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Dynamics of Activity in Biology-Oriented Neural Network 
Models: Stability at Low Firing Rates 

Michael Erb1 and Ad Aertsen2 

Max-Planck-Institut fur biologische Kybemetik, Spemannstrasse 38, 7400 Tubingen, Germany 

We investigated the dynamics of activity in feedback neural network 
models at low firing rates. The networks were designed to capture the 
typical features of real cortical networks. Stability analysis of the 
linearized model and simulations of different degrees of complexity 
show that stability is only obtained for very fast and sufficiently 
strong inhibition; otherwise the network activity develops into syn-
chronous oscillations with frequency and amplitude dynamics governed 
predominantly by the inhibition parameters, but largely independent of 
(I) the network architecture (uniform, random or structured), (2) the 
spiking or analog nature of the neural activity, and, albeit to a lesser 
extent, (3) the linear or nonlinear nature of the neural threshold func-
tion. Provided the network connectivity is sufficiently rich and struc-
tured, the spike activity exhibits features which resemble those 
observed in physiological recordings from various cortical areas: cell 
assembly behaviour with different, simultaneous correlation dynamics 
(event coherence and rate coherence). 

Introduction 

In recent years, many different kinds of neural network models have 
been developed. Addressing a variety of different levels of biological 
reality, these models occupy a correspondingly wide spectrum of 
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yermany 

present address: Institut fUr Neuroinformatik, Ruhr-Universitiit, P.O. Box 102 184, 4630 Bochum, 
Germany 
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mathematical formalizations. They range from sets of coupled differ-
ential equations, describing the time course of membrane potentials of 
interconnected individual neurons, to spin-glass models from statistical 
physics, dealing with the interactions in populations of binary ele-
ments. In the context of a more comprt:hensive investigation aimed at 
connecting these different levels of modeling (Erb 1991), we investi-
gated the activity dynamics in physiology-oriented networks of model 
neurons, both of the spiking and of the analog type. In the present 
report we focus on the issue of stability of the neuronal activity in a 
highly interconnected model network, in particular on its dependence 
on various neuron and network parameters. The model was explicitly 
designed to capture the typical features of real cortical networks, both 
in terms of anatomy and physiology. An important constraint in this 
respect is that of 'sparse' firing, i.e. the activity in the network is 
required to be of low firing rate, such as typically observed in the 
neocortex (e.g. Abeles et al. 1990). As will be demonstrated, obtaining 
stability in such a feedback system of sparsely firing neurons is by no 
means a trivial problem. In fact, stable solutions could only be 
obtained for a very confined 'island' in parameter space. Outside this 
restricted range, the system develops instabilities, certain features of 
which are reminiscent of phenomena observed in recordings of neural 
activity in the real cortex. 

The network model: formulation and simulation 

In order to investigate stability neural networks with feedback, we 
studied the behaviour of a network of 100 spiking model neurons with 
fixed synaptic connections (Erb et at. 1990). Figure I a shows the 
scheme of the network, the corresponding Equations are given in 
Figure 1 b. In this model the neurons are connected only by excitatory 
synapses, inspired by neuroanatomical findings that about 90% of the 
cortical synapses is of this type (Braitenberg and Schuz 1991; Schuz, 
this Volume). The synapses are modeled as lowpass filters with delayed 
response, transforming the incoming spike activity into EPSP's. These 
are summated linearly over the dendritic tree to yield the instantaneous 
value of the membrane potential at the cell body. The probability of 
spike generation is modeled by a sigmoid function of this membrane 
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potential; this probability, in turn, is modulated by a refractory 
mechanism, driven by the recent spike history of the neuron. The final 
output, a sequence of spikes, is obtained by using the firing probabil-
ity as the instantaneous rate of a stochastic event generator. 

