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Reconstmction and Characterisation of Neuronal 
Dynamics: How Attractive is Chaos? 

Hubert PreiBl and Ad Aertsen1 

Max-Planck-Institut fUr biologische Kybernetik, Spemannstrasse 38, 7400 Tubingen, Germany 

During the last years there has been a great emphasis on the possibility 
of characterising neuronal dynamics with methods from non-linear 
dynamical system theory. These new methods. especially the determi-
nation of the correlation dimension of time series. were applied to 
continuous activity as measured by the EEG and also to pulse train 
activity of single neurons. We could show that the calculation of the 
correlation dimension leads to incompatible results for a continuous 
process and for a pulse train generated from that process. This result 
has implications not only for neuronal data but also for other fields in 
biology and physics. where one deals with these two types of data. 

Recent years have shown a growing interest in the description of 
dynamics in complex systems. both at a theoretical and experimental 
level. It was shown that one can distinguish between stochastic and 
deterministic. non-periodic ('chaotic') processes; various measures for 
the characterisation were developed and applied in such different 
fields as ecology. climatology. fluid dynamics. Quantum physics and 
life sciences (for example see the contributions in Mayer-Kress 1986; 
and Pool 1989). 

One goal of electrophysiology and theoretical neuroscience is a 
better understanding of the dynamics of processes taking place in brain 
during information processing. In the context of our studies of the 
dynamics of activity and connectivity in the Neocortex (PreiBl and 
Aertsen 1991). we decided to investigate the applicability of methods 
for dynamical system theory. in particular the dimension analysis. to 
the characterisation of these physiological processes. As we will 

1 present address: Institut fur Neuroinformatik, Ruhr-Universitiit, P.O. Box 102 148, 4630 Bochum, 

Germany 
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demonstrate, one has to be aware of severe limitation when interpret-
ing results of this approach. 

Non-linear dynamics and chaos 

A dynamical system can be defined by a set of differential equations 

(1) 

where x is in general an n-dimensional vector (X1, ... ,Xn) The compo-
nents of this vector are functions of an independent variable, usually 
of the time t. The vector (X1, ... ,Xn) is called state vector and F I' is a 
function of it. In the context of deterministic, dynamical systems this 
function only contains non-stochastic elements. The parameter J.I. 
usually stands for another vector (J.l.1, ... ,J.l.m), the components of which 
are called control parameters; these parameters determine the dynamic 
behaviour. One can distinguish two main classes of functions F 1': 

- F I' is linear in each component of the state vector, these systems are 
called linear 

- F I' contains non-linear combinations of the single components of the 
state vector, e.g. squares or products, these systems are called 
non-linear. 

Up to now we have described systems which are continuous in 
time, but there are also many dynamical systems which evolve in dis-
crete time steps. In that case Equation (l) changes to Xt+ 1 = F I'(Xt), 

where the variable Xt is the state vector at time t. The concepts which 
will be presented below are also applicable to such discrete dynamical 
systems. 

The main interest in the investigation of a single dynamical system 
is the determination of the trajectories. These are the curves in the n-
dimensional state space which the system traverse in the course of 
time, i.e. which specify the value of the state vector for a time t = t1, 

if the system was in the state (X1(O), ... ,xn(O» at time t = O. For linear 
systems there is a well-established theory on how to go about to solve 
such equations and describe the dynamical behaviour (Hirsch and 
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Smale 1974). In the non-linear case, however, it is more difficult to 
get the solutions. In general, it is not possible to solve a non-linear 
system and get explicit formulas x,{t) = f p(t,(Xl, .•.• Xn) for all i E 
{l, ... ,n}, from which one could calculate the state vector (Xl, ..• ,Xn) for 
an arbitrary time t. For the characterisation of the dynamics, one has 
to calculate the trajectories for that system with specified control para-
meters. 

