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Abstract. We propose a function-oriented model of the
visual cortex. The model addresses an essential task of
the visual system: to detect and represent objects. These
are defined as sets, which reappear in the input with
invariant inner relations. A network, incorporating an
idealized description of anatomical and physiological
data, is presented with a movie showing various moving
objects. In the course of time, as a result of Hebbian
plasticity, a connection scheme develops which embod-
ies in its forward and lateral connections the informa-
tion necessary to perform the operations involved in
object recognition. We demonstrate that coherent neu-
ral activity can exploit this information. Two types of
coherence have to be distinguished in this respect. Rate
coherence performs invariance operations and associa-
tion, while event coherence accomplishes segmentation
tasks. The model reproduces and explains experimental
findings made both in physiological recordings from the
visual cortex and in psychophysical studies.

1 Introduction

In spite of an overwhelming body of experimental data,
our understanding of how the mammalian visual system
performs object recognition is still poor. Even the exact
definition of the problem still poses difficulties. Yet,
there are numerous theoretical and experimental results
indicating how parts of the problem could be solved.
To mention just a few:

— The classical work of Hubel and Wiesel has
shown that an elementary level of description, enabling
the cortex to handle visual information, can be given in
terms of feature sensitive cells.

— Recent work, focussing more strongly on the
time structure of the neural signals, emphasized the
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phenomenon of synchronisation in the cortex, which,
by its nature, is able to solve the segmentation problem.

— Theoretical work on associative memory, starting
from Hebb’s ideas, has revealed how neurons might
cooperate in order to store information and to perform
pattern completion. ,

Other issues, such as the invariance problem, still
wait for a biologically plausible explanation. Also the
integration of these various aspects into a single model
is still an open question. The present study undertakes
to develop a functional model of the visual cortex,.
which integrates the basic anatomy and known neural
mechanisms, and provides biologically plausible sugges-
tions for their role in object recognition.

2 Specification for the task of object recognition

The basis for our work is an idealisation of the visual
situation (for pictorial guidance see Fig. 1). The world
consists of elements and space-time relations between
them. Some of the spatial relations are variable over
time, while others are not. A set of points whose
internal spatial relations do not change over time is
called a visual object (we restrict our discussion to rigid
bodies). The objects are projected onto the retina.
Since, by definition, an object is entirely defined by its
inner relations, the absolute position of the projection
on the retina should be of no importance when deter-
mining the nature of the object. An equivalence class,
the elements of which are equal up to a transformation,
is called an ‘orbit’, a term adopted from algebra (Fig.
1). One should be aware that at the level of projections
on the retina, we do not have strictly separated orbits,
e.g. when looking at a pyramid from below, it may
degenerate into a projection of a cube. These cases
being extremely rare, however, we ignore them as statis-
tical pathologies, and still speak of orbits of object
projections. Now the task of object recognition by the
visual system can be specified as follows. The visual
system has to represent the orbits of the various object
projections and, upon presentation of a picture, to
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activate the representations of those orbits whose ele-
ments created the present set on the retina. (This
specification was motivated by philosophical, mathe-
matical and psychological considerations: Democritus,
about 400 B.C.; Klein 1872; Hebb 1949).

To give a brief overview, we propose that the visual
system implements a visual program that obeys the
above specification by performing the following steps.
First, it generates descriptors for sets repeatedly appear-
ing in the input with stable inner relations. Secondly, it
treats those descriptors which encode features belong-
ing to the same orbit as essentially the same: invariance
operation. Thirdly, it binds together the orbits of fea-
ture detectors whose features appear together more
often than one would predict under the assumption of
independence: scene segmentation. Finally, it uses these
groups as clues for association.

3 Forward and lateral connections
in the primary visual cortex

In search of a biological implementation of the func-
tional specification, we first studied the following ques-
tion. Consider a network of neurons that mimics the
anatomy of the primary visual cortex, with synapses
displaying Hebbian plasticity. Given that this network
sees a ‘natural’ input consisting of a move showing
contours of moving objects. What sort of connection
scheme will develop?

On its way to the primary visual cortex, the retinal
input is processed by the center-surround system (for a
review see e.g. Kandel and Schwartz 1985). In view of
the fact that the cells in this early processing stage show
high firing rates in regions where the local variation of
light intensity is'high, it has been suggested that this
system performs the operation of contour extraction
(Marr and Ullman 1981). This operation yields a lumi-
nance-invariant and data-reduced version of the retinal
image, which serves as input to the primary visual
cortex. To model this cortical input, we proceeded as
indicated in Fig. 2a. First, we set up a database of fifty
two-dimensional line patterns, such as circles, squares
and question marks. A program selects randomly up to
three patterns from this database, places them at ran-
dom initial positions in a plane with a hexagonal grid

Pyramid

Fig. 1a, b. Objects, projections and
representations. a The objects cube and
pyramid are sets with internally stable
spatial relations. The pyramids at
different positions form an orbit under
Champagne congruence transformations in euclidean
space. b Projection on the retina. Notice
that now orbits are fuzzy sets, only
separated statistically. ¢ Representations
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Fig. 2a—c. Model of the primary visual cortex. a Scene from the
input movie. The hexagons «, 8, y denote receptive fields. b Layout of
area 17. Neurons at four cortex positions are shown, every pyramid
denotes a neuron. Observe the multiplicity (N = 6) of receptive fields:
the neurons at one position have equal feedforward receptive fields,
their profiles may develop differently, though. Note that this multi-
plicity bears no relation to cortical layering. The cuboid box denotes
the competition volume which encompasses the full depth of the
cortical sheet. ¢ The firing of the neurons is described by an interval
of 10 consecutive ‘1’-signals

structure, and shifts each of them independently along a
randomly generated path in this input plane. A scene of
the resulting ‘movie’ is shown in Fig. 2a. Per unit of
time, each pattern can move over 0, 1 or 2 grid posi-
tions. After a randomly chosen time interval of up to
forty time steps, the next set of patterns is selected and
the procedure is repeated. In the generation of the



pattern trajectories, we confined ourselves to translations
in order to keep the model as simple as possible.
Moreover, it is possible to rephrase scale and rotation
invariance (at least in the absence of other transforma-
tions) in terms of translation invariance by using an
appropriate logarithmic map; such a map is presumably
implemented in the projection from the retina to the
primary visual cortex (Schwartz 1977).