In addition to this basic network of spiking neurons, the 'pyramidal 
cells', the model comprises an inhibitory mechanism for stabilization. 
This inhibition consists of two parallel, linear branches: a fast one, 
with a time constant in the range of that for the excitatory synapses (5 
ms), and a slow one with a considerably larger time constant (200 ms). 
The fast branch is intended to mimic the inhibitory action of the 
'stellate cells', the slow branch serves to regulate the overall activity in 
the network towards a preset value (threshold control; Braitenberg 
1978; Palm 1982). 

In the present study the overall activity in the net was set to an 
average firing rate in the order of 20 spikes per second per neuron. 
Unless otherwise indicated, all numerical calculations as well as the 
network simulations shown here were performed with the following 
standard (sub )set of parameter values: 

fo=4 ms fl=5 ms n=200 ms 
ms ms 

ko=1 k2=3 
a=40 ILO=O ILl =0.2 c=0.3 

The values of the remaining parameters, in particular D 1 and k I, were 
subject to variation, and are given separately in the appropriate Figure 
captions. The standard values were chosen primarily for reasons of 
physiological plausiblity. Moreover, in combination with appropriately 
chosen values for the remaining parameters, the standard set leads to a 
stable solution under sparse firing conditions, both for spiking and for 
analog neurons (cf. Figs. 2c-5c; Erb 1991). 

One of the striking findings from simulations of this model is that 
stability at low firing rates appears to be reached only within an 
extremely confined region of the parameter space. Outside this stable 
'island' the network activity either dies, explodes or develops into 
strong, coherent oscillations. This is illustrated in Figure 2, which 
shows the lowpass filtered sum activity of the network in response to a 
stepwise presentation of a random input pattern for three different sets 
of model parameters. In each of these cases, the connectivity of the 
network was described by the same random connectivity matrix, with 



204 

Figure la. Scheme of the Model Network 
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Figure lb. Equations of the Model 
Lowpass filters: 

Potentials: 
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Fig. 1. Scheme (a) and Equations (b) of the model neural network 
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constant mean value (0.3) throughout the matrix and uniformly dis-
tributed stochastic fluctuations (range ± 0.1). Clearly the network is 
stable only in the last example (Fig. 2c). whereas the other two (Figs. 
2a.b) exhibit various forms of instabilities. differing both in the rate at 
which the instability develops and decays and in the oscillation fre-
quency. 

Stability of linear networks with analog neurons and uniform 
connectivity matrix 

For a quantitative investigation of the stability issue we introduced a 
number of simplifications. First. instead of actually generating discrete 
spikes by means of a stochastic event generator. we interpreted the 
firing probability of each neuron directly as its output activity. Thus, 
we obtain a deterministic network of so-called 'analog' neurons. i.e. 
neurons with continuously varying 'firing rates'. Secondly, in order to 
allow for a formal stability analysis. we studied a linear approximation 
of the model. Under these conditions it is possible to explicitly formu-
late the transfer function of the network; this transfer function obvi-
ously depends on the various neuron and network parameters. Finally, 
in order to obtain a more amenable expression for the transfer func-
tion, we drastically reduced the complexity of the network connectiv-
ity. In the simplified case of a uniform connectivity matrix. i.e. the 
limiting case (for fluctuations down to zero) of the random connectiv-
ity in Fig. 2. the transfer function is given by 

where f' is the slope of the nonlinear characteristic function f at the 
fixpoint. 

Analysis of the pole positions of this transfer function yields a 
measure for the asymptotic stability of the system. In particular, the 
pole with the largest real part determines the amplitude dynamics of 
the network activity: it decides whether the effects of a disturbance 
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will continue to grow or will eventually die out. Clearly, a positive real 
part signifies an increasing and, hence, unstable solution, whereas a 
negative real part corresponds to a decreasing, stable solution. More-
over, the imaginary part of this pole specifies the fine grain time 
course of the network response, in particular its oscillation frequency. 
Figure 3 shows three examples of such transfer functions, each one for 
a different set of model parameters. The logarithm of the absolute 
value of the transfer function, the 'gain' in dB, is coded according to a 