A special class of dynamical systems are the dissipative systems. 
These are characterised by the fact that the volume of an arbitrary cell 
in state space goes to 0 as time proceeds. These systems have a so-
called attractor which is reached for t approaching infinity, i.e. the 
attractor is the asymptotically reached state of the dynamical system, 
and all trajectories are drawn to this attractor after a transient time. 
The simplest example is the damped pendulum which has its resting 
point as the attractor, but there are systems with more complex attrac-
tors e.g. limit cycles. By definition, dissipative systems have an attrac-
tor with a dimension lower than that of the state space. 

In the study of non-linear systems special interest was given to this 
kind of systems. An important observation was made by Lorenz (1963) 
when he calculated the trajectories of a non-linear 3-dimensional sys-
tem as a simple model for the dynamics in the atmosphere. The system 
is definded by the following differential equation: 

d (X) (-UX + uy ) dt y = -zx + Rx - y 
z xy - bz 

(2) 

For the control parameter he chose the following values (1 = 10, b = 
8/3 and R = 28. In that case the system is dissipative and, hence, the 
asymptotic dynamics are restricted to an attractor. This attractor looks 
like a two-dimensional surface. However it is impossible that the 
dimension is two or lower, since in a deterministic system two trajec-
tories can never intersect. It also can not be three, because the system 
is dissipative. This leads to a new concept for the description of 
attractors by a non-integer dimension, called fractal dimension. This 
term goes back to the work of Mandelbrot (for an introduction to this 
concept see Mandelbrot 1983; and Falconer 1990). An attractor with a 
fractal dimension is called a strange attractor. 

Another finding was the effect of sensitive dependence on initial 
conditions. In some non-linear dynamical systems the following obser-
vation can be made: if we follow the time development of two vectors 
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x and x' that were initially lying within a small disc of radius E it 
turns out that their distance will grow exponentially with time. This 
dynamic behaviour can be characterised by the so called Lyapunov 
exponents. A system with at least one positive Lyapunov exponent is 
called chaotic. 

The resume of Lorenz was the following: 
'A finite set of ordinary differential equations representing forced 
dissipative flow often has the property that all of its solutions are ulti-
mately confined within some bounds. [ ... J Our principal results concern 
the instability of nonperiodic solutions. A nonperiodic solution with no 
transient component must be unstable. in the sense that solutions 
approximating it do. not continue to do so.' 

It is obvious that these two measures reflect two different aspects 
of a system: the fractal dimension of the attractor characterises the 
asymptotic state, while Lyapunov exponents describe the dynamics. It 
was, however, shown that these two measures are not independent, and 
that one can, in fact, calculate the fractal dimension if one knows the 
Lyapunov exponents. After all, one has to distinguish between chaotic 
systems and systems with a strange attractor, in most cases these two 
properties go hand in hand. For a more extensive discussion on these 
topics see Eckmann and Ruelle (1985) and Berge et al. (1984). 

In view of this theoretical background, there are some important 
questions regarding the applicability of these concepts: 

1. What can be said about an experimental system of which not all 
state vector components are known and not all components can be 
observed at the same time? 

2. How can the fractal dimension and Lyapunov exponents actually be 
measured? 

Reconstruction and correlation dimension 

In most experimental situations the differential equations for the 
system under investigation and, consequently, the state variables are 
unknown. The experimenter usually has only access to consecutive 
measurements of a single scalar observable z(t). A considerable step 
forward was made when it was shown that the attractor of the under-
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lying system can be reconstructed from such a time series by a proce-
dure known as embedding (Packard et aI. 1980; Takens 1981). A vector 
in an m-dimensional pseudo state space is defined from the measure-
ments by taking an appropriately spaced comb of values (z(t), 
z(t+r), ... ,z(t+(m- I)r»; different values of t correspond to different 
vectors in that space. For the two-dimensional case this means that the 
time series: (z(t),z(t+r), ... ,z(t+(m-l )r» is represented by the following 
vectors for reconstruction in a two-dimensional pseudo state space: 
«z(t),z(t+r)},«z(t+r),z(t+2r)},{(z(t+2r),z(t+3r)}. 

