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Abstract

In view of the relatively poor temporal precision which is generally observed for the
generation of action potentials in cortical neurons, we argue that a certain amount of
“stochasticity” may be immanent to single neuron function in the cortex. This fact seems
to hamper many attempts at a quantitative assessment of neuronal interaction by means
of cross-correlation analysis, especially in higher cortical areas. We give arguments why
it might be advantageous to look at cross-interval histograms of low order separately
from each other. In fact, theoretical considerations within the framework of interacting
stochastical point processes suggest how certain characteristics of neuronal interaction
may be inferred from spike trains that were recorded extracellularly from several neurons
simultaneously under circumstances where “fluctuations” seem to dominate the signals.

1. RANDOMNESS IS IMMANENT TO CORTICAL NERVE CELLS

The temporal precision in the generation of action potentials in single cortical neurons
seems to be relatively poor. This may be concluded from electrophysiological recordings
in vivo as well as from in vitro experiments, where parameters are better under control.
For the in vivo case it appears to be a general rule that a neuron’s response to repeated
presentations of identical sensory stimuli shows a considerable amount of variability over
different stimulus presentations (for examples, see [16, 30]). Moreover, even under the
most controlled in vitro conditions the timing of action potentials is far from being “exact”
and reproducible (see also the contribution by Heck et al., this Volume). In the simple
experiment, where constant input into the cell under otherwise stationary conditions
can be achieved by intracellular DC-current injection, the interval histograms are still
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remarkably broad. For example, in layer II/III neurons in an acute slice preparation of
rat visual cortex, we found standard deviations for the interval histograms ranging up to
tens of milliseconds [25] (see Fig. 1).
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Figure 1. Fits to interval histograms for the repetitive discharge of a cortical neuron under
intracellular injection of DC-currents using y-distributions [8, 10]. We show examples for
the respective probability density functions p (scaled in counts/second) from an acute
slice preparation of rat visual cortex, the injected current was 320, 390 and 480pA,
respectively. Each sample contained about 800 action potentials, the mean intervals
were 88, 128, 258 ms with standard deviations of 3.6, 6.7, 27.4ms, respectively. A more
detailed description of the experiments is given in [15, 25].

Such findings lead us to the even more drastic view that some sort of random principle
might be a fundamental property of single cell function in the cortex [23, 24]. If this was
true, the following questions would immediately arise (see also the contribution by Abeles
et al., this Volume): How can the brain perform efficient information processing on the
basis of devices whose output is so much “contaminated” by random fluctuations? How
is it possible to represent infomation on a time scale down to the millisecond range with
units being one order of magnitude less precise?

It is our feeling that this apparent randomness of cortical single neuron firing deserves
specific attention from experimentalists. At the same time, it is of considerable interest
to explore the functional implications of randomness as a theoretical concept [17, 19, 23,
24]. In this context, the mathematical theory of interacting stochastical point processes
seems to provide a suitable framework for an approach to the questions stated above
(see also [7]). Here, we discuss certain implications from this theory concerning the
quantitative assessment of neuronal interaction in stochastic settings.

2. CROSS-INTERVALS AND CROSS-CORRELATION FUNCTION

Cross-correlation is the commonly used tool to assess the interaction between two simul-
taneously recorded neurons. It estimates the probability density for an action potential
in neuron A as a function of the time lag to an action potential in neuron B [18, 22]. In
fact, an evaluation of the relative timing of action potentials remains the only possibility
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to approach questions on neuronal interaction when intracellular signals are not available,
as is most often the case in the in vivo situation. The experimental literature provides a
large number of examples where cross-correlation analysis led to valuable insights into the
functional organization of cortical structures [1-3, 10, 27-30]. In view of the fluctuations
omnipresent in neuronal signalling, however, we assert that it may be advantageous to
use a more refined tool for analysing the experimental data.

