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SUMMARY AND CONCLUSIONS 

1. We reexamine the possibilities for analyzing and interpret- 
ing the time course of correlation in spike trains simultaneously 
and separably recorded from two neurons. 

2. We develop procedures to quantify and properly normalize 
the classical joint peristimulus time scatter diagram. These allow 
separation of the “raw” correlation into components caused by 
direct stimulus modulations of the single-neuron firing rates and 
those caused by various types of interaction between the two 
neurons. 

3. A newly developed significance test (“surprise”) is applied to 
evaluate such inferences. 

4. Application of the new procedures to simulated spike trains 
allowed the recovery of the known circuitry. In particular, it 
proved possible to recover fast stimulus-locked modulations of 
“effective connectivity,” even if they were masked by strong di- 
rect stimulus modulations of individual firing rates. These proce- 
dures thus present a clearly superior alternative to the commonly 
used “shift predictor.” 

5. Adopting a model-based approach, we generalize the classi- 
cal measures for quantifying a direct intemeuronal connection 
(“efficacy” and “contribution”) to include possible stimulus- 
locked time variations. 

6. Application of the new procedures to real spike trains from 
several different preparations showed that fast‘ stimulus-locked 
modulations of “effective connectivity” also occur for real 
neurons. 

that should be available to the brain under investigation. 
Results of this sort of analysis are traditionally interpreted 
as indicative of “effective connectivity” among the ob- 
served neurons. Appropriate control calculations are made 
to allow the separation of direct stimulus effects from other 
contributions to the “raw” correlation. The Usual strategy 
has been to subtract the direct stimulus effects [estimated 
by the so-called “shift predictor” (10, 11, 29)] from the 
“raw” cross-correlogram, yielding a time-averaged “resid- 
ual” correlation due to neural origin. Sources of the latter 
are further subdivided into “direct connections” and 
“shared input”; this subdivision is based on inspection of 
the correlogram shape. A review of topics related to cross- 
correlation of spike trains together with many references to 
the original literature can be found in Glaser and Ruch- 
kin (16). 

INTRODUCTION 

When examining the relation between activities of two 
neurons in a multi-neuron recording, a most useful tool 
has been the cross-correlation of the two spike trains (29; 
for reviews, see Refs. 12 and 20). This calculation measures 
the probability of firing of the “target” neuron at various 
times relative to the firing of the “reference” neuron, in 
which the probability is determined by averaging over 
many occurrences of the two spikes. 

Many of the concepts and measurements used with spike 
trains have been developed and calibrated with the use of 
pulse trains from simulated neuronal circuits. In that case, 
the measurements for a given circuit can be predicted: this 
is the “forward problem.” We are fully aware that there is 
no unique solution to the “inverse problem,” i.e., it is im- 
possible to determine uniquely the underlying circuit by 
spike-train analysis (or any other method that avoids ex- 
haustive enumeration of all states of all elements). Our goal 
is to define the minimum, simple neuronal model that 
would replicate the experimentally observed features of 
measurements made on simultaneously recorded spike 
trains. Thus, when we make the jump from observed, 
coincident spike events to a statement of “efl$?ctivc connec- 
tivity” between two neurons, this should be taken w  an 
abbreviated description of an equivalent class of neuronal 
circuits. 

This procedure detects the (delayed) coincidence of 
neural firing among different neurons, which can be re- 
garded in two ways. The first way is to regard such coinci- 
dences as a sign of a possible neural code being used by the 
working brain: a code based on the cooperative action of 
two or more impulse-carrying pathways (30). A second way 
is to use the near-coincidence to infer functional connec- 
tivity among the underlying elements. Such knowledge can 
be extracted by the experimenter, but it is not obvious how 

Most applications of cross-correlation have assumed that 
the system is stationary at all time scales. This is, of course, 
rarely the case for real neurons. Variations may occur at 
three rough time scales: short (< 1 s), medium (between 1 
and 1,000 s), and longer. The variations on short and me- 
dium time scales may be tightly related to stimulus condi- 
tions; the long-term variations may be related to phenom- 
ena like learning. Tools more complex than ordinary 
cross-correlation, which integrates over time, are appro- 
priate to deal with each of these nonstationarity time scales. 
For example, the gravitational clustering algorithm (3, 13, 
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14) and modifications of it (4) can demonstrate variations 
on the medium time scale. 

In this paper we will examine the possibilities for dealing 
with short time scale, stimulus-locked variations of near- 
coincident firing. Such variations of near-coincident firing 
are to be expected in most cases of effective stimulation, if 
only because the individual neuron spike rates will be mod- 
ulated. After correction for such individual rate modula- 
tions, any residual variation of the near-coincident firing 
can be interpreted in terms of corresponding variation of 
the interactions between the observed neurons. We will 
demonstrate the detection, quantification, and interpreta- 
tion of such residual stimulus-time-locked variations in 
near-coincident firing. 