Figure 2. Simulation of the Spiking Model 
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Fig. 2. Lowpass filtered sum activity of the spiking network in response to an input step at t = 0 of a 

random input pattern for three different sets of model parameters (a: 61 =0.1 rns, kl =0.1, kZ=3j b: 

61 =1 rns, k1 =10, k2=30j c: 61 =0.1 rns, k1 =10, kZ=3). Observe that the network is stable at low 

rate only in c, whereas both in a and b the network exhibits distinct instabilities, differing both in the 

time course with which the instability develops and decays and in the frequency of oscillation 
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grey scale; black spots mark the positions of the poles. For the pole 
with the largest real part, i.e. the one which lies most to the right, we 
calculated in each case the growth exponent from the real part, and 
the oscillation frequency f and period T from the imaginary part. The 
results are given in Figure 3. 

In order to test the predictive value of this stability analysis, we 
also calculated the step responses of the linearized model for the same 
three sets of parameter values. The results are shown in Figure 4. 
Observe that in each case the behavior of the network activity in 
response to a step input - stable vs. unstable, temporal development of 
instability, oscillation frequency - agrees very well with the predictions 
from the pole analysis. In the first two examples, the transfer function 
has a pole with a positive real part (rightmost black spots in Figs. 
3a,b). Accordingly, in both cases the network shows a clearly unstable 
step response, characterized by a vigorous oscillation (Figs. 4a,b). 
Observe also that, in accordance with the results of the stability analy-
sis, the first step response (Fig. 4a) exhibits a slower amplitude rise 
and a higher frequency of oscillation than the second one (Fig. 4b). 
This reflects the fact that the corresponding pole in the first example 
(rightmost black spot in Fig. 3a) has a smaller positive real part and a 
larger imaginary part than its counterpart in the second case (Fig. 3b). 
In contrast to this, all pole positions in the third example have a nega-
tive real part (Fig. 3c). This results in a stable step response with 
rapidly decreasing amplitude of oscillation (Fig. 4c). 

Using this approach of pole analysis, we investigated the influence 
of the various model parameters on network stability. Unfortunately, 
the dimensionality of the parameter space is quite high (cf. Fig. I b), 
causing an exhaustive exploration to be out of the question. On the 
other hand, however, the number of truly free parameters, as well as 
their relevant ranges can be restricted considerably, by using anatomi-
cal and physiological plausibility as a constraint. Guided by this crite-
rion, we made a number of exploratory tests in selected sub domains of 
the parameter space. As it turned out, stability could only be obtained 
for a very limited range of parameter values. The most crucial of these 
appeared to be the delay D 1 and the gain k I of the fast inhibitory 
pathway. These were investigated systematically at high resolution, 
while keeping the others fixed at physiologically plausible and poten-
tially stable values (the standard set defined above). We found that 
under these circumstances, stability at low firing rate could only be 
achieved within a very confined 'stability island' (cf. Figs. 3c and 4c as 
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Figure 1 Logarithmic Plot (dB) of the Absolute Value of the 
Transfer Function for three Different Parametersets 

I: 61 = 0.1 ms kl = 40 2: 

a IS 

Im(s) 

o 
-3 o Re(s) +2 

3: 61 = 0.1 ms kl = 10 3D-plot for 61 = 0.1 ms kl = 10 

Results: Re(sp) Im(sp) frequency period time 

I: 0.23 3.54 563 Hz 1.77 ms 
2: 0.55 2.53 403 Hz 2.48 ms 
3: -0.36 4.14 659 Hz 1.52 ms 
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Fig. 3. Transfer function of the linearized network for three different sets of model parameters (a: 

a1 =0.1 ms, k1 =40; b: a1 =0.3 ms, k1 =10; c: a1 =0.1 ms, k1 =10). The logarithm of the absolute 

value of the transfer function ('gain' in dB) over a restricted portion of the complex plane is coded 

according to a grey scale: the larger the value, the darker the grey. Hence, black spots mark the posi-

tions of the poles. The growth exponent, the oscillation frequency f and period T, calculated from the 

real and the imaginary parts of the pole positions are indicated in the Figures. The 3-D plot (d) shows 