The embedding theorem (Takens 1981) states that if z is the result 
of a smooth function, mapping the original attractor to the space of 
real numbers, and if m 2n+1 (where n is the dimension of the 
attractor), the reconstructed attractor in pseudo state space is diffeo-
morphic to the original attractor: both have the ''same dimension. 

This finding gave a possible way for a sufficient reconstruction of 
an attractor. Grassberger and Procaccia (1983a, b), building on consi-
derations of Renyi (1962), developed an algorithm for determining one 
special kind of fractal dimension, the so-called correlation dimension 
(G-P algorithm). This dimension measures the density of sample points 
in the state space by calculating the correlation integral C(e), which 
determines the number of state vectors x which fall in it region with 
size smaller than 10: 

(3) 

In this formula () is the so-called Heaviside function, which is 1 if the 
argument is larger than 0 and 0 otherwise. The indices i and j mark 
state vectors at different time steps. For small 10, C(e) behaves like a 
power of 10: C(e) - 10(1, where (J is called the correlation dimension. From 
the correlation integral (3) one can obtain the correlation dimension 
very simply: 

u = lim logC(€) 
f-O log€ 

(4) 

Thus the correlation dimension can be determined as the slope of the 
log C(e) vs. log 10 curve in the so called scaling region (sr), i.e. where 
this curve is linear. 
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The embedding theorem and the G-P algorithm now provide the 
means to analyse the dynamics of a system under experimental obser-
vation: a time series is recorded, the data are embedded in an m-
dimensional space (usually starting with m = 1) and a dimension d is 
determined with the G-P algorithm. This procedure is then repeated 
with increasing m. Initially the dimension d will increase with embed-
ding dimension m. However if the underlying system has a low-
dimensional attractor with a correlation dimension (1, the dimension d 
will saturate at this value for increasing m. In the scaling region the 
log C(€) vs. log € curves for different m will consequently become 
parallel. 

It is important realize that the correlation dimension is a geo-
metric characterisation of the attractor. If the observed trajectory is 
long enough the attractor will be densely covered by it and the exact 
value of the correlation dimension can be calculated. 

However, serious problems may arise when using this procedure. 
The first is the determination of the time delay T from a certain time 
series. If the time delay is too short, the correlation integral is domi-
nated by the data points which are too close to the reference point, 
which leads to so-called 'spurious dimensions' (Theiler 1986). If, on 
the other hand, the time delay is too large, consecutive data points are 
independent. In the experimental situation there are basically two 
methods to determine an appropriate time delay: the first is based on 
the auto-correlation function, the second, and the one to be preferred, 
is based on mutual information (e.g. Fraser and Swinney 1986). 

The second problem is the number of data points, which should be 
taken for the calculation. One method is to vary the number of data 
points and to compare the results of different runs (for example see 
Dvorak and Siska 1986; Layne at al. (I986). From such studies it was 
concluded that it is necessary to use only stationary time series, the 
length of which can be determined experimentally. In addition, theo-
retical analysis considering the length of the time series required to 
obtain reliable results provided the following rule of thumb (Smith 
1988): for a dynamical system with a correlation dimension of /t one 
should have at least 42/tint data points, where /tint is the largest integer 
less than the correlation dimension. 

The product of these two parameters, the time delay and the 
number of data points, determines the duration of the time series, 
necessary to obtain a reliable estimate of the correlation dimension. 
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Correlation dimension and neuronal signals 

During the last years there have been several attempts by different 
groups applying the G-P algorithm to neuronal signals. It was shown, 
that finite correlation dimensions can indeed be calculated from this 
data (for example, see Rapp et at. 1985 and the papers in Basar 1990). 
These studies were done on single neuron spike trains as well as on 
more global electrophysiological measurements such as the EEG. Since, 
however, it is not obvious how to apply these methods to the analysis 
of a distributed system like the brain, we decided to focus on the 
description of single neuron dynamics. 