CRITICAL REVIEW OF PREVIOUS APPROACHES TO 
DYNAMIC CORRELATION 

Most electrophysiological measurements on the nervous 
system involve some kind of time averaging. The reason 
for this is the apparent stochastic nature of the observed 
activity. Presumably, the stochastic behavior of the 
neurons consists partly of statistical fluctuations (“noise”), 
but may also include genuine (rapid) modulations of activ- 
ity and/or connectivity. The latter would imply that corre- 
lation of firing is a time-varying function; obviously, the 
usual cross-correlogram would collapse such time varia- 
tions and present the average values. What is really wanted, 
but presently unattained, is a new class of measurement 
that would be essentially instantaneous so as to deal with 
the modulations of activity, but yet that would be able to 
discard the statistical fluctuations 

The joint peristimulus time scatter diagram 

A partial solution to the above dilemma can be devel- 
oped from the idea of the perktimulus time (PST) histo- 
gram: let us consider a time-dependent measure of correla- 
tion, averaged over many repetitions of the same stimulus 
and time-locked to the instant of stimulus presentation. 
This would allow detection of any time structure in the 
correlation that is related to the instant of stimulus presen- 
tation, and yet, being a special form of average, would cope 
with the statistical fluctuations. Obviously, any modula- 
tions (or long-term changes) that are not time-locked to the 
stimulus would not be detected by such an approach. 

An early version of the required calculation was named 
the joint peristimulus time (PST) scatter diagram ( 10, 11). 
The basic idea is to create a two-dimensional scatter dia- 
gram of the firings of the two neurons relative to each 
stimulus onset. Technically, this diagram is related to the 
time-dependent cross-correlation function of the two spike 
trains. Each dot in the scatter diagram represents a (de- 
layed) coincidence of the two spike trains during one stim- 
ulus period, as indicated in Fig. lA, together with the un- 
derlying spike trains and their contributions to what will 
ultimately become PST histograms. 

As this process is carried out for many repetitions of the 
same stimulus, we build up dot densities in the scatter 
diagram and along the PST axes (Fig. 1B shows a scatter 
diagram for data from a neuronal simulator circuit that will 

be described in more detail below; note that in such a 
scatter diagram we do not recognize possible superposition 
of dots). Regions of high or low density lying in bands 
parallel to the scatter diagram axes represent stimulus- 
locked activation or suppression of either neuron; the vari- 
ation of dot density along such a band represents the stimu- 
lus-induced modulation of firing rate in the corresponding 
neuron. Regions of high or low density lying parallel to the 
principal diagonal represent excess or deficient amounts of 
delayed coincident firing, in which the time delay equals 
the distance from the high- (or low-) density band to the 
diagonal; the variation of dot density along such a band 
represents the stimulus-induced modulation of the near- 
coincident firing at that particular delay. These various 
features are illustrated for various simulations of simple 
neuronal circuits in the catalog of joint-PST scatter dia- 
grams, PST histograms, and cross-correlograms given by 
Gerstein and Perkel(ll). 

For ease of explanation, we assumed that the time axes 
of the Joint-PST scatter diagram start at stimulus onset and 
extend over an interval equal to the stimulus duration. 
Clearly, one may deviate from this simple scheme. By se- 
lecting an appropriate time window, possibly offset with 
respect to the stimulus trigger, one may “zoom in” on 
some arbitrary fraction of the stimulus period. One may 
also go beyond the time duration of the stimulus by incor- 
porating suitably chosen pre- and/or poststimulus inter- 
vals, thus enabling explicit comparison of stimulus and 
nonstimulus conditions within a single scatter diagram. In 
the latter case, one should, however, make sure that in each 
of the trials the extrastimulus interval still represents the 
same experimental conditions; this is especially important 
when triggering on repeated occurrences of a particular 
stimulus, temporally embedded. in a (pseudo-) randomly 
structured stimulus ensemble with possibly varying “neigh- 
boring” stimuli and/or inter-stimulus pauses. 

We can estimate the density in a scatter diagram with 
various histograms. A Cartesian grid to define bins over 
which tallies are made (schematically indicated in Fig. 1 C) 
leads to the joint-PST histogram (JPSTH) and the two or- 
dinary PST histograms (Fig. 1F). (To allow easy timing 
comparisons in subsequent modifications of this figure, the 
PSTHs along the axes are preserved without change in all 
versions.) Tallies over the diagonally arranged set of bins 
indicated in Fig. 1D lead to a histogram of the time-locked, 
near-coincident firing shown in Fig. 1G. This measure 
shows the stimulus-locked modulation of near-coincident 
firing in the same way as the PSTH shows the stimulus- 
locked modulation of single-neuron firing. Where appro- 
priate, we will call this diagonal histogram the PST coinci- 
dence histogram. We found it generally convenient to 
smooth the PST coincidence histogram to reduce statistical 
variation, especially when we choose a narrow band in 
which to make the tallies. This would be the case when we 
study the time distribution of the contributions to a narrow 
peak (or trough) in the cross-correlogram The smoothing 
procedure is equivalent to the assumption that variation 
along the PST coincidence histogram is slow compared to 
the binwidth. As smoothing function, we use a gaussian 
with sigma of four (sometimes two) bins; in each case, this 
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particular value as well as the location and width of the 
selected diagonal band are indicated in the figure (cf. Figs. 
1, Fand G). 