the gain for the same parameter combination as in c over an extended range of the complex plane and 

rotated over 90 degrees. This plot serves to illustrate the multitude and pairwise arrangement of the 

poles, with the increasing imaginary parts reflecting the various time delays 
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opposed to 3a,b and 4a,b): the inhibition must be of sufficient but not 
too great strength and, most critically, should be faster than the exci-
tatory influences (e.g. a 0.1 ms delay for inhibition as compared to I 
ms for excitation). Also, the slope at the operating point of the sig-
moid nonlinearity must lie within a certain range; other parameters 
appear to playa less significant role. 

Figure 4. Simulation of the Linear Model 

Time Course of Total Activity 
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Fig. 4. Lowpass filtered sum activity of linearized network in response to a uniform step input for the 

same three sets of parameter values as used in Fig. 3. Periods and corresponding oscillation frequen-

cies, directly measured from these step responses are a: T=1.81 ms, f=SS3 Hz; b: T=2.64 ms, f=378 

Hz; c: T = 1.67 ms, f = 600 Hz. Notice the good correspondence of these values with the corresponding 

ones in Fig. 3 
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Stability of nonlinear networks 

Clearly, a linear stability analysis can only be expected to reflect the 
local network behaviour, i.e. the activity dynamics in the vicinity of 
the fixpoint. For a study of the global dynamics of the network activ-
ity, it is necessary to take into account the influence of higher order 
terms, which come into play because of the sigmoid threshold function 
of the pyramidal cells (cf. Fig. 1). 

After incorporating the non-linear characteristic function into the 
model network, we again calculated the time course of the network 
activity in response to :;tn input step. The results are shown in Figure 5 
for the same three sets of parameter values used in Figures 3 and 4. 
Surprisingly, also the behaviour of the nonlinear solutions complies, at 
least qualitatively, with the predictions from the linear stability analy-
sis. Again, only the third example (Fig. 5c) shows the decay that is 
indicative of a stable system, whereas the other two (Figs. 5a,b) once 
more exhibit an unstable, progressively growing oscillation. Observe 
also, however, that the introduction of the nonlinearity gave rise to a 
kind of temporal scaling of the step responses: both the rise times of 
the envelopes and the oscillation frequencies, while· approximately 
retaining their relative magnitude, have clearly grown as compared to 
their linear counterparts (notice the different time scales in Figs. 4 and 
5). In addition, one observes how the amplitude of the oscillations, in 
contrast to the linear case, is bounded by the saturating nature of the 
nonlinearity. Moreover, the oscillations exhibit a typical nonlinear dis-
tortion, the shape of which is determined by the position of the fix-
point; in our case it is situated in the expansive part of the nonlinear-
ity, due to the imposed constraint of low firing rate (see Erb 1991 for 
a more elaborate discussion of the nonlinear effects). 

Stability of networks with non-uniform connectivity: the emergence 
of cell assemblies 

Thus, an analysis of the pole positions of the transfer function for the 
simplified model network enables us to make testable predictions 
regarding the stability of the network, both in the linear and the non-
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linear case. The question arises to what extent these predictions remain 
valid for networks with a more interesting connectivity, in which not 
all connections are of the same strength. In order to answer this ques-
tion, we will continue to alleviate, step by step, the simplifying as-
sumptions we made when reducing the full model (Fig. 1) to the 
linearized transfer function (Equ. 1). 

Figure 5. Simulation of the Nonlinear Model 
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Fig. 5. Lowpass filtered sum activity of the nonlinear network in response to a uniform step input for 

the same three sets of parameter values as used in Figs. 3 and 4. Observe the qualitative correspon-

dence in the behaviour of the linear and nonlinear solutions: stable vs. unstable, relation between 

oscillation frequencies and time constants of build-up and decay of oscillation. Notice also the new 

features introduced by the sigmoid nonlinearity: temporal scaling (compare the different time scales 

in Figs. 4 and 5), bounded amplitude and distorted waveform of the oscillations. 
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Deterministic networks of analog neurons 