Topology of the model. Our primary visual cortex model
(Fig. 2b) reflects basic anatomical and physiological
facts. The afferents are excitatory and topologically
ordered. The cells with modifiable synapses are excitatory
and densely connected laterally, while inhibition acts
locally and is assumed to be unmodifiable. The cortical
sheet is composed as a hexagonal grid of L x L positions,
in each of which there are N necurons with identical
receptive fields, indicated by the grey hexagons in Fig. 2a.
In our simulations, a receptive field consists of 37
positions, arranged in a hexagon to mimic a circle. For
the other parameters we chose L =20 and N = 6. (Note
that N is solely intended to model the multiplicity of
receptive field profiles at each location; in particular, it
has nothing to do with cortical layering.)

Dynamics of the activity. Upon presentation of a scene,
a volume of / x / x N neurons (in our case / = 5; see the
dark cuboid in Fig. 2b) is stepped through the cortical
sheet over all L? positions. Each such presentation with
the associated L? update positions counts as one time
step. At each of these positions, the potentials %; of the
neurons in the cuboid are computed according to
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in which y; € {0, 1} denotes the input at position j in the
receptive field of neuron i. The synaptic weights s, are
positive and normalized according to st,-j =1. The
neurons with the strongest potential is selected to fire.
The firing of a neuron is described by a binary process:
during the following ten time steps, the neuron emits a
‘I’-signal, modeling a short epoch of increased firing
rate. In a number of simulations, this duration of
increased firing was varied to include shorter intervals,
down to only one time step.

Modification of connections. Connection strengths of the
firing neurons are updated according to a normalized
Hebb rule (Hebb 1949; Oja 1982):

Sij(t) + V”i(t)Xij(t)
Z Sij(t) +y7; (t)Xij(t)

in which the gain y is an order of magnitude smaller
than the average synaptic weight. Thus, synapses are
modified by a competitive learning algorithm, incorpo-
rating the effects of local inhibition (for a description of
competitive learning see Rumelhart et al. 1986).

s;(t+1) = (2)

3.1 Development of forward connections

After presentation of a sequence of 30,000 scenes, the
initially uniform forward connections had developed

311

into inhomogeneous ‘receptive field profiles’. Figure 3
shows these profiles for the first of the N ‘layers’ of
model neurons. Observe that the receptive field profiles
are mostly bar-shaped. This basically reflects the fact
that line drawings locally look like bars. The distribu-
tion of synaptic weights is very stable. Already after the
presentation of 10,000 scenes it had essentially con-
verged to the asymptotic result in Fig. 3. Generally at
that early stage, a receptive field profile already showed
a bar in the same orientation, the only difference being
that the contrast between strong and weak synaptic
weights was less pronounced. About 25% of the recep-
tive field profiles remained uniform throughout the
simulation. Finally, the number of profiles that were
neither bar-shaped nor remained uniform was less than
1%. Inspection of the receptive field profiles of the
remaining N — 1 neuron layers not shown here reveals
that at each position several different orientations are
represented. For equal cell potentials (as is initially the
case with uniform forward connections), our implemen-
tation of the competition algorithm introduced a bias in
that it preferentially selected the higher situated of the
I’N neurons within the competition volume. Simula-
tions with random initial conditions, however, lead to
essentially the same results.

A more detailed inspection of the emerging features
reveals a number of further interesting aspects. First, it
is important to notice that for almost all neurons, the
receptive field profile represents (part of) the projection
of one object only, even though the network was
trained with scenes which generally contained the pro-
jections of several objects simultaneously. This is due to
the simple statistical effect that the probability for any
particular composite input pattern to arise is consider-
ably lower than that of a pattern evoked by the projec-
tion of just a single object. For example, the occurrence
of the particular composite pattern seen by the neurons
with receptive field § (Fig. 2a) requires two conditions
to be fulfilled simultaneously. A necessary, though not
sufficient, condition is the presence of the two individ-
ual patterns, but in addition they have to appear in the
appropriate configuration. Since the trajectories of the
individual patterns are mutually independent, the prob-
ability of such a combined event is the product of the
probabilities of the singular events, i.e. that each of the
patterns individually occurs at the right position. Thus,
a receptive field profile which captures ‘inter-features’
as in B (Fig. 2a) has a much smaller probability to
develop than one which captures ‘intra-features’ as in «
or y. As a consequence, almost only those receptive
field profiles will develop which describe the projection
of an object, i.e. a pattern with invariant inner rela-
tions. We observe a similar further differentiation
within the class of intra-feature receptive fields. The
emerging features here are not specific to any particular
object, but rather to broad subsets of the whole pattern
ensemble. Again, since a higher order features as in a is
more specific to a certain pattern and to the position
within that pattern than a simple feature as in y, it has
a lower probability to develop.

Summarizing, the feedforward connections that
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develop in the network in the course of a competitive
learning process embody the most significant part of the
spectrum of probabilities for the various possible input
pattern configurations that the network was exposed to.
As a consequence, the various types of emerging recep-
tive field profiles reflect the correlation structure of the
input space, characterized by its various classes of intra-
and inter-feature relations. Thus, the first task of our
proposed visual program has been accomplished: re-
peatedly appearing features in the input space are repre-
sented by neurons in their feedforward connections.

