Journal of Neuroscience Methods, 30 (1989) 59-69
Elsevier

NSM 00993

59

A low-cost single-board solution for real-time,
unsupervised waveform classification of multineuron recordings

Andreas K. Kreiter "*, Ad M.H.J. Aertsen ! and George L. Gerstein 2

! Max-Planck-Institute for Biological Cybernetics, Tiibingen (F.R.G.) and ° Department of Physiology, University of Pennsylvania,
Philadelphia, PA 19104-6085 (U.S.A.)

(Received 28 February 1989)
(Accepted 9 May 1989)

Key words: Multi-unit spike train; Waveform analysis; Spike discrimination by computer; Single-board
implementation; Reduced template matching

We describe a low-cost single-board system for unsupervised, real-time spike sorting of recordings from a number of neurons on a
single microelectrode. The maximum number of spike classes depends on the quality of the recording; it will typically be between 2
and 5. The spike sorter communicates with a conventional microcomputer through a standard serial port (RS232). For typical firing
rates as measured in the mammalian central nervous system, this set-up will accommodate up to some 10 parallel spike sorters for as

many separate microelectrodes.

Introduction

Over the last decade, a gradually increasing
number of laboratories have entered the field of
electrophysiological multineuron studies. One of
the factors contributing to this increase was the
development of the recording technology neces-
sary for simultaneous observation of the activity
from a number of separate neurons. In this devel-
opment we may distinguish two main compo-
nents: the first is concerned with the improvement
of multielectrode arrangements, the second with
the optimization of signal processing techniques,
aimed at utilizing differences in spike waveforms
to separate the contributions from different neu-
rons recorded on a single microelectrode (for re-
views see Gerstein et al., 1983; Kriiger, 1983; and
Schmidt, 1984a,b). In the present paper we will

* Present address: Max-Planck-Institute for Brain Research,
Deutschordenstrasse 46, D-6000 Frankfurt a.M. 71, F.R.G.

Correspondence: A. Aertsen, Max-Planck-Institute for Biologi-
cal Cybernetics, Spemannstrasse 38, D-7400 Tubingen, F.R.G.

concentrate on spike sorting by waveform analysis
—an approach specifically aimed at studying in-
teractions among closely neighboring neurons.
Spike sorting algorithms of different kinds have
been available for some time, both in hardware
and in software, both for on-line and for off-line
analysis. Unfortunately, real-time versions of such
‘sorting machines’ were up to now invariably asso-
ciated with considerable costs, prohibiting their
widespread usage, especially in combination with
cost-multiplying multielectrode set-ups. Further-
more, most algorithms require much operator in-
tervention and tuning; this is particularly inap-
propriate in the context of multielectrode multi-
neuron experiments where there is already more
than enough to occupy the experimenter. In the
following we describe a low-cost single-board sys-
tem for unsupervised, real-time sorting of record-
ings from a number of neurons on a single micro-
electrode **. This spike sorter combines the ad-

** Negotiations are currently underway to make this spike
sorter commercially available; no additional information is
available pending these negotiations.

0165-0270,/89/$03.50 © 1989 Elsevier Science Publishers B.V. (Biomedical Division)



60

|. Learning Phase

56 samples >

A |Sample an appropriate number N trigger level

of spike waveforms

- ‘learning set’ of N 64-vectors

variance

B |Calculate variance per lﬂl
C Determine 8 samples with ’
maximum discrimative power:
‘reduced feature set’
the ‘reduced feature set’ {
ke 8
* %
D This leads to the I R

‘reduced learning set’ L "
of N 8-vectors : :

E Cluster Analysis of
reduced learning set

R8
into k clusters &5
- k classes of B

spike waveforms (Sammon map)

F | Compute center of each cluster *|
- ‘template set’ of > N\

k spike types

Visual
inspection:

Projection

[ 1. Real-Time Spike soninﬂ

[} 8
G | Determine for each new spike r an- EF < > @) =
the 8 reduced features L l“l = i
Calculate Euclidean distance ’
to each of the k templates .
Classify spike according to T TT Y ::.._..7-'_'”'”'::':":
the template which minimizes b s TT ]
this distance

1.28 ms

Fig. 1. Schematic description of algorithm for unsupervised, multineuron spike waveform classification.



vantages of low-cost single-board microprocessors
and widespread personal computer (pc)-technol-
ogy. The number of spike waveforms that may be
separated depends on the extent of the differences
between the waveform prototypes and on the vari-
ability within each spike class; a typical recording
would yield between 2 and 5 separable neurons.