We addressed the issue of nonuniformity of connections by two 
different approaches. First, we returned to the original, random con-
nectivity matrix with constant mean value and uniformly distributed 
stochastic fluctuations around it (cf. Fig. 2), and gradually increased 
the fluctuation range. Analysis of the step responses (not shown here) 
demonstrated that, for a nonlinear network with mean connectivity of 
0.3 and fluctuations in the range of %0.1 (i.e. for a dynamic range in 
the connectivity of a factor of 2), the time course of the summated 
activity could hardly be distinguished from that in the uniformly con-
nected network (Erb 1991). Moreover, the activity of the individual 
neurons followed very closely the time course of the summated activity 
for the entire net. Clearly, the averaging over the many different 
synaptic connections taking place in each neuron separately gives rise 
to very similar membrane potential trajectories. Thus, the variability 
among the activity profiles of different neurons is strongly reduced. As 
a consequence, under these conditions the individual dynamics and, 
hence, the mean of the dynamics closely follow the dynamics of the 
mean. This tendency towards homogeneity in large, highly intercon-
nected networks only breaks down when the dynamic range of the 
connectivity strengths becomes larger and larger and/or when the con-
nectivity matrix exhibits a clear structure. 

In a second approach we investigated the activity dynamics for a 
structured network connectivity. To this end we used a connectivity 
matrix resulting from a study of associative memory and the perfor-
mance of different types of learning rules (Erb 1985, 1991; Palm 1986, 
1987). In particular, we used a fixed connectivity matrix in which 
were embedded the memory traces of a set of 10 randomly generated 
input patterns. The activity in response to a uniform input step for a 
nonlinear network with this structured connectivity matrix is depicted 
in Figure 6, again for the same three sets of parameter values as used 
in the foregoing. Each of the three Figures 6a-c shows the time course 
of the summated network activity (righthand panel), together with the 
individual neuron activities (superimposed traces in lefthand panel). 
Observe that, with the exception of Fig. 6c, the time course of the 
summated network activity is hardly discernible from the activity in 
the uniformly connected network (Fig. 5), which once more empha-
sizes the strong homogenizing effect of averaging. 
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More interestingly, however, the time courses of the single neuron 
activities now exhibit two different kinds of nonuniformities. In the 
first and second example (Figs. 6a,b), the network activity develops 
into a synchronous oscillation in which all neurons are partaking, each 
one, however, with a somewhat different amplitude as manifested by 
the broadening of the band of superimposed traces in the lefthand 
panels. We note that this coherent oscillation is imposed by the global 
inhibition, which itself is oscillating in counterphase. Interestingly, in 

Figure 6. Simulation of the Nonlinear Model with a Learned Matrix 

Time Course of Single Neuron Activity and Total Activity 
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Fig. 6. Dynamic behaviour of the activity in the nonlinear network with analog neurons and structured 

connectivity matrix. Response to a uniform step input for the same three sets of parameter values as 

used in Figs. 3 to 5. Time course of the lowpass filtered sum activity (righthand panels) and individual 

neuron activities (superimposed traces in lefthand panels). Observe the striking similarity of the 

summated activity with that in the uniformly connected network (Fig. 5). Notice also, however, the 

different kinds of non uniformities in the time courses of the single neuron activities. In particular, 

Fig. 6c reveals the emergence of a cell assembly: the dynamic instability temporarily dissociates a sub-

group, defined through it interconnections, from the network it is embedded in 
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the third example (Fig. 6c) after a transient, global oscillation in which 
all neurons participate (0-60 ms), the nonlinearity splits the net into 
two subgroups: a small group of neurons which increase their firing 
rates and develop a coherent oscillation, whereas the majority of 
neurons does not feel addressed by the stimulus and rapidly settles at a 
very low firing rate. Since the mean activity level in the 'ignited' sub-
group (Fig. 6c) is higher than the overall level calculated for the entire 
network with uniform connectivity (Fig. 5c), the active subgroup 
develops an unstable oscillation, even at parameter values for which 
the uniform net was stable. Evidently this last case is the more inter-
esting one from the point of view of information processing. The 
selective instability provides a mechanism which temporarily dissoci-
ates a particular subgroup, defined through it interconnections, from 
the network it is embedded in. This behaviour closely corresponds to 
Hebb's notion of a 'cell assembly' (Hebb 1949), and, hence, provides a 
functional mechanism for signalling the occurrence of some interesting 
constellation in the 'outside' world. 