3.2 Development of lateral connections

In order to analyse the developing correlation structure
across the cortical sheet, we computed the covariances
of the output activity of the model neurons over the last
10,000 timesteps, i.e. after the feedforward network had
settled into its asymptotic configuration and, conse-
quently, the covariances were most clear. Figure 4
shows, in a grey density code, the resulting covariances
for a selected reference neuron (at the position indi-
cated by the arrow) to all other ones. The analysis for
twenty other reference neurons, randomly selected
among the class of bar-shaped receptive field-profiles,
gave essentially the same results. This implies that the
characteristics of the covariance distribution are neither
dependent on the position of the reference neuron, nor
on its preferred bar orientation. (In order to avoid a
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Fig. 3. Distribution of the feedforward
synaptic strengths in the primary visual
cortex model after training. Each hexagon
represents the feedforward receptive field
profile of one neuron, every little circle
within a hexagon denotes a synapse and
its grey value the synaptic strength. The
grey scale is linear and runs from 0.0
(white) to 0.1 (black)

multiplicity of pictures, we overlayed the covariances
with each of the N = 6 neurons at a single position into
one display; details are given in the caption to Fig. 4.)

The spatial distribution of covariance exhibits two
distinct phenomena. First, the covariances become
gradually weaker with increasing distance to the refer-
ence neuron; a control run with neurons firing each
time only during one time step instread of ten showed
the same phenomenon. This dependence on distance
reflects the spatial extent of correlation in the input
space, which is independent of the duration of the firing
interval. Second, the strongest covariances occur be-
tween neurons which share the same preferred bar
orientation; they become gradually weaker with increas-
ing angular difference. A more detailed inspection
shows that we have to distinguish between two cases:
collinear and non-collinear bars. High covariance be-
tween neurons with collinear preferred bars partly again
reflects continuity of the input, and can still be seen,
albeit weaker, with a reduced firing interval. For neu-
rons with parallel but non-collinear preferred bars, the
strong covariances disappear completely with shorten-
ing of the firing interval, indicating that in this case the
duration of firing is of crucial importance; we will
return to this issue later. Finally, Fig. 4 reveals that a
considerable number of neurons develops overlapping
receptive field profiles, and that these neurons show
high covariances. Thus, redundant coding, i.e. multiple



representation of features, arises quite naturally as an
emerging property in our model. Consequently, the
presentation of input to the model network will gener-
ally give rise to the activation of groups of neurons;
these groups form the starting point for any lateral
dynamics within the network.

Notice that in our model we did not incorporate the
development of lateral connections explicitly. Instead,
we studied the covariances of the output activities of
the developing model neurons. We assert that these two
approaches, of which the latter is obviously highly
advantageous for computational reasons, are essentially
equivalent for the present purpose. This equivalence is
based on the assumption that a Hebbian learning rule
of the kind as expressed in (2), when applied to the
connectivity among the model neurons within the corti-
cal sheet, would translate the profile of covariances
among these neurons’ activities, exemplified in Fig. 4,
into a corresponding topography of lateral connection
strengths.

4 Two types of coherence in neural activity exploit
the information contained in the lateral connectivity

Having assigned the first task of our proposed visual
program to the feedforward connections, we will now
show that the lateral connections contain the informa-
tion necessary to tackle the remaining tasks, and that
coherent neural activity can exploit this information.
Physiological evidence leads us to distinguish between
two types of coherence, based on the time constants
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Fig. 4. Covariances between the firings of
the neurons across the cortical sheet in
the primary visual cortex model. The
receptive field profiles are now
characterized only by the strongest
synapses. The grey value of the hexagon
for each neuron is proportional to the
covariance with the reference neuron (the
one with the black horizontal bar at the
position marked by the arrow). The six
hexagons, corresponding to the neurons
at one position, are drawn on top of each
other, starting with the lightest grey. The
grey scale is linear and runs from 0.0
(white) to 0.01 (black)

involved: rate coherence, i.e. correlation of firing rates,
resulting in a broad peak (in the order of 100 ms or
more) in crosscorrelograms of the activities of simulta-
neously recorded neurons, and event coherence, i.c.
correlated individual spikes, reflected in narrow (sev-
eral ms) correlation peaks (e.g. Abeles 1982, 1991; Ger-
stein et al. 1983; Gerstein 1988; Kriiger 1983; Ts’o and
Gilbert 1986; Aertsen et al. 1987, 1992; Aertsen and
Gerstein 1991; Kriiger and Mayer 1991; Vaadia et al.
1991; Vaadia and Aertsen 1992). Furthermore, we as-
sume that only strong connections are able to transmit
firing rates, while the effect of weak connections is to
synchronize the events in a population of neurons (for
a theoretical justification see Abeles 1982, 1991; Boven
and Aertsen 1990; Aertsen and Preissl 1991). Rate
coherence recruits new neurons into an already active
group, event coherence organizes the active group into
internally coherent, mutually incoherent subgroups.
Or, in the language of set theory: rate coherence
performs the operation of union, event coherence that
of intersection.

We will demonstrate our ideas by parsing the pre-
sumed lateral dynamics into three components, and
investigate each one separately in an appropriately for-
mulated model. This avoids the necessity to explore the
full lateral dynamics at once, which would require the
difficult discussion of a network with more realistic
model neurons and connections with delays. The first
model uses rate coherence between features belonging
to the same ‘orbit’ to perform invariance operations. In
the second model, event coherence between features
which appear often together accomplishes segmentation
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tasks. The third model implements associative memory
on the basis of rate coherence between repeatedly co-
occurring features. Finally, we will integrate these three
mechanisms into a single functional model.