The spike sorter is based on an algorithm,
recently developed by Gerstein and coworkers
(Salganicoff et al., 1988; Sarna et al., 1988); its
principles of operation are briefly reviewed. The
spike sorter communicates with a conventional
microcomputer through a standard RS232-port.
For typical firing rates as measured in the central
nervous system, this set-up will accommodate up
to some 10 parallel spike sorters for as many
separate microelectrodes.

Principle of Operation

The spike sorter algorithm can be separated
into two phases: the learning phase (I) and the
actual sorting phase (1I); the flow of the algorithm
is schematically illustrated in Fig. 1.

In the learning phase, the system acquires the
information necessary to distinguish between the
different types of spike waveforms. First, a certain
number of spikes, say 100 (the ‘learning set’) are
sampled over 1.28 ms at 50 kHz, with the selection
of the samples being determined by an external
trigger on the detection of a spike (e.g. by a
positive-going level crossing). As a result, each
waveform is described by a 64-dimensional vector:
an ordered set of 64 signal values at 20 us spacing,
with the initial part of each set (in our implemen-
tation the first 8 samples) being taken from the
time before the trigger occurred in order to in-
clude the ascending phase of the spike waveform

_(Fig. 1A). The next step is to compute separately
for each of the 64 points along the time axis, the
variance over the learning set: the resulting set of
variances describes the time course of variance for
the waveforms collected so far (Fig. 1B). In a third
step, an iterative procedure selects from the origi-
nal 64 sample positions those 8 positions which

61

show the largest variance and which thus should
provide highest discriminability between the dif-
ferent types of spike waveforms; we call this the
‘reduced feature set’ (Fig. 1C). In order to prevent
inappropriate clustering of these ‘high-discrimina-
bility points’, the variance of each point is weighted
in the selection process by a function (in the
present implementation the square root) of the
distances to all previously selected points.

The sample set for each spike waveform is thus
reduced to an 8-dimensional vector (Fig. 1D); the
reduced learning set of these 8 vectors is then
analyzed for possible clustering (Fig. 1E) using the
k-means clustering algorithm (Hartigan, 1975). The
user decides how many clusters are appropriate.
This is done on the basis of the f-ratio: the ratio
of total partition error for k versus k + 1 clusters;
these ratios are computed for ascending k, start-
ing with k=1. Usually the fratio decreases
drastically if £ approaches the correct number of
clusters; in relatively noise-free data the f-ratio
increases again when k& is raised further. Once the
correct k has been determined, the center of mass
of each cluster is calculated (Fig. 1F); each of the
k cluster centers consists of 8 components and
forms a template which is used for the real-time
classification.

At the end of the learning phase we have thus
defined the two aspects of data required for the
sorting of new spikes: (1) the points in the time
course of the spike waveform which provide
highest discriminability (reduced feature set); and
(2) the typical values at these points for each class
of spikes present in the learning set (template set).

Phase II finally is the real-time sorting phase.
Upon a trigger signal indicating the arrival of a
spike, we collect those 8 points on the spike wave-
form which correspond to the previously de-
termined reduced feature set. The resulting 8-vec-
tor set then is classified in real-time according to
the Euclidean distance to each of the k previously
defined templates. The template which minimizes
this distance is assigned to that particular spike
waveform (Fig. 1G); in order to prevent classifica-
tion of ‘outlying’ spikes, it is possible to set a
threshold.



62
Implementation

For the actual implementation, it is important
to note that different components of the algorithm
require different speeds and priorities of execu-
tion. For instance, the acquisition of appropriate
data from each incoming spike waveform and the
assessment of its time of arrival should have ut-
most priority and guaranteed top speed. Other
activities such as the classification itself do not
need such high priority and still others, like the
clustering algorithm, are needed only occasionally
and cannot be executed in real-time with usual
laboratory computers anyway.

For these reasons we decided to distribute the
various tasks over different processors. Timing,
sampling of spike waveforms, determination of the
reduced features and real-ime classification are
done by a low-cost single-board system. Com-
munication with the user, computation of clusters
and cluster centers, computation of a threshold
and storing of the classified data are taken care of
by a host computer with mass storage (disk). Here
a further advantage of a distributed system be-
comes apparent. Even a modern CPU is com-
pletely absorbed when continuously handling a 50
kHz data rate, and simultaneous reliable storage
of data to disk would be difficult: many systems
do not allow interrupts while writing to disk or
they are not able to handle high interrupt rates.
On the other hand, most conventional micro-
computers are able to handle much more data
than that delivered by 4 or 5 sorted spike trains,
provided they do not have to take care of the
timing as well. For this reason it is possible to
have a number of spike sorters communicate in
parallel with the host, and thus to service a num-
ber of microelectrodes simultaneously.