Stochastic networks of spiking neurons 

In a final step, in order to return from the simplified description to 
the full model, we reinstated the stochastic description with spiking 
neurons. Using the same structured connectivity matrix as in the 
deterministic case (Fig. 6), we again measured the step responses. the 
results for the same three sets of parameter values are shown in Figure 
7: the lowpass filtered spike trains for the entire network (righthand 
panels in Figs. 7a-c) and for the individual neurons (superimposed 
traces in lefthand panels in Figs. 7a-c and raster displays in Figs. 7d-
f). Notice that the activity dynamics in these stochastic, spiking net-
works resemble those in the deterministic network very strongly. The 
time course of the summated activity, particularly in the first two 
examples, is quite comparable to that in Figure 6. In addition, we 
observe similar departures from homogeneity among the individual 
neuron activities as in the deterministic case. Either practically all 
neurons participate in a coherent global oscillation, albeit with varying 
amplitudes and differing degrees of synchrony (Figs. 7a,b,d,e) or, 
alternatively, after a transient oscillation (0-100 ms), the net splits up 
into separate subgroups: a small group of neurons increase their firing 
rates, while the majority rapidly settles at a very low rate (Figs. 7c,f). 
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Figure 7. Simulation of the Spiking Model with a Learned Matrix 
Time Course of Single Neuron Activity and Total Activity 
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Fig. 7. Dynamic behaviour of the activity in the nonlinear network with stochastic, spiking neurons 

and structured connectivity matrix. Response to a unifonn step input for the same three sets of para-

meter values as used in Figs. 3 to 6. Time course of the lowpass filtered sum activity (a-c: right hand 

panels) and individual neuron activities (a-c: superimposed traces in lefthand panels; d-f: raster dis-

plays). Observe that the activity dynamics in these stochastic, spiking networks resemble those in the 

detenninistic networks very strongly, both for the sum activity and the single neuron activities. In con-

trast to the analog network, however, the assembly activity (c, f) reveals a difference in coherence 

between spike events and firing rates, demonstrating that this class of networks may exhibit different 
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Thus, also for stochastically spiking neurons, widespread stimulation of 
a structured feedback network, after a short epoch of global oscilla-
tion, may induce a selective activation and, hence, a temporary disso-
ciation of a particular subgroup from the network. 

A more detailed inspection of the activity patterns developed by 
the analog and the spiking networks reveals a new feature, which is 
only exhibited by the spiking network. Interestingly, and in contrast to 
the analog network, the results in Figs. 7c (left) and 7f show that the 
spike trains of neurons in the activated cell assembly rapidly loose 
their coherence upon reaching their increased activity level. This fast 
modulation of spike correlation is not reflected in the firing rates of 
the neurons involved. These gradually build up and stay at a relatively 
high level, independently of the reorganization taking place in the 
precise timing of the individual events. As a consequence, the sum 
activity of the assembly, after a short epoch of synchronous oscillation 
following 'ignition', quickly decays to a noisy constant high level. This 
suggests that the spiking network may be inherently more stable than 
the analog network with otherwise unchanged parameters, and that 
when, for some reason, a subgroup instability does develop, it lasts for 
a rather short time. Indeed, results from additional simulations (not 
shown here) indicate that in spiking networks with sparse firing, the 
stability problem is less severe than it appears in the stability analysis 
of the linearized model with 'analog' neurons. 