I I 
> 

-1s 

Fig. 1. The membrane potential of a single cell with clearly visible action potentials. Two types of data 

can be obtained from such a measurement: the continuous time course of membrane potential, and a 

point process, specified by the time intervals between successive action potentials 

The dynamics of a single neuron can in principle be determined 
from two different experimental observations: the membrane potential, 
which is a continuous signal, and the train of action potentials (spikes), 
described as a point process (c.r. Fig I). It is not clear beforehand 
whether a choice of either the continuous signal or the pulse train 
might possibly influence the outcome of the analysis. Therefore we 
decided to investigate this question in more detail (PreiBl et at. 1990). 
To this end we analysed several well-known dynamical systems 
(Lorenz, Rt>ssler, Henon), each one with a strange attractor and chaotic 
dynamics. In addition we studied the membrane potentials and spike 
trains derived from a neural network simulator which employs a 
pseudo-random generator (Boven and Aertsen 1990). In each case we 
focused on the issue of continuous versus discrete time series observa-
tions. 
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50 

t 

Fig. 2. Generation of the pulse train obsetvations from the z-component of the Lorenz system: the 

dynamic variable for the reconstruction procedure is the sequence of time intervals between succes-

sive, positive-going level crossings at a fixed threshold value Z=25. Note that in this case the vectors 

are defined by taking sequences of adjacent intetvals 

In order to obtain the two types of data for each of the various 
systems, we recorded the time course of one of the system variables 
(continuous signal) as well as the series of time intervals between 
successive, positive-going level-crossings of a fixed amplitude thresh-
old (pulse train) (c.f. Fig 2). In the latter case these time intervals were 
regarded as the variable of the dynamical system. 

Here we present results obtained for the Lorenz system (simulation 
parameters as in Caputo and Atten 1987). We recorded the z compo-
nent of the Lorenz system, and used 5000 data points with an time 
delay of 0.2. We embedded these data points in a pseudo state space 
with a dimension ranging from I to 6, and calculated the correlation 
integral (for the algorithm see Parker and Chua 1989; Grassberger and 
Procaccia 1983a). From the continuous measurement we obtained the 
correct correlation dimension of 2.06. 

In the case of pulse-train measurements, we used a time series vj. 

where Vi is the time between two ith and U+I)th positive going level-
crossings of the z-component with a certain threshold. This time series 
was regarded as a discrete dynamical system, e.g. the U+I)th-interval is 
a function of one or more preceeding intervals. The length of this time 
series was again taken to be 5000. The embedding-dimension ranges 
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Fig. 3. Results of dimension analysis for pulse trains obtained with different thresholds Z on the z-

component of the Lorenz system: Z = 35 (a), Z = 25 (b), Z = 15 (c) and Z = 12 (d). In each case . the 

reconstruction was performed with 5000 intervals; the embedding ranges from 1 to 6. 

from I to 6. In neurophysiology the embedding in the two-dimensional 
pseudo-state space is usually called scatter plot (Rodieck et at. 1962). 

Rather to our surprise, however, the pulse train measurements gave 
quite different results as compared to the ' continuous signals. More-
over, the results depended on the threshold level Z used to generate 
the pulse trains (c.f. Fig 3). For Z=35 and Z=25 we were indeed able 
to determine a correlation dimension: for Z=35 it was 1.92, whereas 
for Z=25 it amounted to 1.79. Clearly these two values differ from 
each other as well as from the correlation dimension of the continuous 
system. With a threshold at Z= 15 or at Z= 12 one obtains two scaling 
regions (srI, sr2). For Z=15 the correlation dimension equals 1.52 in 
srI, whereas in sr2 it could not be determined at all; for Z= 12 neither 
of the two scaling regions allowed to determine a correlation dimen-
sion. We made similar observations on the other (x and y) components 
of the Lorenz-system, as well as for the Rossler- and the Henon-
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system. In addition, we considered other types of pulse train genera-
tion mechanisms, e.g. the sequence of intervals between maxima in a 
selected component, and the sequence of intervals between consecutive 
points of entry into an arbitrarily selected box in pseudo state space. In 
none of these cases was it possible to obtain the correct correlation 
dimension of the attractor from an analysis of pulse train measure-
ments. Finally we analysed both the continuous membrane potential 
and the simultaneously recorded spike train from a neuronal network 
simulator. Again, the two different types of measurements gave 
different results for the correlation dimension. 

