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Abstract—This paper examines the concept of neuronal assembly as
it has appeared in selected portions of the literature. The context is
experimental access to real neuronal assemblies in working brains, as
made possible by recent technological progress. One current measure
of assembly organization is based on correlation of firing among neu-
rons; recent observations show that such correlations can vary rapidly.
In this paper, we demonstrate that dynamic firing correlation can be
caused either by dynamic changes in neuronal connection strengths or,
alternatively, by the effects of an unobserved (large) pool of other neu-
rons. The static connectivity within the pool appears to be important
in determining these effects.

INTRODUCTION

T is probably fair to say that the bulk of our knowledge

about the nervous system is on the level of single neu-
rons and their molecular and membrane mechanisms. Over
the last 35 years much has been learned about firing pat-
terns of single neurons in various parts of the nervous sys-
tem under a variety of stimulus and behavioral conditions.
More recently, a large body of work on receptors, chan-
nels, and modulators has served to explain and to empha-
size the importance of endogenous properties of individ-
ual neurons. In addition, anatomical studies with modern
tracer methods have provided a great deal of information
about gross connectivity between different nuclei and
brain regions. In vertebrate nervous systems, however,
detailed local anatomical connectivity has only been
worked out in a few structures like cerebellum.

Long before emergence of all the current complexities
of single neuron anatomy and physiology, it was recog-
nized that the computational processes constantly carried
out by the nervous system could not be explained by the
properties of single neurons alone. Sherrington, in the
1930’s, verbalized the idea that neurons must cooperate
in fulfilling a complex task. This concept has been com-
pletely assimilated into neurobiological thought and ex-
planation, but only in the most general way. Experimental
access to the properties of real neuronal assemblies has
largely been impossible until quite recently. Thus, the de-
velopment of the assembly concept has been somewhat
unfettered. It is the purpose of this paper to examine and
compare the various suggested concepts of neuronal as-
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sembly, and to address the problems of experimental ver-
ification.

CONCEPTUAL MODELS OF ASSEMBLIES
A. Motor Pools

Sherrington [10] suggested that the motor neurons serv-
ing a particular muscle form a pool of potentially active
cells, and that there would be appropriate recruitment of
neurons within this pool as the excitatory input (presum-
ably from various sources) increased. The detailed distri-
bution of such input, or of its effects, was assumed to
differ across the motor pool, so as to ‘‘fractionate’’ the
motor neuron population into a ‘‘discharge zone’’ of fir-
ing cells and a ‘“‘subliminal fringe’’ of cells that were not
sufficiently excited to fire. Inputs which excited (spa-
tially) overlapping populations of neurons would be able
to interfere or add nonlinearly. Thus, ‘‘occlusion’’ of dis-
charge would result from two inputs that caused overlap-
ping discharge zones, producing a combined output that
is smaller than the sum of the separate outputs. Similarly,
“‘facilitation’’ of discharge would result from two inputs
which caused overlapping subliminal fringes, producing
a combined output that is larger than the sum of the sep-
arate outputs.

The accuracy of this conceptual model was tested by
Lloyd [36], [37] with experiments in which two dissected
dorsal root twigs were stimulated separately or simulta-
neously at various strengths. The resulting discharge was
observed as a slightly delayed potential on the corre-
sponding ventral root. Under the assumption that ampli-
tude of this ventral root potential was proportional to the
number of neurons in the motor pool that were brought to
discharge, Lloyd showed all the phenomena that Sher-
rington had proposed.

For our present purposes, we note that the neurons
forming or having membership in a motor pool are de-
fined exclusively through commonality of output projec-
tion (i.e., to a particular muscle). There is also an implied
nonuniform distribution of the input effects. There is no
requirement for connections or interactions among the
member neurons in the pool, although these are of course
present [38]. For an illuminative example of assembly
coding in the context of the motor system, we refer the
reader to the recent literature on coding of saccadic eye
movements in the superior colliculus (e.g., model ori-
ented: Gisbergen et al. [22]; experiment oriented: Lee et
al. [35]).