In addition, this difference in coherence between spike events and 
firing rates demonstrates that this class of networks may exhibit 
different correlation dynamics simultaneously, each of them character-
ized by its own time constant. The correlation among the activities of 
different neurons may show rapid synchronization of spike trains 
(event coherence) and, simultaneously yet more or less independently, 
slower co-variations of firing rates (rate coherence). Such different 
correlation dynamics have also been observed in physiological record-
ings from various cortex preparations (e.g. KrUger and Mayer 1990; 
Aertsen and Gerstein 1991; Vaadia et al. 1991; Aertsen et al. 1992). A 
more extensive discussion of their functional significance will be given 
elsewhere (Neven and Aertsen, in preparation). 

correlation dynamics simultaneously. each of them characterized by its own time constant: rapid 

synchronization of spike trains (event coherence) and. simultaneously yet more or less independently. 

slower co-variations of firing rates ( rate coherence) 
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Discussion 

On the basis of a stability analysis of the linearized network model, we 
found stability at low firing rates only for a very restricted range of 
parameter values. The most crucial parameters appear to be the delay 
and the gain of the fast inhibitory pathway. In particular, one needs 
shorter delays in this pathway than in the excitatory connections (e.g. 
0.1 ms delay for inhibition vs. I ms for excitation). Such delays are 
incorporated implicitly in most neural network models, since updating 
of the membrane potential takes place only one simulation time step 
after the generation, of spikes. Also the slope at the operating point of 
the sigmoid nonlinearity must be in an adequate range. This can be 
achieved from outside the network by adjusting either the mean input 
strength or the set value for the slow inhibition. Other parameters 
appear to playa less significant role. 

The dynamic behaviour of networks consisting of neurons with a 
nonlinear threshold function was qualitatively comparable to that of 
the linearized model, indicating that the nonlinearity does not play a 
crucial role as far as stability is concerned. The same holds for the 
influence of the connectivity matrix, as long as its dynamic range 
remains withing certain bounds. Even when the variation among the 
connection strengths becomes large, the sum activity of the network 
still basically follows the general pattern described for the simplified 
model network. Summarizing, we observe very similar dynamics of the 
summated network activity in all cases studied: a stable solution for a 
very confined 'island' in parameter space, characterized primarily by 
very fast and sufficiently strong inhibition, and in the majority of 
cases a synchronous oscillation with frequency and amplitude dynamics 
governed predominantly by the inhibition parameters, but largely 
independent of (1) the network architecture (uniform, random or 
structured), (2) the spiking or analog nature of the neural activity, and, 
albeit to a lesser extent, (3) the linear or nonlinear nature of the neural 
threshold function. Finally, simulations of networks with stochastic, 
spiking neurons suggest that in such networks the problem of stability 
at low firing rates may be less severe than in networks of determinis-
tic, 'analog' neurons. 

Our finding that stability in sparsely firing feedback networks 
requires a considerably shorter delay of inhibition than of excitation is 
in agreement with observations by Abeles (1991), as well as with 
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results of a number of theoretical studies (e.g. Marcus and Westervelt 
1989; Amit and Treves 1989; Rubin and Sompolinsky 1989; Golomb et 
al. 1990). Moreover, it fits well with the notion that inhibition acts 
locally, i.e. directly on the cell body or on proximal dendrites, whereas 
excitation is projected onto the dendritic trees, and is more prominent 
in (long-range) cortico-cortical connections, thus involving longer 
delays (Braitenberg and SchUz 1991; SchUz, this Volume). Our study 
further demonstrates that, provided the network connectivity is suffi-
ciently rich and structured, subgroups of neurons may be briefly dis-
sociated from the net by the temporal coherence of the activity 
patterns that develop upon stimulation. This behaviour is precisely 
what was predicted by the 'cell assembly' hypothesis (Hebb 1949; 
Gerstein et al. 1989) and the concept of the 'synfire chain' (Abeles 
1982). Moreover, it conforms to a number of related physiological 
observations (e.g. Eckhorn et al. 1988 and this Volume; Gray and 
Singer 1989a,b; Aertsen and Gerstein 1991; Vaadia et al. 1991). 
Finally, the different simultaneous correlation dynamics exhibited by 
the spiking network model, event coherence and rate coherence, also 
find their physiological counterpart in observations on cortical record-
ings (KrUger and Mayer 1990; Vaadia et al. 1991; Aertsen et al. 1992). 