Finally, tallies over the set of para-diagonal bins indi- 
cated in Fig. lE, suitably normalized for the different 
length of each bin, estimate the ordinary cross-correlation 
histogram (Fig. 1 G). Note that this operation is equivalent 
to an additional time averaging that inexorably washes out 
any possible stimulus-induced modulation. We will call 
this time-averaged measure the (ordinary) cross-correlo- 
gram. 

Clearly, the statistical variance of counts in the cross- 
correlogram bins will increase with the distance from the 
center bin, due to the decreasing length of the correspond- 
ing para-diagonal JPSTH bins; for this reason, we only 
show the central part of the cross-correlogram. An alterna- 
tive would be to use para-diagonal bins of identical size, 
which inevitably would be the smallest of all values used 
here. This, however, would amount to an unnecessary sac- 
rifice of statistical reliability in the center region of the 
cross-correlogram; in fact, that would be most unfortunate, 
because precisely this region is the more interesting part of 
the histogram in view of the latencies usually associated 
with (direct) interneuronal connections. If the spike train 
data would originate from an experiment that allows ex- 
tending the time base of the JPSTH to encompass more 
than the duration of the stimulus itself, the para-diagonal 
JPSTH bins could be arranged such that they all have the 
extent of the stimulus duration, simply by going beyond 
the stimulus boundaries for off-diagonal bins. This would 
be equivalent to cutting a square (or rectangular) section 
from a temporally extended joint-PST histogram, the sec- 
tion being oriented parallel to the main diagonal and ex- 
tending equally wide below and above it. The next logical 
step would be to take this section and rotate it clockwise 
over 45”; the result is an alternative temporal arrangement 
of the joint-PST histogram, with the x-axis representing 
running time and the paxis corresponding to “difference 
time.” [A more formal description of such operation has 
been given in the context of nonlinear signal and systems 
theory (I).] As noted earlier, however, such extension of 
the time window beyond the stimulus duration is only al- 

lowed if experimental conditions in the extrastimulus in- 
terval are the same in all trials. Because at this stage we do 
not want to impose any restrictions on the temporal exper- 
iment design, we adopted the above described procedure of 
compensating for variation in the extent of para-diagonal 
bins. 

The actual display arrangement of the PST coincidence 
histogram and the cross-correlogram (along and perpendic- 
ular to the diagonal in Fig. 1G) was chosen to emphasize 
their logical relationship to the ordinary PST histograms 
and the joint-PSTH (Fig. 1F). The additional grid of hori- 
zontal and vertical broken lines in Fig. 1G should accom- 
modate comparisons between the time course of the PST 
histograms and the diagonal histogram. 

Prediction of direct stimulus eflects 

Just as in ordinary cross-correlation, the joint-PST his- 
togram (JPSTH) will in general contain contributions from 
several sources of (delayed) coincident firing. Those con- 
tributions that come purely from stimulus-related modula- 
tions of single-neuron firing rates can be predicted. Com- 
parison of the “raw” JPSTH with this predictor defines a 
“residual” that represents the intrinsic neuronal depen- 
dencies alone. Note that the predictor reflects the null hy- 
pothesis that spike events in the two neurons are statisti- 
cally independent, only the firing probabilities of the two 
neurons are related to the stimulus. 

In the past, as a practical matter, the prediction of purely 
stimulus-related effects in both joint-PST scatter diagrams 
and in ordinary cross-correlations has usually been calcu- 
lated by the so-called “shift (or shuffle) predictor” ( 10, 11, 
29). This predictor is based on the idea that most neuronal 
interactions occur on a much shorter time scale than the 
time elapsing between two successive stimuli. Thus (for the 
case of periodic stimuli) if we shift one of the two spike 
trains by one (or more) stimulus periods, the spike trains 
will still contain all direct stimulus-induced modulations at 
the single-neuron level; neural interaction effects will, how- 
ever, be destroyed, because the time shift is much larger 
than the delays usually involved in neural interactions. 
Similar effects can be achieved by cutting one spike train 