0018-9294/89/0100-0004$01.00 © 1989 IEEE



GERSTEIN e al.: NEURONAL ASSEMBLIES

B. Hebbian Assemblies

In 1949, in his seminal book The Organization of Be-
havior, Hebb [28] introduced the concept of the cell as-
sembly and postulated mechanisms of both perception and
learning: “‘It is proposed first that a repeated stimulation
of specific receptors will lead slowly to the formation of
an ‘assembly’ of association-area cells which can act
briefly as a closed system after stimulation has ceased.;
this prolongs the time during which the structural changes
of learning can occur and constitutes the simplest instance
of a representative process (image or idea)’’ [28, ch. 4].
The changes mentioned here refer to ‘‘the structural
change at the synapse which has been assumed to take
place in learning. . .The general idea is an old one, that
any two cells or systems of cells that are repeatedly active
at the same time will tend to become ‘associated,’ so that
activity in one facilitates activity in the other.”” This
‘‘neurophysiological postulate’” later came to be known
as ‘“Hebb’s rule’’; similar formulations, however, can al-
ready be found in McCulloch and Pitts [40].

Regarding the formation of the cell assembly, Hebb
stresses the statistical nature of both the timing of impul-
ses and the connections to be enhanced, and how ‘‘in a
larger system a statistical constancy might be quite pre-
dictable’’; on anatomical considerations Braitenberg [5],
[7] observes that the cerebral cortex contains all the nec-
essary equipment and therefore would seem a good place
for cell assemblies.

An important property of the Hebbian cell assembly in
view of what is known about human perception, pattern
recognition, and the like, is the capacity for ‘‘pattern
completion’’: because of the strengthened connectivity,
excitation of only part of the assembly will result in an
“‘ignition’’ of the entire assembly [5]. The cell assembly,
as a postulated cooperative group of neurons, formed by
learning and sustained by later use, thus presents an al-
ternative to the hierarchically organized scheme of the
‘‘cardinal’’ neuron [4]. In order to describe the temporal
sequences of assembly activity involved in perception,
Hebb introduces the ‘‘phase sequence’’; this point was
further developed by Braitenberg [5] in the form of a
threshold control mechanism, which in its dynamic effects
might be called a ‘‘pump of thoughts.”’

The notions of cell assemblies and modifiable synapses
were later formalized (9], [8], [44], [39] and recently led
to an outburst of theoretical work on neuronal networks
with learning properties. In this context, it is interesting
to note that many contemporary workers make a distinc-
tion between the Hebb rule and a ‘‘teacher’’ system [46].
However, in rereading the original books [28], {29] we
noted that these two concepts were very much intermixed.
In fact, every illustration that Hebb gives involves a con-
vergence of synapses (so as to make the postsynaptic cell
fire), although he did not explicitly separate the pupil and
teacher synapse.

It should be stressed that both cell assembly and the
modifiable synapse were introduced on theoretical
grounds. Over the years. indirect evidence had accumu-

lated regarding the actual presence of Hebbian synapses
in the brain. Only recently, however, has there been a
direct demonstration of a Hebbian-type modifiable syn-
apse in hippocampus slices {27] and (Bonhoeffer et al. in
preparation).

C. Cortical Columns

13

The notion of the ‘‘cortical column’’ as a basic func-
tional module of the neocortex was introduced by Mount-
castle [42] on the basis of physiological experiments in
the cat’s somatic sensory cortex. He observed that the
(static) receptive field properties (RF location on body
surface and modality, i.e., nature of adequate driving
stimulus) of single neurons were distributed over the cor-
tex in a most characteristic fashion: the cortex appeared
to be organized in vertical columns, running through all
six cortical layers, such that neurons in a column share
the same receptive field properties. Each local column is
thus specified by RF location and modality; rows of col-
umns (or slabs) with the same RF location and those with
the same modality specification are arranged in more or
less orthogonal fashion. Comparable observations were
made for the visual cortex ([31]; reviewed [32]): in area
17 there is an orderly map of visual space onto the cortical
surface; within this map there appears to be a segregation
into a columnar system, with the columns characterized
by ocular dominance and by the orientation of the pre-
ferred bar stimulus. Within a single ocular dominance
column (width approximately 400 um), there is a gradual
progression of preferred bar orientation, with 1 mm dis-
placement along the cortex surface covering the full range
of 180° orientation shift (‘‘orientation hypercolumn’’).
There is evidence that auditory cortex is organized into
columns associated with sound frequency and localization
of the sound source in space [41], [33].

In a review of the columnar organization of the neo-
cortex, Mountcastle [43] discusses a number of general
characteristics, which for our current purposes we sum-
marize as follows: 1) the basic functional module for in-
put-output processing in cortex is the cortical column: a
vertically arranged group of cells, heavily interconnected
along the vertical axis, sparsely in horizontal directions
(however, see [21]); 2) the columnar system allows for
an orderly representation of several variables simulta-
neously in a 2-D map—the depth dimension is occupied
with the task of processing and distribution of inputs and
outputs; 3) the order parameters of the columnar organi-
zation vary with the particular cortex area, and are deter-
mined, on the one hand by the specific thalamo-cortical
input (e.g., ocularity), on the other hand (mainly) by in-
tracortical processing (e.g., orientation tuning); 4) or-
dered sets of columns in different cortical areas (as well
as modules in subcortical structures) are interconnected
specifically, thus allowing for preservation of topological
relations; 5) the columnar functional organization allows
for a partially-shifted overlap across a topographical rep-
resentation-dynamic isolation of the active elements of a
column is achieved by lateral, pericolumnar inhibition.