Single-board system

The single-board spike sorter system is com-
posed of a single-board computer and additional
hardware; its configuration is shown in Fig. 2. The
single-board computer in our implementation con-
tains a MC68000 CPU (10 MHz), 128 kbyte of
RAM, 64 kbyte EPROM, a MC68681 which pro-
vides two RS232C interfaces, a MC68230 periph-
eral interface/timer and an 8-bit D/A-converter

(ZN428E). The additional hardware consists of an
amplifier with adjustable offset and gain
(0-100 X ), a 12-bit A /D-converter (AD7572JN-
12), the timing and interrupt logic, an analog
delay line (RD5106A) and various devices for
protection of input and output lines. The whole
system, together with the necessary plugs and user
controls on the front plate is mounted in a cassette
which conforms to double Eurocard format; the
complete system thus can be housed conveniently
in a commercially available chassis with power
supply. Software for interrupt handling, acquisi-
tion of learning set, calculation of reduced feature
set and reduced learning set and, finally, for real-
time sorting was written in assembler.

Host computer

As a host we used an AT compatible, equipped
with 8 RS232-interfaces, Hercules-compatible
graphics card and 30 Mbyte harddisk. Software is
written in TURBO PASCAL (vs 4.0) and is able
to handle a user-specified number (in our present
configuration up to 8) of spike sorter systems
simultaneously. Commands are available for han-
dling file-1/0, starting learning phase, starting
real-time sorting, resetting processes on the boards,
transmitting thresholds, changing board numbers,
data display, etc. Commands can be addressed to
each spike sorter individually or to all sorters
simultaneously.

For purposes of quality control of the sorting,
the clustering of the learning set can be visualized
by means of a mapping algorithm, projecting mul-
tidimensional data to two-dimensional space
(Sammon, 1969). During data acquisition, the host
receives sorted event data from the single-board
system(s). Events are shown in-the form of sep-
arate dot displays, and are stored in disk files. In
addition, data from each learning set (reduced
feature set, template set) can be stored in a sep-
arate file for later inspection. Host computer
software was extended in a straightforward way to
incorporate conventional methods of (quasi) on-
line single- and multi-unit analysis (e.g. PSTH,
auto- and cross-correlation).

Interrupt levels

The single board’s CPU MC68000 provides 7



A.nalo.g- > lwithotf-set Ain
Signai-In regulation
(2x LF356 - -
12-Bit- B2 PBO
D1~
AfD Conv. Do [—
(AD 7572 UJN12)
Trigger-in H2
ZN 428 |MC 68681
- 17 MC 68000
4Flip-Flops - 6 8to3 (10 MHz)
Channel 1 >———— D1 (2x74LS73) g, 15 Priority- RS232
2 }————D2 Q 14 Encoder 8Bit D/A- -
3 >————D3 Q 13 Q. ——|TPL2 ( ) <«+— Host
4> 1pa Qs 2 (4148 gl NS Converter
(R} Qol——{1PLO
Reset 4
:2’ T LOn 0N -0
3 FiRG Pzxof888¢ Agut interrupt
Spike 1 Indicator
2
3
4
Analog-Signal-Qut
Analog Delay Line
Ain —
(RD 5106 A) Aout Delayed-Analog-Qut
o
CiK
at=256ms I