4.1 Rate coherence between feature detectors belonging
to the same ‘orbit’ performs invariance operations

The set of feature detectors that develops with an input
consisting of patterns moving according to a transfor-
mation group will generally reflect the symmetry intro-
duced by this particular group. For the translation
group this means that a feature detector will have equal
probability to appear, independent of position. The
distribution of receptive field profiles that develop in
our primary visual cortex model (Fig. 3) confirms this.
When now a certain pattern feature is moved across the
input plane, the associated feature detectors in the
network will raise their firing rates one after the other,
according to a path that mimics the feature trajectory in
the input space (see also Braitenberg 1985, 1986).
Moreover, the time intervals of increased firing rate for
activated neurons at neighboring positions will overlap
to an extent determined by the spike burst duration and
the velocity of movement. This overlap leads to the
correlation of activity between spatially shifted features
which we observed in the covariances (Fig. 4), and
which disappeared when the burst duration was de-
creased. During these overlapping epochs of increased
firing rate, the Hebbian learning rule strengthens the
intervening connections; a Hebb rule with a time win-
dow would produce a similar effect. Thus, once the
connections have been strengthened, these neurons will
tend to fire simultaneously, thereby destroying the in-
formation about where the activating feature actually
appeared: the result is translation invariance.

Orbit assemblies. The invariance operation was ideal-
ized in the following model. A set of N neurons,
encoding different features, is placed at every position in
the network (Fig. 5b). The neurons with corresponding
features at different positions form an ideal assembly: if
one neuron fires, the whole assembly fires (for a discus-
sion of various assembly definitions see Gerstein et al.
1989). Each of the assemblies encompasses the features
belonging to one orbit under translation, hence we call
them orbit assemblies. Upon presentation of a scene
(Fig. 5a), the lateral dynamics produce the following
result. Proportional to the strength of the input activity,
a certain fraction of the orbit assemblies is allowed
to fire. In our case this fraction is 50% of the input
strength, being simply the number of ‘on’-pixels. For
each assembly we first determine which member neuron
has the largest potential n. Those assemblies will be
activated which contain the members with the highest
potentials (Fig. 5¢). In order to emphasize the essence of
the present discussion, i.e. the concept of the orbit
assembly, rather than the specific shape of the receptive
field profiles, we implemented the receptive fields as
random masks. Each of the N neurons at one position
was assigned a different receptive field, consisting of

Fig. Sa—c. Model of the invariance operation. a Input scene, showing
a bottle, an apple and a cake. b Idealization of the first primary visual
cortex model. Neurons at three positions are symbolized by squares
that show the random receptive field profiles. The depth of the cube
represents the multiplicity of neurons with identical receptive field
location. A neuron receives input only from those pixels in the grey
area marked in (a) which correspond to the black regions in its
receptive field. The neurons with corresponding receptive field profiles
at each of these positions form an orbit assembly. ¢ The orbit
assemblies that are activated by presentation of the scene in (a).
Every active orbit assembly is represented by a single black square

R?/2 pixels in an R x R square; the resulting set is
replicated for all positions in the network (Fig. 5b).
In order to avoid the need of a time consuming training
with a movie, at the same time to obtain enough
specificity without having a multi-layered network, we
trained as follows. We presented a sequence of ten



pictures, each one showing an object from a breakfast
table; the sequence was presented only once. When an
assembly was activated, all its member neurons were
updated in identical fashion, copied from the neuron
with the highest potential. Learning was applied to
enhance the responses to intra-features and to reduce
the responses to inter-features. The learning rule (2)
stayed the same, only the gain was increased to accom-
modate for single trial learning. In our simulations, y
was in the order of the average synaptic weight, N was
512, R was 4 and the presented pictures consisted of
32 x 32 pixels.

After training, we presented scenes containing one or
more of the objects from the training set (Fig. 5a).
Figure 6 shows some of these pictures on the left and the
activated assemblies on the right. The first and second
picture show a bottle at two different positions. Observe
that in both cases the same orbit assemblies respond.
The apple in the third example fires different assemblies.
Finally, the last example shows that a scene composed
of both objects causes essentially the union of the two
sets of assemblies to fire. Notice, though, that we have
errors in the sense that one assembly belonging to the
union is missing, while another one, not belonging to it,
is active (arrows in bottom right panel in Fig. 6). This
might be due directly to the fact that part of the bottle
was occluded, so that the corresponding features are
missing, or that certain detectors respond to a feature
made up by the composite pattern. Another, indirect,
explanation might be in the competition scheme: the
activation of one feature detector might suppress the
activation of another one, which would otherwise have
made it, or the other way around. Apart from these
errors, to which we will return in our discussion on
association (Sect. 4.3), the network performs an invari-
ance operation, able to work on unsegmented images.
This ability to deal with unsegmented images is a
necessary property for any invariance operation to fulfil
in order to be of practical use (e.g. Marr 1982).

The need for higher visual cortices. It is a well known
fact that the spatial correlation in the visual input
decreases with distance. This implies that, in order to
have enough correlation for learning, the visual system
has to use local feature detectors. However, for local
receptive fields, the features which develop in a single
layer network will not be very specific for any particular
object. Since associative devices with discriminative
ability can handle only a small overlap between stored
patterns, we assume that more specific and, hence, more
global features develop successively in higher visual
areas. This is bound to happen, since the higher visual
areas have basically the same structure as the primary
one, i.e. each area receives a topology-preserving pro-
jection from the previous one, and the lateral dynamics
in each area spread the activity evoked by the forward
input only over a restricted distance (e.g. Tusa et al.
1981; Van Essen 1985). Not every neuron has to be a
projection neuron, however. On the contrary, a partial
but random selection of neurons providing the projec-
tion seems more efficient, because it converges the
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Fig. 6. Performance of the invariance model. Left column: a number
of presented scenes, showing different configurations of a bottle and
an apple. Right column: the responding orbit assemblies. Observe
that the sets of orbit assemblies which are activated by the upper two
scenes (bottles, shifted in space) are identical. The arrows in the
bottom right panel denote the positions where the actual activity
evoked by the combination of two objects differs from the union of
the activities evoked by the objects presented in isolation

information carried by the orbit assemblies. Since suc-
cessive representations of the visual field tend to become
smaller and smaller in terms of cortical surface, i.e. they
involve decreasing numbers of neurons, the characteris-
tics of subsequent projections have to be such that at
each step the multiplicity of feature detectors is reduced.
Since in our application we have only a limited number
of objects, we can allow ourselves to keep the discussion
simple by using only one layer to achieve invariance.
This one layer, however, includes lateral interactions: we
regard the lateral dynamics as a necessary addition to the
conventional, purely feedforward dynamics (for a dis-
cussion of problems with invariances in the perceptron
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see Minsky and Papert (1988), and in the cognitron
(Fukushima 1988) sce Menon et al. (1988) and Barnard
(1990)). Finally, another important virtue of higher
areas is the emergence of associative structures, to
which we will return later.