6 I[EEE TRANSACTIONS ON BIOMEDICAL ENGINEERING. VOL. 36, NO. 1, JANUARY 1989

Mountcastle [43] both further subdivides the column
into smaller subunits, the ‘‘minicolumns,’’ and groups
columns for different order parameters into larger entities,
the ‘‘macrocolumns.’” These levels of organization and
the above-mentioned horizontal interactions among col-
umns with the same cortical area are not undisputed, how-
ever [30], [6], [20]. Note that the functional columnar
organization scheme as sketched here is not trivially con-
nected to the modular architectonics of the neocortex as
described by Szentagothai [50], [51]. That module is a
honeycomb-like cortical structure with diameter around
300 pum, anatomically defined by the arborization of cor-
tico-cortical afferents rather than by the termination of
specific thalamo-cortical afferents.

D. Correlation of Firing

Suppose that we are able to observe simultaneously the
electrical activity of some number of neurons which are
embedded in a functioning nervous system—the multineu-
ron experiment. We may now define membership in an
assembly on the basis of correlated firing, i.e., whether
there are any preferred timing relationships between and
among the firings of the observed neurons. The simplest
such comparison we can make is of the relationship be-
tween two spike trains. The appropriate tool is cross cor-
relation, which is a measure of delayed coincidences be-
tween spikes in the two trains. If the correlogram is flat,
then no values of delayed coincidence are favored. This
uniform level of correlation corresponds to the null hy-
pothesis of independent neuron firing; its value can be
simply calculated from the two firing rates, the observa-
tion interval and the bin width used in the correlogram.
When peaks or valleys appear in the correlogram, there
are favored values of delayed coincidence, and we may
infer some relationship between the two neurons. Note
that the cross-correlation measurement is an average state-
ment over the entire piece of data being analyzed. Such
averaging is necessitated by the stochastic and variable
nature of neuronal firings.

Preferred values of delayed coincidence are potentially
important to the operations of the brain. If two neurons
converge synaptically upon a third, the probability that
the postsynaptic neuron will fire will be much higher for
near coincident, rather than individual, input spikes.
Temporal summation in a dendrite is the likely underlying
mechanism, i.e., an endogenous property of the single
neuron. Thus, many neurons are effective detectors of
(slightly) delayed coincidence of input, making available
a powerful mechanism for computation and coding.

For the experimenter, however, the measurement of
correlation among spike trains can be used to abstract the
logical relationships between the observed neurons. By
appropriate manipulations and control calculations we
may parse the observed ‘‘raw’’ correlogram into contri-
butjons caused by direct stimulus effects on the two neu-
rons and contributions caused by neural interactions. The
latter can, on the basis of peak width and timing, usually
be parsed into contributions from reasonably direct con-

nection between two neurons (possibly mono- and/or
polysynaptic) and contributions from shared input that
originates in an unobserved, but not stimulus related
source. The final result of all this massage is a highly
simplified block diagram—the ‘effective connectivity.”’
We stress that this is an abstraction: it is the simplest neu-
ron-like circuit that would produce an equivalent cor-
relogram. In particular, the ‘‘effective connectivity’’ may
be only a subset of the actual anatomical connectivity
since it deals only with connections and relations that are
active during the time of measurement. It is useful to de-
scribe the ‘‘effective connectivity’’ with a connectivity
matrix W of ‘‘effective’” synaptic weights. Matrix ele-
ment Wij would represent the ‘‘effective’” influence ex-
erted by neuron i on neuron j. Note that for real brains,
in contrast to most physically oriented models (e.g., spin-
glasses) the connectivity matrix W is in general not sym-
metric. In subsequent portions of this paper we will no
longer use the double quote around effective connectivity;
the meaning, however, is intended to be explicitly as
above.

An excellent review of the mathematics and procedures
surrounding such uses of cross correlation can be found
in the book by Glaser and Ruchkin [23], along with many
references to the original literature.