FIG. 1. Stimulus-locked dynamic correlation of neuronal firing. A: principle of generation of a 2-dimensional scatter 
diagram of the firings of 2 neurons relative to each stimulus onset (indicated by arrow on horizontal and vertical axis): each 
dot in the scatter diagram represents a (delayed) coincidence of the 2 spike trains during 1 stimulus period. The spike trains 
and their contributions to the single-unit dot displays are indicated along the x- and y-axes. B: as this process is carried out 
for many repetitions of the same stimulus, we build up the joint peristimulus time (PST) scatter diagram and, along the axes, 
the single-unit dot displays. Spike trains used for Fig. 1 were obtained from a neuronal simulator; the simulated neuronal 
circuit is depicted in Fig. 3A, stimulus and constant connectivity in Fig. 2, A and B. C-E: different binning schemes for 
estimation of dot densities in the scatter diagram and the single-unit dot displays. C’Z Cartesian grid of bins over which tallies 
are made results in the joint-PST histogram (JPSTH) and the 2 ordinary PST histograms. D: tallies over a (para-)diagonal 
arrangement of bins lead to a histogram of the time-locked near-coincident firings: the PST coincidence histogram. E: tallies 
over the set of (long) paradiagonal bins, suitably normalized for the different length of each bin, estimate the time average of 
near-coincident firing as a function of relative delay: the ordinary cross-correlation histogram. R joint-PST histogram 
(JPSTH matrix) and the 2 ordinary PST histograms along its X- and y-axis (binwidth: 4 ms). Values in the JPSTH matrix are 
displayed by using gray levels: the higher the value, the darker the gray, as indicated in the gray wedge with the associated 
values. The tic mark above the gray wedge corresponds to the value zero. All counts were divided by the number of stimulus 
presentations. C: PST coincidence histogram (running from lower left to upper right) and the ordinary cross-correlation 
histogram (running from upper left to lower right). The PST coincidence histogram was smoothed using a gaussian with CT of 
4 bins; this particular value (gs4), as well as the location and width of the selected diagonal band are indicated in F and C. 
The position of true coincidence (zero delay) in the cross-correlogram coincides with the intersection point of the PST 
coincidence histogram and the cross-correlogram; it is indicated by a tic mark near the diagonal band marker above the 
correlogram. 
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on stimulus markers, shuffling the sections, and concate- It turns out that the shift predictor and the PST-based 
nating them. If we now recompute either the joint-PST predictor are tightly related, and that the above discussion 
scatter diagram or the ordinary cross-correlogram for such of relative merits of predictors holds only for the simple 
manipulated spike trains, we have a prediction for the shift predictor (i.e., involving any one order of shift), which 
purely stimulus-related effects. Note that a prediction cal- is, in fact, the one commonly used. It is possible to work 
culated in this way will have exactly the same kind of sta- with a binned compound shift predictor, i.e., an average 
tistical variation as the original joint-PST scatter diagram over shifts of different order so as to arrive at a statistically 
or cross-correlogram, so that comparison must be made smoother predictor. (For such a procedure in the context of 
between two equally “noisy” functions. Such comparisons, ordinary cross-correlograms, see Ref. 8.) It is easy to show 
for the scatter diagram, are necessarily visual rather than that an average over the set of all possible shift predictors 
quantitative. (i.e., ALL different orders of shift, including 0) is entirely 

In the original papers on this subject (10, 11, 29), alter- equivalent to the PST-based predictor for both ordinary 
nate predictors based on the PST histograms were in fact and joint cross-correlation (27). 
proposed. The PST histogram is appropriate for this pur- All the above, however, does not directly address a more 
pose, because it is an estimate of the purely stimulus-in- fundamental problem, associated with the application of 
duced modulation of the single-neuron firing. Such predic- the ordinary cross-correlogram to stimulus-driven spike 
tors are intrinsically “smooth” in comparison with the 
“raw” joint calculations, because the PST histograms are 
themselves already averages over many trials. Because such 
predictors are binned, it is mandatory to also transform the 
joint-PST scatter diagram into a histogram (see Fig. 1, C 
and F) to allow for quantitative rather than pictorial com- 
parison. (The binning issue did not arise for the usual 
cross-correlogram, because historically it has always been 
presented as a binned histogram rather than as a plot of 
dots along a line.) 

In the original papers, the preference for the shift predic- 
tor relative to the PST histogram-based predictor was ex- 
plained by noting that “a two-dimensional histogram is 
difficult to compare with the original scatter diagram” 
(Ref. 11, p. 464). From this, in itself correct observation, 
the authors, however, chose to generate a predictor that 
was itself a scatter diagram rather than using a binned pre- 
dictor and transforming the original scatter diagram into a 
histogram. 

This choice implies a comparison between two scatter 
diagrams, which is, at best, a qualitative process. Humans 
perform the task by “squinting” at the two scatter plots, in 
effect smoothing them with a low-pass spatial filter. Ob- 
viously, the smoothing could be carried out quantitatively 
(at some cost in computer time) by passing an appropriate 
two-dimensional gaussian over the scatter diagram, thus 
attaining any desired degree of “spatial” resolution (3 1). A 
much more convenient and rapid way to attain similar 
results is by binning. This has the additional advantage that 
appropriate choice of bins transforms a spike train into the 
theoretically more attractive representation of a (0, l)-pro- 
cess: per stimulus presentation at most one count is added 
to any histogram bin. 