4.2 Event coherence between neurons encoding
repeatedly co-occurring features performs image
Ssegmentation

By definition, the criterion the visual system should use
to group features belonging to the same object is to
determine which features co-occur more often than
predicted on the basis of independence. The lateral
connections between neurons with different preferred
features contain this valuable information. In our
model we perform the grouping by organizing those
elements which display coincident firing into temporally
coherent assemblies (von der Malsburg and Schneider
1986). For a more eclaborate discussion of the time
labeling idea see von der Malsburg (1981, 1986); we
give here one additional theoretical argument. We can
think of the cortex as a database, representing the
clements in the world and their relations. The primary
relations in the world are space-time relations. There
are sets whose spatial relations are most important (e.g.
rigid objects), in others the temporal relations are dom-
inant (e.g. a rhythm), while in yet others we have a
mixture of the two (e.g. the stations of a journey). In
order to keep overall consistency, a relation-preserving
mapping seems an appropriate strategy: features which
occur at neighboring moments in time should be
mapped onto neurons which fire at neighboring mo-
ments in time.

The generation of sychronized events. Synchronized
events have been observed in the cortex in many differ-
ent guises. Inspired by recent physiological observations
(Eckhorn et al. 1988, Gray and Singer 1989; Gray et al.
1989; but see already Hubel and Wiesel 1965 and
Gerstein 1970), we used coupled oscillators as a numer-
ically and analytically convenient vehicle to produce
such temporally coherent events. Other phenomenologi-
cal oscillator models, primarily designed to reproduce
the findings on oscillations in visual cortex, are given by
Sompolinsky et al. (1990, 1991) and Schuster (1991);
microscopic models were developed by e.g. Sporns et al.
(1989); Koénig and Schillen (1991); Schillen and Koénig
(1991), and Eckhorn et al. (1990, 1991). We emphasize,
however, that many systems displaying synchrony could
do the same. Alternative possibilities that have been
proposed are the ‘synfire chain’ (Abeles 1982, 1991),
‘correlation assemblies’ (Johannesma et al. 1986; Aert-
sen et al. 1987; Gerstein et al. 1989) and ‘pattern
generating assemblies’ (Abeles and Gerstein 1988).
Finally, coupled chaotic elements (Kaneko 1990;
Bauer and Martienssen 1991) would provide yet
another means.

We assume that invariance was already achieved
and start with a set of patterns {f‘;}ﬁiﬂ ””” f,}} with
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Fig. 7a—d. Performance of the segmentation model. a Three separate
patterns forming the composite input b of the oscillator layer. ¢ Some
instances of the output of the oscillator layer. Observe that through the
interplay of synchronisation and desynchronisation, the composite
scene is segmented in time, however, at the expense of ‘damage’ to each
of the segments. d The corresponding output of the associative
memory. Notice the completion of the retrieved patterns, which match
the constitutive scene elements, shown in (a)

the number of pattern elements. Note that the patterns
here refer to patterns in some feature space, not primar-
ily in ordinary pixel space. The probability that £2 =1
is typically smaller than 0.1 in order to ensure small
overlap (sparse coding). Out of a subset S of patterns
(Fig. 7a) we form the composite input pattern

I1=\/,_; & (Fig. 7b), where \/ denotes the ‘or’-opera-

tor. To every input element is assigned a neural ele-
ment, modeled by an oscillator described by a phase
variable ¢ which obeys the differential equation de¢/
dt = . Strictly speaking this is a phasor, i.e. an oscilla-
tor with constant amplitude. For simplicity we assume
that all oscillators have the same intrinsic frequency .
The oscillators are fully connected by diffusive coupling
terms, i.e. only depending on the phase difference
®; — ¢, (Kuramoto 1984). We consider only the dynam-
ics of neural elements whose input is one (/; = 1). This
leads to the following set of coupled differential equa-
tions:
do;/dt=w Y J;sin(g,—¢,) {i|l,=1}. 3)
Ui =13

To be consistent with our first model, we treat the
sample patterns like a time series and define the cou-
pling constants J; by the covariances:

Jy=Cov(g, &) =1/P ¥ £2¢f

—1PYEPP-1PYEr. (4)

A positive coupling strength, arising between elements
which are often co-active in the set of input patterns,
synchronizes the corresponding oscillators. In contrast,
a negative coupling, arising between elements which are



negatively correlated in the input patterns, desynchro-
nizes them. Each oscillator is made to produce an event
whenever it passes through a small angle segment ac-
cording to

oy =11f o(t) <e¢
(5

0 otherwise .

Some instances of the time series that results when the
oscillator layer is presented with the composite input
pattern in Fig. 7b are shown in Fig. 7c. We observe that
different subgroups of oscillators are co-active at differ-
ent times. In particular, oscillators encoding elements
belonging to one of the elementary patterns tend to
emit synchronized signals. However, these elementary
patterns do not appear completely: parts of the patterns
are missing.