In developing and using such procedures over the years,
our laboratory has shown that correlated firing of simul-
taneously recorded neurons can indeed be clearly dem-
onstrated in a number of tissues, and that various inter-
esting effective connectivities may be inferred [49], [11],
[12]. A number of other laboratories have made similar
observations; reviews can be found in Abeles [1], Ger-
stein et al. [17], and Kruger [34].

Thus, cooperativity of neuron firing is a readily dem-
onstrated phenomenon, and can be used as a defining in-
dicator of neural assemblies and assembly processes.

E. Other Definitions of Assembly

We obviously do not intend to give an exhaustive list-
ing here. However, two additional approaches are impor-
tant. :

1) Palm [44] has written a book concerned with some
of the mathematics of neuronal assemblies. His definition
is largely in accord with that of Hebb, except that it is
applied most particularly to circuit arrangements for as-
sociative memory. Such assemblies are characterized by
heavy feedback upon themselves, and are able to learn,
store, and differentiate a large number of input stimuli in
a particularly efficient manner.

2) Shaw [47], [48] proposed to examine neuronal as-
semblies using the idea of ergodicity. Consider the firing
pattern of a single neuron in response to some repeated
short stimulus. Even though the stimulus is constant for
each repetition, the response of the neuron will vary
widely, presumably because of the stochastic properties
of neuron firing. The usual solution to this variability has
been to compute the PST (peri-stimulus-time) histogram,
an average measure of the firing probability relative to the
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instant(s) of stimulus presentation. In order to attain a PST
histogram that is reasonably smooth, it may often be nec-
essary to average over some 30-50 (or more) repeated
stimulus presentations. Now, it is perfectly obvious that
the organism owning the neurons does not require 50 rep-
etitions of the stimulus in order to detect and perhaps react
in some appropriate way; a single presentation is usually
enough. Since the requisite information is not present in
the firing of a single neuron during the single stimulus
presentation, we must assume that ergodicity holds: there
should be a neural assembly whose summed firing for a
single stimulus carries the same information as does the
PST histogram of a single neuron after many stimulus
presentations.

Using this idea, Shaw considers the PST histogram of
a single neuron’s response firing to be the indirect mea-
sure of an assembly response. As a further step, he then
makes cross correlations between different (more or less
simultaneously) measured PST histograms (Shaw er al.,
in preparation). Features in such correlograms are inter-
preted as interassembly processes.

COMPARISONS

The several views of neuronal assemblies sketched out
above have originated over a period of 50 years. Yet they
share a number of properties.

Both neuron pools and cortical columns emerged di-
rectly from experimental observation. In both, member-
ship in the assembly is based on commonality of individ-
ual neuron properties. In the case of the motor pool it is
a shared output purpose: all the neurons that can contrib-
ute to the activity of a single muscle. In the case of the
cortical column it is a shared response property: all the
neurons that respond to a particular stimulus parameter
specification. Neither concept of assembly directly ad-
dresses possible interactions among the members of the
assembly; rather, the neurons involved are treated as
strictly parallel in their functions.

Both the Hebbian and correlational concepts originated
theoretically, and were eventually validated by experi-
ment. In both, the primary defining property is interaction
of individual neurons. Coactivation of neurons is the di-
rect observable in both assembly concepts, and this, of
course, includes coactivation from shared stimulus re-
sponse properties as in cortical columns. But alternate
sources of coactivation (i.e., nonstimulus shared input or
direct (synaptic) interaction) do exist, so that these con-
cepts of assembly go far beyond cortical columns. Exper-
imental access to assembly properties through measure-
ment of neuronal coactivation or firing correlation
necessarily requires parallel rather than serial observation
of the neuron population. This has only become possible
in the relatively recent past after a great deal of techno-
logical development [17], and is carried on in relatively
few laboratories.

The ergodic model of assembly makes no direct as-
sumptions and allows no inference about interactions
among the member neurons. The PST histogram of one

neuron is set equal to a population response and the as-
sembly is considered to move between active and inactive
stable states [48]. There is no specification of how this
population response is produced or how it is assesssed in
the nervous system, however.

It should be obvious that the several conceptual models
of neuronal assemblies overlap only partially in what they
address. Considerable further exploration is needed to al-
low conversion between the models.

CONCEPTS OF ASSEMBLY DYNAMICS

In all the above, we have considered basically static or
only slowly varying assemblies. A considerable body of
work exists for slow modification of cortical columns by
developmental manipulations like deprivation. Spatial ex-
tent (relative size) of columns can be profoundly affected,
as well as some of the response properties of the individ-
ual neurons. On a similar time scale, the Hebbian assem-
bly first comes into being through its training period, the
initial stimulations or experiences that mold the internal
connectivity. In terms of the correlation model of assem-
bly, we would therefore expect to see only constant effec-
tive connectivity in a mature assembly. The matrix of ef-
fective synaptic weights Wij should be constant on time
scales of (approximately) minutes to hours.