Fig. 2. Schematic circuit diagram of the single-board spike sorter system. The diagram shows the most important parts of the circuitry, but omits details like protection
and buffer circuitry for input and output lines. The thick frame delineates the standard microprocessor circuitry from the additional electronics. The frequency generator
in the upper left of the diagram provides the 200 kHz clock for the analog delay line, as well as an internal source for the 50 kHz sampling clock. One switch selects
either the internal or an external clock source (Clock-In); another one selects which of the two provides the Clock-Out signal. At each positive-going transition of the
clock signal, the timing logic generates a wide pulse and a narrow pulse. The wide pulse activates the highest level (level 7) interrupt via the interrupt priority encoder. At
the same time the narrow pulse initiates both a new conversion cycle of the A /D converter (ADC) and the output of the last conversion result to ports A and B of the
MC68230; furthermore, it sets, via an AND gate, the ‘Sample and Hold’ circuit to hold mode. The ADC sets its Busy-output low, which initiates reading of the output
data by the MC68230, and, via the AND gate, causes persistence of the hold mode of the ‘Sample and Hold’ circuit until conversion is done after about 12 ps. The
analog input signal is amplified and corrected for offset by standard operation amplifier circuitry. The signal is then carried to the ‘Sample and Hold’ circuit, the
‘Analog-Signal-Out’ plug, and the analog delay line. An analog subtraction circuit subtracts the output of the D /A converter from the delayed signal to provide the final
output to the ‘Delayed-Analog-Out’ plug. The ‘Trigger-In’-signal, indicating the occurrence of a spike, activates the H2 input of the MC68230 to initiate an interrupt
request via the MC68230’s PIRQ output and the level 6 input to the interrupt priority encoder. Inputs on channels 1, 2, 3, or 4 set the corresponding Flip-Flop to cause
a level 5, 4, 3, or 2 interrupt request; resetting is done by the appropriate interrupt service routine via the H4 and 3 port C lines used as outputs. Four other port C lines
are used to signal the identification of a spike waveform.

€9



64

levels of interrupt with different priority. The
highest, non-maskable interrupt (level 7) is
activated by the 50 KHz clock; switches select
between internal and external clock input. Inde-
pendently, it is possible to connect one of the two
sources to the clock output. These features pro-
vide maximum flexibility in creating synchronized
configurations of multiple spike sorter systems.
Upon a level 7 interrupt, the CPU increments the
32-bit time counter by 2 and loads a new 10-bit
A/D value from the MC68230 into the next 2
bytes of a 64 kbyte ringbuffer (the procedure of
incrementing the time counter in steps of 2 en-
ables us to use this time counter also as address
pointer for the 64 kbyte ringbuffer, with the ad-
dress being determined on the basis of the least
significant 16 bits of the time counter); this A /D
value was latched from the A/D converter into
the MC68230 by the interrupt signal about 6 ps
earlier. The same signal instructs the ‘sample and
hold’ circuit to freeze the momentary signal value
and initiates a new conversion cycle in the A/D
converter (cf. Fig. 2). The level 6 interrupt is
activated by the trigger signaling the detection of
a spike; time of occurrence and position of the
waveform samples in the above-mentioned ring-
buffer are stored into a second ringbuffer. The
level 2, 3, 4 and 5 interrupts can be activated by
low-to-high transitions at 4 additional digital in-
put channels; the CPU then writes a specific 6-byte
datum (containing channel number and time of
occurrence) to the output stream, the third ring-
buffer in the system. These additional 4 inputs can
be used to signal other events from the experi-
ment, e.g. a stimulus trigger or an animal’s behav-
ioral action. A level 1 interrupt is activated when
the RS232 interface receives a command byte from
the host; the CPU enters the command interpreta-
tion routine and checks whether the received byte
is a valid command. If not, the ascii-character
‘nak’ is sent to the host; on a valid command the
CPU branches to the appropriate command
routine. This routine, if necessary, first waits for
additional information, then sends an ‘ack’-char-
acter to inform the host that the command (and
possibly necessary data) have been received and
that the command will be executed. Some com-
mands, e.g. the command to perform real-time

classification, allow level 1 interrupts; most others,
which have a rather short execution time, do not.
With no current interrupt, the system is at level 0.
Possible commands (level 1 interrupts) are: send
an ‘ack’ character, read board number, acquire
learning set with a user-specified number of spikes
and send the reduced learning set (together with
the reduced feature set for diagnostic purposes) to
the host, reset the time counter, read a new tem-
plate set, read distance threshold, start real-time
spike sorting, and stop current process.