For an explanation we turn to the underlying dy-
namics. These are a superposition of an overall periodic
movement and a relative movement. After a transfor-
mation ¢ — ¥ = ¢ — wt, which subtracts the global pe-
riodic movement, we obtain for the relative dynamics

dl//i/dt=zjij Sin('//j_l//i)- (6)

Notice that the relative movement is governed by a
Hopfield-type energy function (Hopfield 1982):

H =} J;cos(; — ;) =3 Jys;s;. 7

The only difference is that here the ‘spin’ variables s; are
unit vectors, rotating on a circle (in the physical litera-
ture known as XY-model), instead of scalars confined
to the values —1 and +1. In this sense, the present
model is the most modest step one can make from a
fixpoint attractor network towards networks with an
attractor at the next level of complexity, i.e. a limit
cycle (for fixpoint attractor networks see Amit 1989).
When the system relaxes according to the gradient
dynamics, a partition is introduced on the set of neural
elements: ‘to be synchronized’ is basically an equiva-
lence relation. It should be noted that the internally
coherent subsets resulting from this partition are dis-
junct, i.e. non-overlapping. Obviously, this will create
problems when the input patterns are overlapping: since
an element can only belong to one equivalence class, a
composite scene with patterns overlapping in feature
space will be brutally cut, with incomplete retrieval as a
consequence (cf. Fig. 7c). Similarly to the problem
mentioned in connection to the invariance operation,
this error indicates that an additional, fault-tolerant
structure is needed to ensure complete performance.

4.3 Rate coherence between neurons encoding repeatedly
co-occurring features performs association

As already mentioned, both the invariance operation
and the segmentation mechanism make errors. A natu-
ral way to cope with these errors is to employ an
associative structure. Such structures arise in the higher
visual cortical areas in a very natural way. In these
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areas, with most of the positional information already
gone, high covariances will also occur between features
which do not belong to the same orbit, but which
appear often together in the same object. Thereby the
function connected with the stronger connections grad-
ually shifts from the invariance operation to that of
association. It is important to realize that the visual
system needs an associative structure anyway, if only to
correct for disturbances, such as caused by noise or
partly occluded objects.

To model the associative function, we used a matrix
associative memory (Willshaw 1969; Palm 1980). The
associative matrix was given by

A=\/,&®¢, (8

where ® denotes the outer product, \/ the ‘or’ opera-

tor, and &7 refer to the same patterns as before. At
every point in time we fed the output of the oscillator
layer into the associative memory, the output of which
is

o = @(Z Ay 07 — T) ©)
J

where © is the Heaviside step function and T is a
threshold, in our case typically 33% of the average
pattern activity. Figure 7d illustrates that incorporation
of this associative mechanism into the oscillator net-
work indeed solves the completion task: the incomplete
patterns resulting from segmentation (Fig. 7c) are now
fully retrieved. Thus, the task of segmentation of com-
posite input patterns is accomplished, including the case
that the constituting patterns overlap in feature space.

4.4 Object recognition: invariance, segmentation
and association unified into a single model

Having dealt with the different aspects of invariance,
segmentation and association separately so far, we will
now put them together again into a single, functional
model. To this end we presented the ten pictures with
objects from the breakfast table, one after the other, to
the invariance model and, thus, trained the neurons. To
every orbit assembly that develops, we assigned an
oscillator in the next stage of the model. Thus, the
activity patterns of the orbit assemblies provide the
input patterns for the oscillator layer. Finally, the sepa-
rate assembly patterns also serve as memory states for
a hetero-associative look-up scheme, associating each
output pattern of the oscillator layer with a name (e.g.
apple, champagne, etc.).

The performance of this integrated model upon
presentation of composite scenes is illustrated in Fig. 8.
Figure 8a shows one such scene: a bottle, partly over-
lapping with an apple in front of it. The assemblies that
are recruited by this scene are shown in Fig. 8b (com-
pare bottom line in Fig. 6). The second line (Fig. 8c)
displays some instants of the output of the oscillator
layer, which groups the activity along the time axis
(compare Fig. 7c). Finally, the bottom line (Fig. 8d)
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Fig. 8a—d. Object recognition, obtained by integrating the three
aspects of invariance, segmentation and association into a single
functional model. a The presented scene (input to the invariance
model), consisting of a bottle and an apple in front of it. b The
activated orbit assemblies (output of the invariance model and input
to the oscillator layer). ¢ The organisation of the rate activity into
event-coherent assemblies (output of the oscillator layer). d Response
of the hetero-associative memory. Observe the correct parsing and
identification of the objects, even though they partly overlap

shows the responses of the associative memory; these
were given when the output of the oscillator layer had
an overlap of more than 33% with one of the memory
patterns (compare Fig. 7d). Notice that the network
correctly parses and identifies the object in the input
pattern, even though they partly overlap. Figure 9
shows a similar sequence, but now the bottle is in the
foreground and, in addition, both objects have been
shifted in space (Fig. 9a). Yet, we observe that also in
this case, the procedure leads to the correct result (Fig.
9d). From these and many similar findings, we conclude
that our network indeed recognizes objects, i.e. it per-
forms the operations of invariance, segmentation and
association, and it does so in an integrated manner.

5 Comparison with anatomy, physiology
and psychophysics

5.1 Summary in a biological language

Even though we modeled in a highly idealized fashion,
we want to summarize in a biological language. Feedfor-
ward connections, projecting to the pyramidal cells in
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Fig. 9. The same as in Fig. 8, but the objects are shifted in space.
Moreover, now the bottle, instead of the apple, appears in the
foreground. Observe that also in this case, the objects are correctly
identified. Notice that the changes in the scene as compared to Fig. 8,
leads to a different timing schedule of segmentation )

the primary visual cortex, are moulded by competitive
learning. The resulting receptive fields of the pyramidal
cells describe constellations in the input with consistently
recurring inner relations. The distribution of the recep-
tive field properties reflects the symmetries of the trans-
formation groups at work in the exterior world. In the
course of learning, the correspondingly transformed
features become strongly connected and form orbit
assemblies. Next to these strong connections, also a
pattern of weaker lateral connections develops, both of
them following the pattern of covariation of neural
firing. Local inhibition, exerted by smooth stellate cells,
provides for competition and stability.