Once we have an original measurement that is a histo- 
gram, it is appropriate to choose a predictor that is also a 
histogram for comparison. This leads to the alternate, and 
superior, choice of predictors, i.e., those based on the PST 
histograms; a binned histogram of a shift predictor would 
be far noisier. For the ordinary cross-correlogram, the pre- 
ferred predictor is the cross-correlogram of the two PST 
histograms. For the JPSTH, the predictor is the cross-prod- 
uct of the two PST histograms, taken bin by bin. All histo- 
grams should be normalized for the number of trials (stim- 
ulus presentations). 

trains. In principle, the cross-correlation of two stochastic 
processes is a function of two time arguments, tl and t2, 
namely, the different observation times for each of the two 
processes. Only under special conditions concerning sta- 
tionarity does this reduce to a function of a single time 
argument, i.e., the time shift tl - t2, such as is done in the 
ordinary cross-correlogram. Processes that are called 
“jointly stationary in the wide sense” do fulfill these condi- 
tions (6, 28). Such processes are required, amongst others, 
to have an expected value that is independent of time. 
Because the very purpose of presenting “adequate” stimuli 
is to influence the neuron’s firing behavior to a maximum 
extent (exemplified by large excursions in the PST histo- 
gram), the requirement of a constant firing rate throughout 
the entire stimulus presentation seems to impose a strong, 
if not contradictory, condition on the experimental data. 
Consequently, it is not a priori clear whether the current 
practice of applying ordinary cross-correlation to stimulus- 
driven spike trains is allowed at all, nor how the results 
should be evaluated. The issue of stimulus normalization, 
which only arises for stimulus-driven data to begin with, 
merely underlines this problematic aspect of the ordinary 
cross-correlogram of nonstationary spike trains. 

COMPARISON OF ‘ RAW” AND PREDICTED JOINT- 

PST HISTOGRAMS 

For ease of explanation in what follows, we will assume 
that the stimulus and consequent single-neuron rate modu- 
lations are periodic. It is trivial to lift this restriction once 
the arguments and calculations are understood. We assume 
that all spike trains are “periodically stationary,” i.e., that 
individual trials are statistically indistinguishable. This ex- 
cludes long-term trends. Finally, we assume that binwidth 
is chosen such that in each trial we collect at most one spike 
per bin. We call these numbers of spikes per bin per sweep 
nik)(u), where u is discrete time (bin number) relative to the 
kth, i.e., most recent occurrence of the stimulus marker, 
and i indicates the neuron. Our restriction on binwidth 
means that n can only take values of zero or one; these 
define the fundamental events with which we will be work- 
ing. Note that at this stage we make no assumptions what- 
soever about the way in which direct stimulus effects and 
neural effects combine. 
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FIG. 2. Time course of stimulus (A) and connectivity (B) used in simu- 
lations of neuronal circuits in Figs. 3A and 4, A and B. The broken line in 
B indicates the constant excitatory connection strength of 0.1 for the 
circuit in Fig. 3A; the continuous line corresponds to the stimulus-modu- 
lated connectivity (time average, 0.1) used for the circuits in Fig. 4, A and 
B. 

To illustrate the various possibilities for comparison of 
“raw” and predicted joint-PST histograms (JPSTH), we 
will make use of spike trains produced by a neuronal simu- 
lator program. The design of this simple simulator has been 
described (2), the current version allows for stimulus mod- 
ulation of both individual firing rates and of the strength of 
intemeuronal connectivity. Let us for the moment con- 
tinue to work with the data whose “raw” JPSTH is shown 
in Fig. 1F and repeated in Fig. 3C. The simulated circuit 
consisted of two neurons, both spontaneously active (some 
4 spikes/s), both excited by a stimulus (schematically de- 
picted in Fig. 24), and with neuron 1 exciting neuron 2 
with constant efficacy (i.e., probability of inducing a spike 
from the “postsynaptic” neuron) of 0.1 as indicated in Figs. 
2B and 3A. Average spike rates were set to 7 spikes/s to 
mimic typical cortical recordings. 

With the above given assumptions, we can develop some 
convenient notation. Let the stimulus-locked event density 
be .Esti,[ni(u)]; the k index is omitted because we are con- 
sidering an expectation. The estimator of this quantity is 
the ordinary PST histogram 

1 K 
(ni(u>) = 7 2 n/kju) (0 

Note that because of the normalization for stimulus num- 
ber, values in the PST histogram are restricted to the range 
zero to one. With the same notation, the contribution to 
the joint-PST histogram by the events during the kth stim- 
ulus period is given by 

nJk)(u, v) = ni(k~(u)nj’k~(v) (4 

These joint events are also zeroes or ones. In analogy to the 
single-neuron situation, we can now introduce the stimu- 
lus-locked joint event density Esti,[nij(u, u)] and its estima- 
tor, the JPSTH 

( nu( u, v)) = k jl nii(k)(u, v) (3) s 

Note that because of the normalization for stimulus num- 
ber, also the JPSTH values are restricted to the range zero 
to one. 