Real-time sorting

The flow of the actual real-time spike sorting
routine is illustrated in Fig. 3. When sorting is
started, all interrupt levels are enabled. The sys-
tem enters a loop, at the start of which the CPU
first searches the third ringbuffer for data to be
sent to the host. If data are available and the
MC68681 is ready to send, one byte is trans-
mitted. Then, the second ringbuffer is tested for
its contents. When a spike marker is found, the
CPU tests whether all corresponding data are
available in the first ringbuffer. If not, the CPU
returns to the start of the loop; if all necessary
data are available, the CPU identifies the spike as
described above. If the euclidean distance to the
nearest cluster center is larger than the threshold,
the spike is assigned the number 0 (‘not classified’);
if not, it is assigned the number of the nearest
template. This spike id, together with the time of
occurrence, is written to the third ringbuffer. In
addition, for spike classes 1-4, a short pulse is set
at the corresponding digital output line; further-
more the D /A converter is set to 0.5 V times the
spike id and this voltage is subtracted from the
output of the 2.56 ms delay line. The resulting
analog output can be used to display the delayed
spike waveforms on a storage oscilloscope,
arranged according to their classification; this fea-
ture allows for continuous quality control of the
sorting process.

Data format

Data for an event transmitted by the spike
sorter to the host consist of 6 bytes in the follow-
ing format: byte 1 contains the board number;
byte 2 contains either in its lower 4 bits the spike



65

Event Types Interrupts and Actions taken Separation Loop

Level 1 Interrupt

i Read Command Byte and

Start Command Interpreter

Are there Data
in Ringbuffer 3
?

Level 2-5 Interrupt

Event from Write Event-ID
A — — —
Experiment and Event Time
to Ringbuffer 3 Try to Send A

Byte to Host

!

A
—
[
Lz}
C
@
£
3
a
Bo
£
3
\
—\
—

]
>
L
-
> 7
g [
a
0
15 ~
E Level 6 Interrupt 5 Is
g Spike Event — Save Spike Time and - E — Spike indicated
£ Pointer to Waveform 8 in Ringbuffer 2
into Ringbuffer 2 x ?
1\
e\
—_—
e
(7]
[ ]
Level 7 Interrupt - Is
=
Master Clock Take new value from ADC s Complete Waveform
50 kHz and store in Ringbuffer 1 o in Ringbuffer 1
5
increment Time Counter = ?
1
A\
—\

Compute Euclidian Distance
to all Templates

Select Smallest Distance
and Test against Threshold

Write Spike ID and Time
to Ringbuffer 3

Set Spike Indicator Pulse
and D/A Value

[

Fig. 3. Flow chart of the real-time spike sorting routine, handling the different events (spikes, triggers from the experiment, host
commands), signalled to it by the interrupt service routines.

id or in its upper 4 bits the id of the activated 3-6 contain time, with byte 3 being the most
digital input channels (id 1-4, where 1 corre- significant byte.
sponds to interrupt level 5, 4 to level 2); and bytes Events are stored by the host into a disk file,



66

consisting of records which describe type and tim-
ing of the events; full-time resolution of 20 ps is
conserved. A record consists of 2 integers, fol-
lowed by 4 bytes. In case of a spike, the first
integer gives spike id; in case of an activated
digital input channel (e.g. a stimulus onset), the
second integer gives input id. In each case the
remaining integer is set to zero. The 4 bytes code
time of occurrence, with byte 1 being the most
significant and byte 4 the least significant part.

Performance and Limitations

Performance and limitations of the spike sorter
algorithm, implemented on a PDP-11/02, were
described in detail elsewhere (Sarna et al., 1988).
The authors compared the present algorithm to
the commonly used amplitude—time window de-
vice and a principal components device (Abeles
and Goldstein, 1977; Eggermont et al, 1983).
From their evaluation we quote: “We conclude
that the simple amplitude—time window device is
least able to cope with multineuron data. Such
devices mix and miss waveform classes to a com-
pletely unacceptable extent, given the fact that
alternative devices do exist.... When contrasted
with a principal components sorting device, the
new device turns out to be approximately equal in
the accuracy, although requiring far less complex
and expensive hardware for its realization, and far
less “tuning’ by the operator”.

Event rates

An obvious limitation of the spike sorter, and
one which it shares with most other sorter proce-
dures (including the ones mentioned above), is
that the system is not designed to classify overlap-
ping spikes on the same microelectrode (coinci-
dent spikes on different electrodes are obviously
no problem). This evidently puts an absolute up-
per limit to the attainable maximum event rates.
On the output side, maximum event rates are
further limited by the speed of communication
from single board system(s) to the host.

The system is able to recognize a trigger event,
marking the occurrence of a spike, in a time much
below the actual duration of the spike waveform.

