 80Hz, thus occu- 
pying the range referred to in the EEG literature as the 
high-beta [34] or gamma [64] range. Synchronizations 
were found to occur within a single area, across dif- 
ferent areas (A17-Al&A19 [20,65], Al7-posterior medial 
lateral suprasylvian sulcus (PMLS) [66] ) and across hemi- 
spheres (A17(left)-A17( right) [67] 1, provided that the 
recorded cell groups were activated by coherent stim- 
uli. Delays between oscillatory spindles from different 
electrodes within Al7 range between - 3 and + 3ms, 
with a mean value at about 0 ms [ 330*]. This distribution 
gradually becomes broader when the recording sites arc 
in diferent areas and, even more so, when sites in dif- 
ferent hemispheres are compared [67]. The mean delay, 
however, remains at about Oms, which is interesting in 
view of the increasing conduction length. Other proper- 
ties that have been investigated are the dependence on 
spatial separation of recording sites and on angular differ- 
ence of preferred orientation [ 191, and the dependence 
on stimulus properties such as binocularity [ 201, orienta- 
tion, velocity [Gs] and alignment of movement with two 
light bar stimuli 1691. 

All these results on oscillatory synchronizations have 
been obtained from anaesthetized cats. The obvious 
and important questions as to whether such synchro- 
nizations are also observed in other species and, even 
more crucially in view of their functional relevance, in 
awake behaving preparations, are only now starting to 
be addressed. First reports on the monkey are somewhat 
contradictol)i: whereas an earlier report (MS Livingstone, 
Sot ~ezrro.sci~hstr 1991, l7:176) conlirmed the presence 
of oscillatory synchronizations in Vl of the anaesthetized 
monkey, a recent study [ 350.1 reports that such phenom- 
ena are found neither in VI, nor in the medial temporal 
area (MT) or the inferior temporal cortex (IT). After 
the early observations on oscillatov synchronizations 
in the fast EEG of the awake, behaving monkey [21], 
synchronized oscillator)r spindles have recently been I-e- 
ported from area MT [70*]. In a vel_l’ recent study [71**], 
strong oscillatory synchronizations were observed in the 
primary visual cortex, with stimulus-specificities compara- 
ble to, and amplitudes and frequencies even considerabl) 
higher than, those previously reported in both cat and 
monkey. Experiments in IT, however, showed no [72*], 
or hardly any [ 35**], such evidence when static stimuli 
were used, 

Outlook and open issues 

The recent observations on stimulus-induced synchro- 
nizations among groups of neurons in the visual cortex 
have created a great deal of excitement in the neuron 
science community. Particularly the proposal that such 

synchronizations present instances of a ‘relational’ code, 
providing a mechanism for perceptual coherence by fear 
ture linking, has stirred a still continuing debate. For 
one thing, the emergence of dynamic time structures 
in neural activity clearly provided a fruitful ground to 
apply concepts from the field of nonlinear dynamics 
to brain theory. Thus, these synchronizations were vir- 
tually embraced by theoreticians, leading to a remark- 
able outpour of papers dealing with the generation of 
synchronized oscillations in various kinds of neural nets 
work models and their usage for implementing cognitive 
functions. The salient feature of most of these models 
(the review of which is clearly beyond the scope of this 
paper) is the self-organization taking place in networks 
of coupled nonlinear oscillators. 

In spite of the considerable progress made, a number of 
important issues, experimental as well as theoretical, rem 
main to be resolved. We have already referred to the cnl- 
cial question of whether ViSLMl synchronizations are also 
observed in awake behaving preparations and noted that 
first reports are clearly contradictory, and further experi- 
mental evidence is urgently needed. Also the question as 
to whether such synchronizations take place within and 
across other sensory modalities is still very much open. 
Although first reports on fast oscillatory activity in the 
somatosensory [ 731 and the sensorimotor [74*] cortex 
indeed seem to suggest that oscillatory synchronizations 
may be a more widespread phenomenon in the neocor~ 
tex. they have not yet been observed in other modali~ 
ties, and the relation to stimulus and behavior is far from 
being settled. Another important question concerns the 
generating mechanism for the visual synchronizations - 
both purely intra-cortical [63**,75] and thalamo~corticdl 
[ 761 interactions ha\,e been proposed. Again, experimen- 
tal evidence is Fdr from conclusive. Whereas some reports 
[ 16,321 explicitly mention the absence of oscillations in 
the lateral geniculate nucleus, others [77** J report strong 
oscillations in that same region. Recent i?z r Yr 30 whole~cell 
patch recordings from neurons in cat area 17 [7X*], and 
intracellular recordings in kitten area 17 [79-l, suggest 
that oscillator) responses are generated largely by rhyth- 
mic synaptic input. ‘I‘hus, the generator issue is also still 
17~~ much open In sunimai~. at the present stage, the 
experimental evidence, particularI), from awake behaving 
preparations, although highly promising and intriguing, 
does not yet allow a definitive decision on the functional 
role of synchronized activity in visual processing. 

In addition to these issues, there is the fundamental prob 
lem of the so-called ‘read-out‘. If synchronizations are to 
provide a mechanism for feature linking, the question 
emerges of how the brain utilizes such synchroniza~ 
tions to organize perception and action. On the basis 
of anatomical [SO] and physiological considerations, it 
has been proposed that the cortical ‘hardware’ is opti- 
mally suited to detect. process. and conduct coincident 
firing in so-called ‘synfire reverberations’ [ 6,38*]. Thus, it 
can be envisaged that waves of synchronous activity travel 
through the cortical network while dynamically binding 
coherent subgroups of neurons in various sensory and 
motor areas [81] It is still largely unknown, however, 
how these synchronizations would interact with inter- 
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nal processes involved in learning, memory and intention. 
Finally, and perhaps as a somewhat superfluous warning 
against a too single-minded view, we are probably well 
advised to keep in mind that quite different utilizations 
of (alsynchrony of neural activity can also be envisaged 
(e.g., [82*1). 

Conclusion 

One of the outstanding features of the study of neural 
synchronizations is that it attempts to build a bridge 
between brain activity at very different levels of spatial 
and temporal resolution (see Tables 1 and 2). Thus, it 
caused a shift in emphasis from descriptions in terms of 
‘rate coding’ (mostly based on single neuron studies j to 
those that can be characterized as ‘coherence coding’. 
While rate coding seems particularly suited to charac- 
terize the flow of information in feedforward networks, 
coherence coding is a natural candidate in the context 
of lateral and feedback networks. Clearly both aspects of 
neural activity are present in the cortex, as is witnessed by 
the abundance of both stimulus-locked and stimulus-re- 
lated synchronization phenomena (see Table 2). Hence, 
the unification of both rate and coherence aspects into a 
single scheme for coding and computation in the brain 
would appear to be a great challenge. 
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