Such a static picture of assembly organization is intui-
tively unsatisfactory, given the rapidity with which the
nervous system deals with its constantly varying environ-
ment. How could we determine experimentally whether
assembly organization is really so static, or whether there
are rapid changes in reaction to varying context or pur-
pose?

The correlation concept of assembly, together with the
implicit requirement for simultaneous observation of many
neurons can be used to examine dynamics of assembly
organization. However, new, additional analytic tools are
required. Since we remain faced by the stochastic or noisy
characteristics of neuron firing, average measures remain
inevitable, but it is possible to divide the data periods over
which the averages are taken in order to get at dynamics
that are temporally related to stimulus presentation. Two
relevant tools that we have recently developed are de-
scribed briefly here.

TooLs FOR DETECTION OF ASSEMBLY DYNAMICS

Tool 1: The gravity transformation. The basic difficulty
in using cross-correlation measures to examine assembly
properties among some number of observed neurons is
purely combinatorial. Since the basic measurement is for
a pair of spike trains, there is an enormous proliferation
of correlograms to be examined should even a modest
number like ten neurons be simultaneously recorded [the
number grows as 0.5N(N — 1)]. The gravity tool is a
transformation that allows the entire group of neurons un-
der study to be evaluated for correlation of firing in a sin-
gle computation, rather than in a (large) set of pair com-
putations.

In the gravity transformation, each of the N neurons is
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represented by a particle in an N space; all particles are
initially equidistant. Each particle carries a charge which
is incremented by every firing of the corresponding neu-
ron, and then subsequently decays with an appropriate
time constant. The charge history of a particle thus looks
like a low-pass filtered version of the corresponding neu-
ron’s spike train. We now set operating rules that make
particles attract each other with a force proportional to the
product of their charges, and specify a viscous medium.
Then particles corresponding to neurons with appreciable
correlation of firing will move towards each other with a
velocity proportional to the degree of firing correlation.
Should there be more than one group of neurons showing
(separate) firing correlations, the particle system will con-
dense into a corresponding set of clusters. Particles cor-
responding to independently firing neurons will continue
to wander around the N space in a way reminiscent of
Brownian motion. As in the simple cross-correlation cal-
culation, part of the result, i.e., of the clustering, will be
caused by direct modulation of the individual neuron fir-
ing rates by the stimulus. Appropriate correction is pos-
sible, so that we can study the firing coordination that is
not directly caused by stimulus.

Thus, the original problem of temporal correlation
structure among N spike trains has been transformed into
a spatial clustering problem which is easily followed and
interpreted. Considerably more detailed descriptions of
the gravity transformation [19], [16] and modifications of
it [2] have been published. The computation is in use at
several laboratories, and its particularly effective in
screening blocks of data to identify those spike trains
which should be studied in more detail.

The gravity transformation is effective for examining
dynamics of the correlation structure at several time
scales. Within a particular condensation, which may cover
a period where the stimulus was presented many times,
there may be changes in aggregation speed of some clus-
ters. To the extent that this can be made significant com-
pared to statistical fluctuations, such changes of aggre-
gation speed correspond to changes in the underlying
neuronal interaction strengths.

At a somewhat different time scale, we may compare
condensations for two different stimulus conditions. The
best experimental design for this purpose would be to
present the two stimuli alternately and repeatedly or in a
pseudorandom order. The two stimulus conditions are thus
interleaved in a way which eliminates slow drift (of any-
thing) as a confounding factor in the analysis. The re-
corded data must be edited by ‘‘cutting and pasting’’ so
as to produce two continuous strips, each involving pre-
sentation of only one stimulus condition. The aggrega-
ticns and the speed with which they are attained in the
two condensations provide average measures that allow
comparison of the assembly organizations in the two stim-
ulus conditions. Although these are measures averaged
over many repeated presentations of stimulus, the inter-
leaved design means that any organizational changes that

are detected occur on a time scale of the interstimulus
time.

Tool 2: The joint PST histogram. We return our atten-
tion to a single pair of spike trains. Suppose these two
neurons correspond to clustering particles in the gravity
representation or that there is a significant peak in the cor-
relogram, i.e., evidence for one or more of the several
types of neuronal interaction that can be represented by
effective connectivity. Are the delayed coincidence events
that contributed to the correlation peak distributed ran-
domly in time? Or, in other words, is the effective con-
nectivity constant or varying? One approach to this class
of problem is to treat these particular delayed coincidence
events as just another spike train, and then to use the usual
tools of spike train analysis to examine the temporal struc-
ture of this higher order spike train [13], [18].