From this point of view, it is no problem to detect
spikes which follow each other very rapidly, until
they start to overlap, where classification becomes
impossible. The time required for classification
grows with the number of classes present, and is
for 4 classes approximately 0.65 ms per spike.
When spikes enter at intervals below this value,
the CPU will still be concerned with classification
of the preceding one(s). It is important to note,
however, that classification of a spike need not
necessarily be immediately after its occurrence:
since the first ringbuffer has a capacity of 32,768
values (i.e. over 650 ms at 50 kHz), more than 650
ms are available before classification is due. All
this implies that on the input side, maximum
event rates are basically not limited by the dura-
tion of the classification process.

On the output side, event rates are limited by
the baudrate of the RS232-interface and the size
of the output queue (third ringbuffer). In the
present version, the RS232 operates at 9600 baud;
consequently it takes about 7 ms to transmit the 6
bytes defining an event and, hence, the capacity of
the RS232 line is 142 spikes/s. This, however, is a
continuous rate; since the sorter board is able to
store data of 6144 classified events in its output
cue, bursts at much higher rates can be accom-
modated and problems will only arise if the event
rate exceeds 142 spikes/s over long periods of
time. In addition, by changing one line in the
single-board system’s source code, the RS232’s
baudrate can be raised to 19,200 or 38,400, thereby
doubling or even quadrupling the maximum con-
tinuous spike rate.

To summarnize, when asking for the highest
spike rate each single spike sorter system can
handle, one should distinguish between the maxi-
mal long-term average spike rate and the maximal
rate that may occur during a burst of spikes. The
long-term average spike rate for each individual
sorter is limited by the serial port capacity to a
maximum of 142 spikes/s at 9600 baud, 284 at
19,200 baud, or 568 at 38,400 baud. Maximal
spike rates during bursts may be very much higher,
however, they are basically only limited by the
requirement of having non-overlapping spike
waveforms. In practice, this would allow for burst
rates of over 1000 spikes/s.



Finally, the host computer, with a typical AT-
like processing speed, should not pose any limita-
tions on maximally attainable event rates for up to
8 spike sorters in parallel, communicating through
as many RS232 interfaces (assuming that during
data acquisition the user is suitably modest in his
demands regarding on-line data analysis).

‘Diagnostic’ display

The diagnostic display of spike waveforms on
the oscilloscope at a level corresponding to their
classification has one limitation. Whenever two
spikes occur within the time interval it takes for
the oscilloscope beam to finish a sweep across the
screen, the first waveform will be displayed cor-
rectly, 1.e. superimposed on the other ones of its
class; the second one, however, will be displayed
within the same sweep, i.e. shifted to the right and
not necessarily at the appropriate level. Note that
this limitation, only refers to the oscilloscope dis-
play; in particular it does not affect proper classi-
fication of the second waveform by the spike
sorter itself.

In view of the fact that classification is not
always performed immediately upon arrival of the
spike, another limitation of the proper oscillo-
scope display of spike waveforms would seem to
reside in the finite time span of the analog delay
line (2.56 ms). However, given the short time it
takes to classify a spike (typically 0.65 ms, see
above), problems would only occur when spike
intervals become so short that waveforms start to
overlap anyway, in which case the compound event
is marked by the spike sorter as ‘unclassified’, as
is indeed (and correctly) shown on the oscillo-
scope display.

Discussion

In the present paper we have described an
efficient and low-cost implementation of a re-
cently proposed algorithm for unsupervised, real-
time sorting of multineuron recordings. As shown
before (Sarna et al., 1988), the performance of this
type of sorter is clearly much better than that of
the usual time—amplitude window discriminators

67

and certainly comparable to that of the most
advanced type of spike sorters, the principal com-
ponents sorter. The major advantage of our sorter
above the principal components machine is two-
fold: (1) its minimal need for user intervention;
and (2) its considerably lower price, due to the
combination of low-cost single-board micro-
processors and widespread pc technology. These
advantages, combined with the fact that a single
host computer can handle a number of sorters
simultaneously, lead to a further advantage above
current spike sorting techniques. It enables the
experimenter to combine the two major types of
multi-unit recording in a single set-up at a feasible
price: recording with multiple electrodes, each
electrode being serviced by its own spike sorter
system. This allows one to investigate short-range
and long-range interactions within groups of neu-
rons simultaneously on a larger scale than hitherto
possible.