Upon presentation of an actual scene, those cells
whose feedforward receptive fields best match the input
pattern raise their firing rates. In addition, via the
strong lateral connections, they raise the firing rates of
other, not directly addressed members in the orbit
assemblies. Hence, positional information is destroyed,
while corresponding invariance is gained. Under this
envelope of increased firing rates, the weak (and strong)
connections organize the neural activity at the level of
fine-temporal spike coherence. As a result, those orbit
assemblies that are often co-active are linked, leading to
a natural segmentation of the scene.



These dynamics repeat themselves in higher areas;
these have the same basis structure and receive a topol-
ogy-preserving input projection from the primary area.
At each subsequent step, the set of features becomes
more diverse, while the single features become more
object-specific and the domain over which they show
invariance is increased. In parallel, an error-correcting
associative structure emerges, since in these higher areas
high covariances of firing also occur between features
that do not belong to the same orbit, but often appear
together in the same object. Thus, the operation which
naturally emerges in such a network is to detect and
represent objects, i.e. invariant sets in the visual input.
This is accomplished in a distributed fashion, at the
level of single neurons as well as at the level of coher-
ently active groups of neurons.

5.2 Experimental findings from anatomy, physiology
and psychophysics

Anatomy. The wiring we assume in our model incorpo-
rates only a few basic and well documented anatomical
rules. The feedforward projections in the visual system
are known to be organized topographically (e.g. Tusa
et al. 1981; van Essen 1985). No specific demands are
made on the lateral anatomical connections between the
pyramidal cells; these can simply be distributed isotrop-
ically and in a probabilistic fashion (Braitenberg and
Schiiz 1991). The inhibition is provided by the smooth
stellate cells, which are known to act locally (Braiten-
berg and Schiiz 1991; Abeles 1991 and references
therein).

Physiology. The primary visual cortex is characterized
by neurons with bar-shaped receptive field profiles
(Hubel and Wiesel 1977). Just as in our Fig. 3, the
centers of these receptive fields are distributed over the
entire visual field, with all orientations represented at
every location. Unlike the lay-out in our Fig. 3, how-
ever, there is an orderly organization of orientation
tuning across the cortical surface, albeit that the precise
topology of this orientation map is still debated (e.g.
Hubel and Wiesel 1977; Braitenberg 1985; Bonhoeffer
and Grinvald 1991). We would argue that even this
orderly arrangement of orientation tuning will evolve in
our model without further assumptions, provided that
the lateral dynamics are incorporated into the develop-
ment scheme. The reason is that neighboring neurons
with similar orientation preference will develop strong
lateral connections, thereby mutually accelerating their
development. Such local cliques, having an advantage
in development, will push away the non-ordered sets
and, thus, organize the topology (Kohonen 1982; for
the question what is learned and what is predetermined
in Area 17 see e.g. Wiesel 1982; Fregnac and Imbert
1984; Braitenberg 19885, 1986; von der Malsburg and
Singer 1988).

Clearly, the receptive field properties of cortical
neurons will be affected by a selective lateral connection
scheme as depicted in Fig. 4. This involves particularly
the neurons with the strongest lateral connections, i.e.
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those for which the feedforward receptive field profiles
stand out most clearly in Fig. 4. If we assume that these
connections are, in fact, strong enough so that the
corresponding neurons mutually transmit increased
firing rates, then the complete receptive field profile of a
neuron, 1.e. the receptive field as it is actually measured
in a physiological experiment, will, in fact, be made up
of its own feedforward profile, plus the feedforward
profiles of those neurons with which it has strong
lateral connections (see also Braitenberg 1985, 1986).
This has a number of interesting consequences for the
functional properties of these neurons. First, the actu-
ally measured receptive field of a neuron will generally
reach beyond its own feedforward component, its size
being largely determined by the extent of the strong
lateral connections. Moreover, the cells will tend to
display so-called ‘complex’ behavior: they will respond
to bars of the proper orientation, but irrespective of the
precise location within the receptive field. Also the
orientation-tuning curve of a recorded neuron will be
broadened, since the optimal bar orientations of the
neurons with which that neuron is strongly connected
show some degree of scattering (Fig. 4). A suboptimal
stimulus, both in terms of receptive field location and of
bar orientation, will necessarily evoke a delayed re-
sponse, because its influence is transmitted indirectly,
i.e. via intermediate neurons. The lateral connection
scheme also explains the finding that a moving stimulus
elicits a stronger response than a stationary one. Sup-
pression of inhibition results in a reduced acuity. All
these phenomena have indeed been described exten-
sively for the primary visual cortex (e.g. Hubel and
Wiesel 1977; Orban 1984). Also the recent observations
on context-dependence and changes of receptive field
properties following manipulations in the periphery
(e.g. Gilbert 1990; Gilbert and Wiesel 1991; Pettet and
Gilbert 1991) can be explained along the lines of the
present model.

Whereas the discussion in the preceding paragraph
was restricted to the strong lateral connections, i.e.
those that are strong enough to help shape the receptive
field profiles, we now incorporate also the weaker lat-
eral connections. Referring to Fig. 4, this means that
now also the lighter grey hexagons are included in the
discussion. Our assumption that the weak lateral con-
nections are sufficient to synchronize spike activity im-
plies that Fig. 4 can, in fact, be read as a spatial map of
where in the primary visual cortex spike synchroniza-
tion can be measured. When the reference electrode
would be positioned at the site marked with an arrow
(Fig. 4), coherent spike activity generally decreases with
increasing distance to the second electrode. More spe-
cifically, spike synchronization occurs between cells
with overlapping receptive fields, or, when they do not
overlap, if the cells encode similar stimulus features
(iso-orientation neurons). This scheme is in full accor-
dance with the experimental findings (e.g. Ts’o et al.
1986; Gray et al. 1989; Eckhorn et al. 1988; Ts’o 1991;
Schwartz and Bolz 1991). It is important to notice that
synchronous firing is also observed between cells with
non-overlapping receptive fields, which do not show
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coherence in the rate behaviour. This provides an addi-
tional justification for the distinction between the two
types of coherence. As assumption without direct exper-
imental support are the desynchronizing connections
between elements with negative covariance (however,
see Aertsen and Gerstein (1991), showing a neuron pair
in the cat primary visual cortex which switches dynam-
ically from synchronizing correlation to desynchroniz-
ing correlation as the firing rates increase).