Under the null hypothesis of no interaction between the 
neurons, it can be formally shown that the cross-product 
matrix of the individual PST histograms (i.e., bin by bin) is 
an appropriate estimator of the expected JPSTH (27). This 
predictor is given by 

%jO4 V) = (~i(U))(~j(V)) (4) 

and is shown in Fig. 3B. Its values also lie between zero and 
one. As promised, this is a very smooth function in com- 
parison with the “raw” JPSTH; it shows clear horizontal 
and vertical features, but no diagonal features. Neverthe- 
less, its diagonal histogram, the predicted PST coincidence 
histogram, shows a clear, stimulus-locked modulation of 
near-coincidence firing. This is the amount and time 
course of near-coincident firing that would be expected 
purely on the basis of the single-neuron firing rates and 
their modulations by the stimulus. 

A number of ways can be envisioned to compare the raw 
and predicted JPSTH. Because we want to test the null 
hypothesis of no interaction, we are particularly interested 
in the dissimilarity between the two. The simplest measure 
for this dissimilarity is the algebraic difference 

Do@, v) = &(u, v)) - iio(u, v) 

= (nii(% v>) - (ni(Q))(nj(v)) (5) 

The values of this function lie between minus and plus one. 
Equation 5 is equivalent to the usual definition of the 
cross-covariance function (6, 28); we shall refer to it ac- 
cordingly. This function is shown in Fig. 30. We note that 
the bands of high counts parallel to the X- and ycaxes were 
present both in the “raw” and predicted JPSTH; the oper- 
ation of taking an algebraic difference in the cross-covari- 
ante removes these features of net positive values. The 
diagonal feature was present only in the “raw” JPSTH; 
therefore, it is not surprising that it persists in the cross-co- 
variance. There is still a modulation along the diagonal; the 
time course of this modulation roughly follows that in the 
two ordinary PST histograms shown along the axes. We 
will return to this modulation later on. Note that the aver- 
age of the background in both the cross-covariance and, 
consequently, in the differential correlogram (at upper 
right) has been shifted to zero by the subtraction operation. 
The variance of the background may not be uniform, how- 
ever, and will depend on the detailed firing rates as shown 
by the PST histograms. This means that different portions 
of the cross-covariance may show different “texture” (no- 
tice the horizontal and verticai bands of texture around the 
zero value). 

The range of values comprising both the statistical vari- 
ance and the “real” features in the algebraic difference of 
the cross-covariance will clearly depend on the details of 
the data. To compare the importance of various features in 
different pieces of data (e.g., corresponding to the presenta- 
tion of different stimuli to the same two neurons), we need 
an appropriate normalization. In other words, we need a 
data-dependent measuring stick to arrive at a data-inde- 
pendent measure of departure from the null hypothesis. To 
give qualitative meaning to the extent of such departure, let 
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us in addition require from an appropriate normalization 
procedure that the resulting values in diagonal features 
bear a monotonic relation to the “effective connectivity” in 
the underlying neuronal network: the stronger the connec- 
tivity, the larger the departure, and vice versa. This addi- 
tional and relatively mild requirement allows us to inter- 
pret temporal variations of diagonal features in a properly 
normalized JPSTH in terms of modulations of “effective 
connectivity.” 

One attempt to achieve this normalization goal is to 
measure the departure from predicted value relative to that 
predicted value. This means we want to divide the cross-co- 
variance by the cross-product of the PST histograms 

R&, v) D& t-9 =- 
%j(u, VI 

(“ijo 0)) 

Note that the values of this function are not a priori limited 
to any particular range. This quantity has been called 
“scaled cross-correlation density” by Kuznetsov and Stra- 
tonovich (21; see also Ref. 7). We show the results of this 
calculation in Fig. 3F; it is clearly unsatisfactory. It has 
reintroduced vertical and horizontal features in the off-di- 
agonal regions: a clear modulation of variance (note the 
“blur” in Fig. 3F, coinciding with the original horizontal 
and vertical features from Fig. 30) where there should be 
only uniformity. In addition, the diagonal histogram is not 
uniform along its length, but rather has clearly lower values 
in the early part of its time course, i.e., where the PST 
histograms have high values. Such variation along the diag- 
onal is hard to reconcile with the known constant strength 
of connection in the simulated neuronal circuit. We have 
also applied this attempted normalization to other simu- 
lated spike train data (with known underlying circuitry), 
and in all cases the results of this procedure were similarly 
inadequate. In summary, this attempted stimulus normal- 
ization procedure seems to be decompressing too strongly 
in regions corresponding to low firing rates of either or both 
neurons and, therefore, will not be shown again. 