Our implementation of the actual classification
of a spike waveform uses the computation of
distance in 8-space to assign a given spike to one
of the different templates. Salganicoff et al. (1988)
mentioned as a possible improvement to incorpo-
rate the actual size and shape of the clusters of
waveforms in the 8-space into this distance mea-
sure. This would indeed be an improvement if the
noise on the spike waveforms were such that the
space filled by one or more of the spike classes
deviates significantly from a hypersphere and/or
if the radii of these hyperspheres were to differ
appreciably. The usual assumption is that this
noise is additive and uncorrelated to the spike
waveform. Such noise, however, would tend to
extend a cluster equally in all dimensions, i.e. it
would indeed result in a hypersphere. Moreover,
such noise would cause all hyperspheres to be of
approximately equal size. In other words, the
straightforward distance criterion used in our im-
plementation is in fact the logical consequence of
the assumption of additive, uncorrelated noise. It
is only for the cases of other types of noise (e.g.
multiplicative) that a modified criterion, incorpo-
rating the actual cluster shape and size would
improve classification. Such a case arises, for in-
stance, when during a spike burst the size of a
neuron’s action potentials decreases systemati-



68

cally. Certainly the design of our sorter would
allow for such modification fairly easily.

Like all other current spike sorters, the present
one is not able to separate spikes that overlap in
time. Should such overlap occur in a systematic
fashion (i.e. with an approximately constant de-
lay), then these spike configurations would show
up as a separate class of spike waveforms, pro-
vided they occur often enough to be adequately
represented in the learning set. Much more likely,
however, is that such overlap shows variable de-
lay, and thus does not lead to a separate category,
but rather to a ‘halo’ of individual occurrences. In
the sorting phase such multispike configurations
would be usually so different from each of the
templates that they would tend to be sorted as
non-classifiable waveforms. Summarizing, the
above arguments suggest that the issue of separat-
ing overlapping waveforms, although admittedly
not addressed by the current spike sorter, is not
the most severe problem in multiunit recordings.

Possible improvements

From a technical point of view, the present
spike sorter is a software-based system, and an
enormous amount of the sorter processor’s power
is used to continuously sample the analog data
stream. This job could be done equally well by a
‘direct memory access’ (DMA) device. Freed of
this sampling task, the processor would need only
a fraction of the time for the remaining tasks.
This, in turn, implies that a single processor could
easily handle more than one analog data stream
and thus support multielectrode arrangements. A
further enhancement could be achieved by using
discontinuous, rather than continuous sampling:
upon each occurrence of a spike a short DMA
transfer should be initiated, its duration covering
only the time interval needed to describe the spike
waveform. This would require the means for de-
laying the analog signal by a few hundred mi-
croseconds to include the rising flank of the action
potential. Clearly such measures would increase
the expense of hardware somewhat, but more im-
portant, they would further improve the cost—be-
nefit relation. Especially for large-scale multielec-
trode arrangements, currently already incorporat-
ing tens of electrodes (e.g. Kriiger, 1981) such

methods seem to be mandatory in order to avoid
an instrumental explosion with tens of sorters
(possibly with multiple hosts) in a single experi-
mental set-up.

Our realization of the real-time spike sorter
does not include the actual detection of a spike,
but rather uses an external trigger from a spike
detector device, and sets the times of sampling
relative to that input. Usually such a device is
available in the standard electrophysiological
laboratory, and is based on simple crossing of a
selected amplitude value. This method is unfor-
tunately subject to baseline error due to noise,
which then in turn affects the location of samples
on the waveform. Clearly, this jitter of spike posi-
tion relative to the samples degrades the feature
set and, hence, the template set and classification
performance.

These problems associated with time jitter of
the spike detection could be counteracted in the
learning phase as well as in the sorting phase, but
preferably in both. In the sorting phase one could
try to find a more optimal alignment of each new
incoming spike waveform with each of the tem-
plates by shifting it over a few time steps in both
directions and trying to optimize the fit. This
would basically multiply the time needed for clas-
sification (0.65 ms in the case of 4 classes) by the
number of shifts considered. Since the time needed
for classification proved not to limit the maximum
allowable spike rate, such modification would be
easily tolerable. This, however, does not address
the more fundamental problem that the templates
themselves may be degraded by the time jitter of
spike detection. A possible approach to improve
the templates during the learning phase might be
to proceed as follows: after defining the different
classes of spike waveforms and calculation of the
templates, all spikes of each class could be shifted
in time to obtain optimal fit with the correspond-
ing template. After this alignment, one could either
simply calculate new templates by averaging the
newly aligned spikes within each class, or, alterna-
tively, first determine an improved reduced fea-
ture set over all newly aligned spikes in the learn-
ing set and only then calculate new templates.
Here too this would be done by averaging the
newly aligned spikes within each class, now, how-



ever, at the new feature positions. This procedure
could be reiterated until some criterion (e.g. on
successive changes of the template) is met. Neither
of these alternatives would involve any recluster-
ing; consequently host intervention would not be
required and the whole process could be carried
out by the single-board computer.