Another important point is that our model only
needs Jocal synchrony. The reason is that in the scheme
we propose, in which the lateral dynamics are embed-
ded in a hierarchical organization, the activity in one
area is only locally evaluated by the neurons in the next
higher area. In this context one should be aware that
synchrony as judged by a neuron refers to the differ-
ences in arrival times of activity reaching the cell body
of that neuron. This is not necessarily the same as
synchrony judged by the experimenter who measures
the differences between times at which spikes are gener-
ated at different sites. Thus, when judging in laboratory
time the degree of synchrony between activities
recorded from different sites, one should realize that the
time interval within which spikes must occur in order to
be considered synchronous by a potentially receiving
neuron must increase with the distance between these
generation sites (a rough estimate would be propor-
tional to the ratio of distance between the electrodes
and velocity of the neural signals). In distributed sys-
tems like the cortex we have a time structure similar to
the one in special relativity, since the exchange of
information about the state of synchronisation itself
takes time (Lamport 1978; Mattern 1989).

Our assertion that in higher areas the function of
rate coherence shifts from generating invariances to
association is supported by the findings of von der
Heydt et al. (1984). Using Kanizsa triangles (1979) as a
stimulus, they could show that neurons in Area 18 of
the monkey responded to illusionary contours. Al-
though the actual contours in the stimulus were lying
entirely outside the classical receptive field, the neuron
nevertheless responded if the presented picture sug-
gested its participation. Such behavior was not ob-
served in Area 17.

Psychophysics. There are many instances in which the
behaviour of our model, as well as the assumptions
underlying it, are supported by results from psycho-
physics and the psychology of perception. Since a thor-
ough discussion of these correspondences is beyond the
scope of this paper, we restrict ourselves to a few
conceptual issues (but the reader is invited to have a
look at Fig. la (p. 108) in Treisman (1986) and Figs.
1.14 and 2.2a in Kanizsa (1979) with our model in
mind). The concept of local feature extraction is sup-
ported by many psychophysicists (e.g. Sagi and Julesz
1985; Koenderink 1984a, Treisman 1986). Regarding
our specification of the task of object recognition and
its effects on the developmental aspects of our model, it
is interesting to note that Spelke (1990) explicitly states
that the visual system of an infant seems to define

objects as units that are spatially connected, bounded
and spatio-temporally continuous. For example, only at

_ a later stage of development is a child able to perceive

an object, divided in two parts by an occlusion, as a
whole. This indeed suggests that the way humans divide
the exterior world into building blocks is learned. Also,
our point that functional order in the cortical network
is defined on the basis of covariances of neuronal
activity has been stressed by a number of authors (e.g.
Koenderink 1984b, c; Johannesma et al. 1986). Finally,
our model strongly suggests that ‘Gestalt’ perception
(Werteimer 1923; Kanizsa 1979) naturally emerges as a
result of a statistical evaluation of the visual input
along Hebbian principles; examples are the ‘Gestalt’
criteria of continuity and collinearity.

6 Final remarks

We are well aware that we developed and discussed our
model while imposing parsing at different levels of
description. We treated the development of feedforward
and lateral connections separately. The dynamics of
activity and the modification of connectivity was treated
separately as well. We parsed the task of object recogni-
tion into the separate aspects of invariance, segmentation
and association, which were then associated with different
aspects of the lateral dynamics: rate coherence and event
coherence. These, in turn, were studied in different
modules of the model. It remains to be shown that all
these aspects can be integrated more fully than we did
into a single model with realistic neurons and .initial
connectivity, which then is organized by visual experi-
ence, while it processes input and gradually improves
performance. However, we maintain that already in its
present guise, the model captures the essential features
of object recognition by the visual nervous system.

We attempted to tackle the principal tasks associ-
ated with object recognition all at once. This reflects
our view that the visual system is to be understood as a
tight family of processing steps acting closely together,
and that it may be misleading to study part of its
function in isolation. The function of the whole visual
system is optimized, not the function of any one subsys-
tem alone, at the expense of its ability to communicate
with others (cf. Marr 1982).

A natural extention of our work is to study object
recognition in three dimensions, with realistic camera
pictures as visual input. At the horizon of such work
appears the description of a network which, by simply
observing the world around it, builds up representa-
tions of its main constituents, defined as cohesive
chunks of the perceived environment. Important ques-
tions, which we left unanswered, are how well the
network generalizes, and how many patterns per cell
can be discriminated. The examples shown in the
figures operate in a range where the error is zero for the
given parameters. The most frequent error in the final
architecture occurs when too many overlapping objects
(four or five) are presented simultaneously, so that the
object farthest in the background is not recognized.



Finally, we wish to emphasize once more the decisive
role played in our model by the phenomenon of synchro-
nization of neural activity. For our purposes, we subdi-
vided this synchronization into two different levels of
temporal acuity: rate coherence and event coherence.
This may, in fact, be an oversimplification. For instance,
it is well conceivable that at the level of event coherence
there is room for further subclasses of temporal synchro-
nization (indications of this are given by e.g. Kriiger and
Mayer 1991; Vaadia et al. 1991; Aertsen et al. 1992,
Vaadia and Aertsen 1992), or even of a whole spectrum
of synchronization acuities. In this view, neural firing
rate modulations, including rate-coherent modulations,
might form a dynamic substrate, with an organizational
hierarchy imposed on them by a corresponding hier-
archy in event synchronization (e.g. Aertsen and Preissl
1991; Erb and Aertsen 1992). Further theoretical study
on this issue is currently in progress.
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