A second possible normalization of the cross-covariance 
is inspired by standard statistical procedures. Here we di- 
vide the cross-covariance by the standard deviation of the 
predictor. Under the null hypothesis this standard devia- 
tion is simply the cross-product of the standard deviations 
of the PST histograms 

h!?o(U, V) = Si(U)Sj(V) 

= f  5 (njk)(u) - (ni<U)))’ l ; ,;i (njk)(v) - (n,(V)))‘)* (7a) 
k-l *  

As can be observed from comparison of Eqs. 2-5 and 7a, 
an equivalent formulation of this quantity is the square 
root of the product of the two single-neuron autocovar- 
iances, each matrix considered only along its diagonal 

+!Tu(U, V) = (Dii(u, U)Da(V, 0))“’ wo 

It should be noted that there is a simple relation between 
the predictor in Eq. 4 and the standard deviation in Eq. 7a. 
With the assumptions stated at the outset, the expectations 
E[&Wl and E[ n * u i ( )I are equal for any u because we are 
dealing with a “zero-one” process. From this it is easily 
shown that the standard deviation matrix is 

$0 = SiSj = { (ni)( 1 - (?Zi)) l (?Zj)( 1 - (nj))}" (8) 

where we omit the time bin reference (u, 0) for brevity. For 
(ni) and (nj) small compared to one (the usual case), day 
both equal to t, it follows that the predictor (Eq. 4) behaves 
as e*, whereas the standard deviation (Eq. 8) behaves as e. 
Thus effectively the standard deviation is the square root of 
the predictor. Furthermore, the ratio of maximum to min- 
imum values of expression (Eq. 8) will be the square root of 
the corresponding ratio in the predictor of expression (Eq. 
4). The standard deviation thus has a smaller relative dy- 
namic range than the predictor; it is a very smooth func- 
tion, and we omit explicitly showing it here. Such smooth- 
ness is an obvious requirement for any division process in 
order not to increase the “noise” level. 

The normalization of the cross-covariance using the 
standard deviation of the predictor as scaling matrix is, 
therefore, given by 

qu, v) = Dijk VI 
&j@, VI 

= Qjb4 v) 
{ Dii(u, U)D>(V, V)}” 

(9) 

Note that this function, unlike the relative scaling opera- 
tion in Eq. 6, is a true normalization, i.e., it delivers num- 
bers between plus and minus one. Expression 9 is referred 
to in the literature as the “normalized cross-covariance 
function” or “correlation function coefficient” (4,6); it has 
also been called “cross-correlation surface” (18). Finding 
the above terminology unsatisfactory for various reasons, 

FIG. 3. Various possibilities for comparison of “raw” and predicted joint-PST histograms (JPSTH). A: the simulated 
neuronal circuit, giving rise to the spike train data used in Figs. 1 and 3, consisted of 2 neurons, both excited by a stimulus, 
and with neuron 1 exciting neuron 2 with constant efficacy (see also Fig. 2, A and B). Average spike rates were set to 7/s to 
mimic typical cortical recordings. Total numbers of events: 2,774 (neuron 1, x-axis), 2,95 1 (neuron 2, y-axis), 2,000 
(stimulus triggers). B: estimator of expected JPSTH under the null hypothesis of noninteracting neurons: the cross-product 
matrix of the individual PST histograms (E’q. 4). Display format of this and all following figures as in Fig. 1, F and G. C: 
“raw” JPSTH (Eq. 3) as shown in Fig. 1, F and G, and repeated here for ease of reference. D: cross-covariance function (Eq. 
5): the algebraic difference of “raw” (C) and predicted JPSTH (B). E: normalized JPSTH (Eq. 9): normalization of the 
cross-covariance (D) using the standard deviation of the predictor (cross-product of the standard deviations of the PST 
histograms) as scaling matrix. F: scaled cross-correlation density (Eq. 6): ratio of cross-covariance (D) and predicted JPSTH 
(B). G: significance of correlation: algebraic difference between the surprise for “excitation” (i.e., for an excess joint count 
compared with the individual counts), and the surprise for “inhibition” (i.e., for a deficit ofjoint counts). The surprise of a 
value is defined as the negative natural logarithm of the probability for finding that value or a more deviant one (Eqs. AZ.1 
and AM). Surprise matrices were scaled for display between -2.996 (corresponding to a significance level of 596 for 
“inhibition”) and +4.605 (similarly of 1% for “excitation”) as indicated along the gray wedge. 
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we propose to call the result of Eq. 9 the normalized 
JPSTH. We show the result of the calculation in Fig. 3E. 
The result is clearly better than that of Fig. 3F. No obvious 
horizontal or vertical features reappear. the off-diagonal 
“texture” is completely uniform. Furthermore, the diago- 
nal feature is approximately constant along its length, as it 
should be for this neuronal circuit of constant connectivity. 
This is also shown by the normalized PST coincidence 
histogram in Fig. 3E. 