Discussion 

From our observations on the behaviour of the correlation dimension 
for different types of measurements we are forced to conclude that 
there exists a fundamental discrepancy between the outcome of an 
analysis of a continuous process and of pulse trains generated from the 
same process. Consequently, correlation dimension analysis in its 
present form is not an appropriate tool for the characterisation of the 
dynamics underlying spike sequences. The reason is that the pulse train 
measurement is not the result of a smooth mapping of the underlying 
continuous process, as is required in the embedding theorem (Takens 
1981). This fact also influences other methods for determining dynam-
ical system parameters, such as the Lyapunov exponents. All these 
methods essentially rely on the assumption that the reconstruction 
process results in a diffeomorphic attractor. In addition, a point pro-
cess, by its very nature, induces a description in terms of intervals 
between events. This dynamical variable does not generate a proper 
Poincare map of the underlying system. Consequently, this approach of 
making qualitative statements regarding the systems dynamics seem to 
be precluded too. 

In addition to the above described problems, the concept of corre-
lation dimension faces further, as yet unsolved questions in the field of 
neurophysiology. The first was already mentioned: the question of 
stationarity of time series with an very large number of data points. 
Adopting the boundary of Smith (1988), this implies that an attractor 
with a correlation dimension between 3 and 4 one needs some ten 
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thousands of data points. This, of course, is not a trivial requirement 
to be met, especially in a working brain with continuously changing 
levels of activity. 

However there is a second, even more fundamental problem. In the 
last years it was recognized that spatially extended systems with many 
interacting components, of which the brain surely is an example, may 
exhibit dominating long transients (Crutchfield and Kanenko 1988). 
This makes it impossible for the system to reach the attractor during a 
reasonable observation interval. Moreover, such systems may have 
multiple, coexisting attractors (Mayer-Kress and Kaneko 1989). This 
means that the spatio-temporal dynamics of a spatially extended system 
cannot possibly be characterised by means of an attractor reconstructed 
from the measurement of a single variable, irrespective of it concerns 
a single-neuron pulse train or a continuous signal such as a membrane 
potential or some other form of spatio-temporal summation like the 
EEG. Consequently, attractor characteristics such as fractal dimensions 
and Lyapunov exponents would be of little value here (see also Chate 
and Manneville 1987; and Lorenz 1991). 

This, obviously, directly affects the question whether the concept 
of attractors, be they fractal or not, may be useful in the study of 
information processing in the brain. In our opinion, cortical informa-
tion processing is not governed by attractors. Rather it seems more 
plausible to us that the dynamics are governed by transient state trans-
duction, perhaps between different attractor states (Skarda and Free-
man 1987). Consequently, although the calculation of a correlation 
dimension can be done on any time series, one has to be very careful 
in interpreting the results functionally. 

Methods from dynamical system theory may possibly lead to new 
insights in various fields, including neuroscience. However, one should 
be aware of the fact that fractal dimension analysis is not an appro-
priate tool for the characterisation of pulse train (or interval) measure-
ments, nor does it seem to be an adequate descriptor for the dynamics 
of a distributed system like the brain. In this context, concepts that are 
currently being developed for measuring complexity and prediction of 
time series seem to be more promising (see e.g. various contributions in 
Atmanspacher and Scheingraber 1991). 
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