One of the salient conclusions of our study was that the task of 
'tuning' a feedback network to a stable, low firing rate proved to be 
quite difficult. This was reflected in the unsolicited experience that, 
before availing ourselves of the guidance of the stability analysis, we 
spent impressive amounts of time searching for appropriate parameter 
settings that would keep the network from oscillating. At this point it 
should be stressed that none of our network components has any 
intrinsic tendency to oscillate; the interactions in the network fully 
suffice to make the network go into oscillation, as anyone who ever 
tried to build an amplifier will appreciate. In view of this observation, 
the question how the real cortex, assuming that it works along similar 
principles, solves this inherent stability problem becomes only more 
pertinent. It is conceivable that not all parts of the cortex manage this 
problem equally well, or that the solutions that evolved in different 
species are not all equally efficient in coping with the unavoidable 
variations of 'network parameters'. In this respect it is tempting to 
speculate that experimentally observed oscillations in some physiologi-
cal cortical networks, e.g. in cat visual cortex (Gray and Singer 
1989a,b; Eckhorn et al. 1988 and this Volume) might possibly be 
instances of systems which failed to solve this stability problem ade-
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quately, especially when confronted with effective stimuli and, hence, 
correspondingly higher levels of input activity. If this were indeed the 
case, the question might be not so much how the brain functions by 
virtue of oscillations, as most researchers working on cortical oscilla-
tions seem to assume, but rather how it manages to do so in spite of 
them. 

When having to work with a system, which lives on the brink of 
instability and every once in a while develops partial, transitory 
'explosions', another possibility comes to mind. If short, activity-
related epochs of instability of portions of the net are apparently 
unavoidable and bound to occur from time to time, one might as well 
use them for a conv.enient purpose. An obvious candidate for such an 
application, in fact, the one usually put forward in connection with 
cortical oscillations, is that of 'dynamical linking', in which temporal 
coherence among active neurons defines their short-lived functional 
association (e.g. von der Malsburg 1981, 1986). Certainly our finding 
that networks with strongly nonuniform connectivity exhibit short 
epochs of synchronized instability, with subgroups of neurons tempo-
rarily dissociated from the network (Figs. 6,7) would be consistent 
with this idea (see also Aertsen and Gerstein 1991; Aertsen and Preissl 
1991). Also, the manifestation of two distinct correlation dynamics, 
event coherence and rate coherence, exhibited both by the spiking 
network model and in physiological recordings, appears to be relevant 
in this respect (Neven and Aertsen, in preparation). 

Expanding along these lines, one could, in fact, rethink the original 
goal of striving towards a stable network with fixpoint dynamics and, 
instead, consider the information processing capabilities of networks 
with more complex, dynamic attractor states. Clearly the limit cycle 
attractor is the first one that comes to mind when faced with the 
oscillating nature of our network dynamics, but obviously there are 
other, more elaborate possibilities, such as dynamics governed by 
quasi-periodic 'strange' attractors (e.g. Skarda and Freeman 1987; 
Preissl and Aertsen, this Volume). Clearly, an essential requirement in 
this context would be that not the entire net partakes in the instability, 
since such a trivial global state would not leave any room for a selec-
tive coding or computational mechanism to establish itself. Rather, the 
membership of the 'ignited' subgroups should be selective and tran-
sient, preferably determined by the dynamic interplay of connectivity 
within the net and neural activity feeding into it. In this respect, both 
the assembly-like activity patterns described above and the rapid, 
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stimulus-dependent modifications of functional connectivity observed 
earlier (Erb et al. 1986, 1989; Aertsen and Preissl 1991) seem to 
support this as a viable alternative. A study, specifically aimed to 
elucidate this dynamic concept of neuronal computation and memory, 
is currently in progress. 
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