The method we propose is based on a selection of action potentials by their “order”.
Using a spike in neuron B as a point of reference, each spike in neuron A is attributed a
number accounting for its proximity to the reference spike: the first spike following is of
order +1, the second one following is of order +2, and so on. Likewise, the first spike in
neuron A preceding the reference spike in neuron B is of order —1, the second one is of
order —2, and so forth. Thus, using all action potentials in neuron B’s spike train as a
reference spike, one ends up having as many intervals of any order k as there were reference
spikes. We consider their distribution by forming appropriate normalized histograms
pkg(r) which have been called cross-interval histograms [22]. From this construction
it is obvious that we get the usual cross-correlation function csp(r) as the sum of all
cross-interval histograms, if one takes care of the proper sign for the interval

o]
eas(r) = 3 (phb(+7) + pab(-1)). (1)
=1
Separate inspection of the cross-interval histograms and comparison to the respective
expectation for zero-interaction may reveal quite detailed information about range and
dynamics of interaction between the two neurons. In fact, theory suggests a way to
compute the approximate zero-interaction expectation for the cross-interval histogram
of any order from the data. In the case of (total) cross-correlation this zero-interaction
expectation is simply the “flat” correlation

cao(t) = i‘a (2)
Hra

where 4 is the average length of the intervals in neuron A’s spike train. Instead of
giving the expectation for the cross-interval histograms analytically [18, 22], we process
the data in a way which provides additional valuable information on the significance of any
deviation from the zero-interaction case. To this end, we shuffle neuron B’s intervals and
force them into a pseudo-random order. Again, we compute the cross-interval histograms
from the randomized spike train with neuron A’s original spike train. Shuffling will
destroy all the intricate timing relations which might have existed between neuron B and
neuron A. By this procedure, neuron A is left untouched, whereas neuron B’s interval
distribution remains the same. In fact, if B’s firing could be described as a renewal
process [8, 10], which is often not too far from reality, shuffling would not change B’s
statistical characteristics at all. The shuffling procedure is performed a reasonable number
of times (in our case, 20 times) to enable a reliable estimation of the statistical fluctuations
occurring in the estimation of the cross-interval histograms. For each entry of the cross-
interval histogram, we determine the average value and the standard deviation of the zero-
interaction histogram estimates gained by shuffling. This is done by applying conventional
formulas to each set of 20 values, respectively. Fig. 2 shows an example of the outcome
of this procedure.
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Figure 2. Example for the decomposition of correlation functions between two corti-
cal neurons on the basis of the shuffling procedure described in the text. The data are
from two simultaneusly recorded neurons in the prefrontal cortex of an awake, behav-
ing monkey [30]. The plots show a first order cross-interval histogram (top left) and a
cross-correlation function (top right), their zero-interaction parts (center, dark lines) and
the residuals (bottom, dark lines), respectively. The vertical scaling is counts/second.
The residual may be interpreted as the net effect of interaction due to direct synaptic
interaction and/or more complex cooperative network effects. The plots also show one
standard deviation from the mean, both in positive and in negative direction (grey lines),
thus providing a measure for the “significance” of deviations from the zero-interaction
case. All curves shown were smoothed by a moving average of width 20 ms.
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3. INTERPRETATION OF CROSS-INTERVAL HISTOGRAMS

There is a great interest in detailed information on the relation between direct synaptic
interaction and synchronized inputs into a cortical nerve cell. Especially the question what
mechanism(s) of interaction contribute to the main features of the correlation structure
in neuronal signals continues to give rise to considerable debate. Even partial answers to
this question would enable substantial progress in the elaboration of more global ideas
on the meaning of cortical spike activity, such as meuronal assemblies (13, 14], synfire
chains [1, 2], response synchronization 9, 11, 20] and related concepts. It seems that the
point process approach can indeed give new hints on the interpretation of observations
made in simultaneous recordings from geveral neurons. As an example, we will discuss
what can be inferred from the distribution of cross-intervals, rather than from the usual
cross-correlation function.

Typical post-synaptic currents induced by transmitter release at cortical synapses from
neuron B to neuron A in response to a presynaptic action potential have durations of up to
some tens of milliseconds [12]. Hence, in view of the low firing rates in the cortex, leading
to intervals of length 100 ms and more on average, it is generally only the generation of
the first spike following the trigger spike which is eventually influenced by direct synaptic
effects. Therefore, we expect that the action potentials in neuron A immediately following
an action potential in neuron B are the ones carrying most information on direct synaptic
interaction. All the successors are indirectly influenced in terms of a sustained time shift
in A’s spike train and, in addition, may reflect the effects of more complex forms of
interaction between the two neurons due to ensemble synchronization effects.