A related approach to the problem, particularly useful
to examine possible stimulus effects on the effective con-
nectivity is construction of the joint PST histogram. This
is a recently improved version of the old joint PST scatter
diagram [18], [3]. The basic construction is shown in Fig.
1. We cut the data at the beginning of each stimulus pre-
sentation, and then plot each of the two spike trains along
a cartesian axis, placing the time of stimulus at the origin.
On the plane we plot points at the locations corresponding
to the logical AND of the two spike train segments. This
operation is repeated for each stimulus presentation.

The points in the plane are now binned at some appro-
priate resolution. Bins falling along (near) the diagonal
correspond to near coincidental events in the two spike
trains, i.e., to events that are signatures of the several
forms of neuronal interaction. Bin counts for the diagonal
region [see Fig. 1(b)] represent the time locked average
for near coincidences in the same sense that the PST his-
togram represents the time locked average of the single
firings. We label these counts the PST Coincidence his-
togram, and present them as in the right portion of Fig. 4
along the diagonal. It can also be shown that summation
over each stripe of paradiagonal bins in the joint PST his-
togram, normalized for the number of bins in each sum,
gives the cross correlogram of the two spike trains. This
is plotted at the upper right of the right portion of Fig. 4.
In addition, for time reference, the ordinary PST histo-
grams for each spike train are presented at the left edge
and twice across the bottom of the display; all the relevant
time relationships are simultaneously open for inspection
and comparison.

As in ordinary cross correlation, the ‘‘raw’’ joint PST
histogram includes the effects of direct stimulus modula-
tion of the individual firing rates of the two neurons. We
have shown that an optimal correction for this factor is to
subtract the bin by bin product of the two PST histo-
grams, and then to divide by the bin by bin product of the
standard deviations of the two PST histograms [3], [45].
After this correction the residual correlation effects (direct
connection and shared nonstimulus input) are uncovered
and we can examine their stimulus-locked time course.

3
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N

(b)

Fig. 1. Joint peri-stimulus-time histogram. (a) Method of construction.
Time of occurrence of impulses from the two units relative to a stimulus
presentation are shown schematically on the bottom and left axes. The
contribution of each spike to its cell’s PST histogram is shown in the
rectangular boxes, and their joint contribution to the JPST histogram is
shown in the square box. A JPST histogram like that shown in Fig. 4
gradually emerges. (b) Diagonal region of JPST. Joint events that fall
into the boxed region occur at about the same time and are the ‘‘nearly
coincident’” events of the sort that would lead to a gravity condensation.
When the firing of the horizontal axis cell significantly precedes the fir-
ing of the vertical axis cell, the event falls into the upper left triangle.
Similarly, when the firing of the vertical axis cell significantly precedes
the firing of the horizontal axis cell the event falls into the lower right
triangle (modified from [3]).

Such a corrected JPST histogram corresponding to Fig. 4
is shown in Fig. 5.

MEASURED ASSEMBLY DYNAMICS

Using the above tools, we have examined various ap-
propriate simulations as well as a number of recordings
from real multineuron experiments. The simulations in-
volved several model neurons coupled by synapses that
either were constant in time or alternatively (in other
cases) were modulated in strength by the stimulus. In both
of these situations, the joint PST histogram procedure was
correctly able to recover the known effective connectivity
and its stimulus-time locked structure [3].

Real recordings, when examined with both the gravity
tool and with the joint PST histogram in some cases show
constant effective connectivity, while in other cases there
were dynamic changes. When they appear, the modula-
tions of effective connectivity seem to occur on two dif-
ferent time scales. The gravity tool as described above
gives a short-term moving average measure of the corre-
lation structure among the observed neurons over many
repeated presentations of the same stimulus; we interpret
this as a short-term moving average value of the effective
connectivity for the particular stimulus condition. The
gravity condensations for the same neurons under two dif-
ferent stimulus conditions are often different, suggesting
different effective connectivities. However, since the ex-
periments are run with alternate repeated presentation of
the two stimulus conditions, the assembly organization
must switch back and forth approximately every half sec-
ond, i.e., the stimulus presentation interval [14], [15].

Stimulus effects on the effective connectivity measured
by the joint PST histogram, when they occur, are on a
much shorter time scale, around tens of milliseconds [15],
[3], [24].