An important issue during the learning phase is
finding the appropriate distribution of reduced
feature positions over the spike waveforms. These
positions are selected successively on the basis of
the corresponding variances, weighted by a func-
tion of the distances to already selected points in
order to prevent undesired clustering of feature
positions. The optimal function for weighting these
distances might differ depending on various signal
characteristics (e.g. noise level, waveform types),
possibly related to recording area and /or animal
species. Different choices of weight functions were
in fact mentioned by Salganicoff et al.. (1988).
However, they also suggested, after trying a num-
ber of alternatives, that the actual choice of the
weight function should not be too critical: “Al-
though no systematic tests and comparisons were
made, it is likely that satisfactory performance can
be obtained with a range of procedures.” In our
realization we implemented the square root of the
distance as weight function: we provided the 63
necessary function values explicitly in the form of
a table, for reasons of computation speed. In
order to enable the experimenter to choose be-
tween different weight functions, one could imple-
ment the option to download this table from the
host computer, which could easily generate a table
for each desired function. This option would cer-
tainly increase flexibility of the system with re-
spect to optimal feature selection.

What about miracles?

Finally, we want to give a very strong warning.
A spike sorter is a machine to separate spikes on
the basis of their waveform. This could in princi-
ple be done by a human being. One should bear in
mind that, when the spike signals are so noisy that
many of one’s careful sorting decisions are turned

69

into nonsense, the spike sorter will generate the
same nonsense, only at a considerably higher rate.

Acknowledgements

The realization of the real-time spike sorter was
carried out at the Max-Planck-Institute for Bio-
logical Cybernetics, Tiibingen, F.R.G.; it was ini-
tiated during a sabbatical stay of one of the authors
(G.L.G.) at this Institute. We wish to thank
Michael Erb for helpful discussions regarding the
design, Claudia Martin-Schubert for skilful assis-
tance in the preparation of the figures, and Shirley
Wiirth for correcting the English.

References

Abeles, M. and Goldstein Jr., M.H. (1977) Multispike train
analysis, Proc. IEEE, 65: 762-773.

Eggermont, J.J., Epping, W.J.M. and Aertsen, A.M.H.J. (1983)
Stimulus dependent neural correlations in the auditory
midbrain of the grassfrog (Rana temporaria L.), Biol.
Cybern., 47: 103-117.

Gerstein, G., Bloom, M., Espinosa, 1., Evanczuk, S. and Turner,
M. (1983) Design of a laboratory for multi-neuron studies,
IEEE Trans. Syst. Man Cybern. SMS-13: 668-676.

Hartigan, J.A. (1975) Clustering Algorithms, Wiley, New York.

Kriiger, J. (1981) Simultaneous recording with 30 microelec-
trodes in monkey visual cortex, Exp. Brain Res., 41:
191-194.

Kriiger, J. (1983) Simultaneous individual recordings from
many cerebral neurons: techniques and results, Rev. Phys-
iol. Biochem. Pharmacol., 98: 177-233.

Salganicoff, M., Sarna, M., Sax, L. and Gerstein, G.L. (1988)
Unsupervised waveform classification for multi-neuron re-
cordings: a real-time, software-based system. 1. Algorithms
and implementation, J. Neurosci. Methods, 25: 181-187.

Sammon Jr., JW. (1969) A nonlinear mapping for data struc-
ture analysis, IEEE Trans. Comput. C-18: 401-409.

Sarna, M.F., Gochin, P., Kaltenbach, J., Salganicoff, M. and
Gerstein, G.L. (1988) Unsupervised waveform classification
for multi-neuron recordings: a real-time, software-based
system. II. Performance comparison to other sorters, J.
Neurosci. Methods 25: 189-196.

Schmidt, E.M. (1984a) Instruments for sorting neuroelectric
data: a review, J. Neurosci. Methods 12: 1-24.

Schmidt, E.M. (1984b) Computer separation of multi-unit neu-
roelectric data: a review, J. Neurosci. Methods, 12: 95-111.