The first action potential following a trigger spike is, of course, included in the cross-
correlation function. However, there are more or less serious conceptual and statistical
complications arising while adding the higher order spike events:

o The serial correlations internal to neuron A’s spike train are also included and may
mask the interaction effects. For neurons with a prolonged dead time there is no
obvious way to correct the cross-correlation function for such effects [26].

o The effects on mutual timing induced by interaction are corrupted by fluctuations.
The first spike in neuron A following the trigger spike is least affected by this, higher
order spikes are subject to random displacements increasing more or less linearly
with the order.

Analysis of neuronal interaction on the basis of first order cross-intervals can partially
avoid such unwanted effects. In the presence of complex interactions between neurons,
however, it is also of interest to examine higher order interval distributions. In fact,
there is evidence that the time constants of ensemble synchronization effects may be in
the range of hundreds of milliseconds or even seconds 1, 2, 4, 30] (see also Abeles et
al., this Volume). Also, one would expect a quite different time structure for correlated
activity as compared to the case of elementary synaptic interaction. Particularly the
higher order interval distributions might exhibit a non-trivial structure reflecting these
long-term interactions (see Fig. 3 for an illustration).

As a general rule, higher order cross-interval histograms from cortical recordings tend to
be more and more corrupted by fluctuations. It is nevertheless instructive to successively
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Figure 3. Residual cross-interval histograms up to order 6 from the same data as shown
in Fig. 2, the zero-interaction expectation obtained by shuffling was subtracted. The grey
lines indicate the respective plus/minus one standard deviation levels. Vertical scaling is
again in counts/second. Thisis, in fact, a rather typical example, where the time structure
in the cross-correlation function cannot be reduced to the first order cross-intervals alone
(cf. Fig. 4). Generally, however, the “signal to noise ratio” appears to decrease rapidly
with the order of the intervals.



237

p [1/s]

p [1/s]

-2k L " " : 2]
-300 -200 =100 0 100 200 300

t [ms]

Figure 4. Successive summation of residual cross-interval histograms up to order 8 (top).
The data are the same as before, vertical scaling is in counts/second. The result of this
procedure adds evidence that the periodic bumps in the cross-correlation function are not
just “noise” as might be inferred from the broad significance bands in Fig. 2. Rather, they
indicate preferred times of occurrence for successive action potentials. A comparison with
the net auto-interval histograms and the net auto-correlation function (bottom) reveals
that the structure of higher order net cross-interval histograms cannot be induced by
direct interaction alone. In particular, the difference in convergence of the summation of
the two histograms suggests that more complex interactions may be involved.
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add up the contributions of cross-intervals which have been kept apart so far. In this way,
one can gradually reconstruct the average time course of the spike response of neuron A
to an action potential of neuron B (see Fig. 4, top). One observes how the “bumps”,
which would hardly have been termed “significant” before, are slowly built up.

For an investigation to what extent this time structure is determined by neuron A’s
dynamics — for theoretical reasons, B’s influence can be neglected — we employed the anal-
ogous procedure for auto-intervals, i.e., with reference points being the action potentials
of neuron A itself (Fig. 4, bottom). One notices that bumps emerge with the same time
structure as in the case of cross-intervals, but that it takes more higher order contributions
until they are complete. This is true especially for longer time delays. The interpretation
of this is twofold. First, it seems that the periodic structure in the cross-correlation func-
tion is already contained in A’s spike train and could have been predicted from it. The
difference observed in the convergence of the summation, however, tells us that there is
a tendency for neuron A to selectively omit spikes in those parts of its spike train which
are in the vicinity of a spike in neuron B.

To summarize, it appears quite promising to consider cross-intervals of different orders
separately. A systematic evaluation of effects as described in the example may help
to further unravel functional details of the dynamics of neuronal interaction in cortical
networks.
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