INTERPRETATIONS

Given that real neurons often show dynamic changes in
correlation structure in association with stimulus, we have
the problem of interpreting such changes in terms of as-
sembly organization. In the course of developing the
gravity and joint PST histogram tools, we used simulation
to verify that they could detect and quantify modulation
of connections if these had been included in the simula-
tion. Conversely, when connections were constant in those
simple simulations, the gravity and joint PST histogram
measured constant correlation and hence constant effec-
tive connectivity. Thus, one possible interpretation of
stimulus dependent correlation structure among real neu-
rons would be to suggest that the connections among the
neurons are changing their effective value: the Wij are dy-
namic. Although the Hebbian scheme for synaptic change
is too slow to explain such observations, mechanisms like
presynaptic inhibition have an adequately fast time scale.

A different possible level of interpretation of the cor-
relation dynamics is in the following analogy [15]. As-
sume that each stimulus sets up a disturbance in the neu-
ronal mass that spreads in the manner of ripples in a pond.
Different stimuli would correspond to ripples starting from
different locations. As these disturbances travel through,
they will cause correlated activity. After the corrections
for direct stimulus modulation of firing rates we would
still expect to find different residual correlation for differ-
ent stimuli because the disturbances have traveled some-
what different paths, so that particular connections are dif-
ferentially effective. It is possible that optical detection
methods [25], [26] could be used to further examine such
possibilities among large masses of neurons.

Recently, we have found another class of possible inter-
pretations of dynamic residual correlations, i.e., a new set
of mechanisms which can cause correlation dynamics
without explicitly invoking changes in synaptic effective-
ness.

We demonstrate this result by examining spike trains
from a simulation of 100 model neurons in a square array,
but with anisotropic connections so as to allow different
propagation paths for stimuli applied at different loca-
tions. Specifically, the simulation was organized to mimic
“‘synfire chains’’ [1] arranged to carry excitation from the
top toward the bottom of the neuron array. Each horizon-
tal row of neurons received input only from the row above,
and transmitted only to the row below. By means of ad-
ditional independent input, each neuron was set to a spon-
taneous firing rate of about five spikes per second. Stimuli
were applied either to the top row of neurons, or to the
leftmost column of neurons in the square array. The stim-
uli were 100 ms duration independent impulse trains
drawn from identical exponential interval distributions. A
total of 2499 stimuli were presented one every 400 ms.
During the stimulus the cells in the network fired at about
15 spikes/second.

The parameter of interest for the present purposes is the
probability of interrow connections, i.e., how many neu-
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Fig. 2. PST histograms of pre- and postsynaptic cells under two different
stimulus conditions. Top, stimulus presented to the top of the network;
bottom, stimulus presented to the side of the network. Left is presynaptic
and right is postsynaptic. See text for organization of the network.

rons in the row above feed a particular neuron. This quan-
tity can be termed the convergence.

The figures shown here are drawn from a simulation
with a high degree of convergence. Typical PST histo-
grams for two neurons near the bottom of the net are
shown in Fig. 2. The neurons have similar, but not iden-
tical PST histograms for a particular stimulus, and there
is a qualitative difference for the two stimuli: stimulation
at the top of the array produces a rapid rise with overshoot
in the time-locked firing probability, while stimulation at
the left edge of the array produces a much more gradual
rise and fall in the firing probability.

Corrected cross correlograms for the same two neurons
are shown in Fig. 3, including the two stimulus conditions
defined above as well as spontaneous activity. It is clear
that the three cross-correlogram peaks are quantitatively
different, the largest corresponding to the top stimulus,
the smallest to spontaneous activity. Thus, the residual
correlation is a function of the stimulus condition; we
would classify this situation as stimulus dependent effec-
tive connectivity, although the underlying synaptic con-
nectivity is known to be quite constant.

The raw joint PST histogram for the same data is shown
in Fig. 4. As expected, the raw PST coincidence histo-
gram (diagonal in the right part) shows a stimulus-locked
modulation, some of which can presumably be explained
by the individual PST histograms. The corresponding
normalized joint PST histogram is shown in Fig. 5. Note

that the normalized PST coincidence histogram still shows
a fairly strong stimulus-locked modulation. Again, we
would classify such findings as showing stimulus depen-
dent effective connectivity with constant synaptic connec-
tivity.

If, however, the convergence parameter in the simula-
tion is taken to be smaller, so that fewer neurons converge
onto a given neuron in the row below, the same group of
calculations show little effects of stimulus condition. We
do not show these results explicitly here, but summarize
them as follows. The PST histograms are very similar to
those shown in Fig. 2. The corrected cross correlograms
(unlike Fig. 3) are almost the same for all stimulus con-
ditions. The raw joint PST histogram looks very similar
to Fig. 4, while the normalized joint PST histogram shows
a much flatter PST coincidence histogram than does Fig.
5. More detailed simulations as well as analytic calcula-
tions (Boven et al., in preparation) confirm this effect of
convergence and the activity carried by it on the modu-
lation of effective connectivity.

We have therefore demonstrated at least one situation
in which a network with known constant connections
among the neurons will mimic the effects of dynamic ef-
fective connectivity. The relevant conditions are a high
degree of convergence from a population of neurons that
are all activated by the stimuli. On the other hand, when
the degree of convergence is lower, we would correctly
recover the actual constant synaptic connections.
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Fig. 3. Cross correlograms under two different stimulus conditions and spontaneous activity. The correlograms were corrected
for stimulus modulation of the cells’ firing rates by subtracting the cross correlation of the PST histograms. These differences
were then normalized (divided) by the product of the number of presynaptic spikes and the bin width. This process yields the
excess firing rate (in spikes per second) of the post synaptic cell per presynaptic spike. The 99 percent significance levels for
these data at the scale used are invisibly small; i.e., these peaks are extremely significant. The corrected correlogram is largest
for stimulation with the grain of the connections (top stimulus—top left), smaller for stimulation orthogonal to the grain of
the connections (side stimulus—top right), and smallest for no stimulus (spontaneous activity—bottom left). The cross cor-
rrelograms shown are for the two cells whose PST histograms are shown in Fig. 2. See text for organization of the network.

JPST

5.000

extrema

0.400

5.000 B61.000

191.180

‘,.5’ 3880.000
470.847 e
gs2

T_8

top_60.1df
X84 14575 Y

BIN:
s34 2499 T
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Fig. 5. Normalized joint peri-stimulus-time histogram. This is a redisplay
of the information in Fig. 4 after correcting for the effects of stimulus
modulation of the firing rates of the two neurons. The binwise product
of the two individual PST histograms was substracted from each small
square of the JPST of Fig. 4. The value of each small square was then
divided by the appropriate bin by bin product of the standard deviations
of the PST histograms. Note that even after this correction the apparent
connection strength shown along the diagonal at right center is modu-
lated in response to the stimulus, whereas all traces of the single unit
firing rate modulations (broad horizontal and vertical bands in Fig. 4)

have disappeared.

DiscussiON AND CONCLUSION

In this paper, we have examined the concept of neu-
ronal assembly in a number of different incarnations. It
turns out that each of these versions of the concept is suf-
ficiently different that it is hard to make logical bridges.

Neither the motor pool concept or the well-known cor-
tical column concepts of assembly depend on or imply
anything about the internal structure of information flow.
They are defined entirely through properties related to ex-
ternal input or output. In contrast, both the Hebbian and
correlation models are defined mainly through interac-
tions among the member neurons. Both also depend on
input, the Hebbian model for its original development,
the correlation model in relation to parsing the interac-
tions.

All four assembly concepts allow overlaps of subas-
semblies. In each case, a single neuron can be a member
of several different assemblies, and can participate in each
of their activities. As in the previous paragraph, this mul-
tiple allegiance is defined in terms of internal circuitry or
relations only in the Hebbian and correlation models.

Dynamics, stimulus related or otherwise, are implicit

in all four assembly models. However, they can be de-
tected explicitly only in the Hebbian and correlation
models. Time scales for the Hebbian model are long,
while for the correlation model they are unspecified, i.e.,
long or short.

In the last part of this paper we have examined the ex-
tent to which a system with constant connections can ap-
pear to be dynamically organized. We have here demon-
strated that at least one class of connections, i.e., highly
convergent systems, can give all the measured signatures
of dynamic organization. This result can be viewed as a
failure of the measurements to be sufficiently sensitive,
and hence as a call for further development of tools that
could perhaps do the job better. On the other hand, we
have shown that dynamics in the relations of two neurons
can be the reflection of group activity that is elsewhere in
the net, and hence not under direct observation. This,
then, is a potential tool for measurement of emergent,
large population properties.

Finally, none of the four assembly models explicitly
deals with a way to define ‘‘state.”’ This concept has
proven vital for the successful description, understanding
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and prediction of physical systems, and there is no reason
to believe it any less crucial for neuronal systems. Unfor-
tunately, the types of state descriptors that are used on
physical systems are not directly applicable to the neu-
ronal situation. Additional work on both real and artificial
neuronal assemblies is essential.
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