Integration along the diagonal (tallies in the para-diago- 
nal bins as in Fig. 1 E) results in a histogram that we call the 
normalized cross-correlogram. It should be noted that this 
normalization in general can not be achieved by any oper- 
ation on the usual cross-correlogram: the proper procedure 
fundamentally involves the temporal decomposition of 
near-coincident firing in the JPSTH, its subsequent dy- 
namic correction (subtraction and scaling), and reintegra- 
tion along the diagonal. The order of these various opera- 
tions can not be interchanged The usual procedure for 
correcting the ordinary cross-correlogram for stimulus ef- 
fects has been to subtract the shift predictor correlogram or 
PST predictor correlogram (with or without additional 
scaling for numbers of events). It is clear that the normal- 
ized cross-correlogram, i.e., a calculation from the normal- 
ized JPSTH, will generally give a different and more cor- 
rect result. 

SIGNIFICANCE TESTING: SURPRiSE 

In the normalized JPSTH (Eq. 9), we have a calculation 
that is appropriate for the intercomparison of different 
pieces of data with the null hypothesis However, we now 
need a measure of significance to interpret the deviations 
from the null hypothesis. The usual approach to signifi- 
cance testing consists of comparing the actual outcome of 
an experiment with the postulated distribution of values 
under the null hypothesis. In our case, we need to iden- 
tify this postulated distribution for the JPSTH value in a 
given bin. 

The point of departure is to calculate the distribution of 
possible JPSTH values for a particular bin (u, u), given I) 
the null hypothesis of independence, 2) the values at the 
corresponding bins in the two PST histograms, and 3) the 
number of trials (stimulus presentations) over which these 
PST histograms were gathered It is possible to give this 
distribution in closed form, expressed in terms of only 
these algebraic quantities (for details, see Ref. 27). By sub- 
stituting the experimental values for these quantities, we 
obtain an explicit distribution appropriate for this particu- 
lar piece of data; it generally turns out to be different from 
Gaussian, especially for realistic, relatively low numbers of 
stimulus presentations. We can now test the significance of 
our actual experimental JPSTH value against this theoreti- 
cally derived, but experimentally particularized, distribu- 
tion: the significance of a value is defined as the probability 
for finding that value or a more deviant one. One can view 
this significance test in two different ways: I) we test the 
significance of deviations of the “raw” JPSTH from the 
null hypothesis (i.e., the predictor), or equivalently 2) we 
test the significance of deviations of the normalized JPSTH 
from the (predicted) value of zero. 

An informative display of the results of the significance 
test (27) can be made by using the information-theoretical 
concept of “surprise” (22, 26). The surprise of a value in 
this context is the negative natural logarithm of the proba- 
bility for finding that value or a more deviant one (formal 
expressions are given in Appendix 1). It is, therefore, di- 
rectly related to the usual statistical notion of “level of 
significance.” For instance, a 5% level of significance corm 
responds to a surprise of 2.996 (= -In 0 05); a 1% level 
corresponds to a surprise of 4.605. The logarithmic trans- 
formation serves to expand the scale in the interesting re- 
gion in which the probability density has low values; this is 
somewhat comparable to the use of a decibel scale. More- 
over, introduction of the logarithmic scale allows a more 
sensible comparison of different values of significance; the 
same measure is assigned to equal ratios of probabilities 
rather than to equal algebraic differences. 

We can define a surprise measure for “excitation,” S(E), 
i.e., for an excess joint count compared to the individual 
counts, and comparably, a surprise for “inhibition,” s(I), 
i.e., for a deficit of joint counts. We could show these mea- 
sures separately. However, if for a particular bin one of the 
measures is high, the other is necessarily close to zero. 
Thus, in case of a significant “excitation” (or “inhibition”), 
the algebraic difference S(E) - S(1) practically equals S(E) 
(or -S(I), respectively). For reasons of display economy we 
have combined the two measures accordingly and show the 
algebraic difference S(E) - S(I) for all (u, v)-bins in the 
form of a single matrix (Fig. 3G). Note that “excitation” 
leads to positive values of this combined measure, whereas 
“inhibition” leads to negative values; the larger the (abso- 
lute) value in the surprise matrix, the more statistically 
significant the normalized JPSTH in the corresponding 
bin. (In Appendix 1 we give explicit relations between the 
surprise values for significant “excitation” or “inhibition” 
and the corresponding values of the normalized JPSTH.) 

We will scale all surprise matrices so that the positive 
range is set to 4.605 (corresponding to a significance level 
of 1% for “excitation”) and the negative range to -2.996 
(similarly, 5% for “inhibition”). The reason for this asym- 
metry is the difficulty in detecting inhibition as compared 
with excitation for the usual small counts (2,25, 27). 

All normalizations introduced above, as well as the sur- 
prise measure for significance are bin-by-bin measures. Yet 
in the above exposition, we have regularly referred to “fea- 
tures” in the matrix. In other words, we are implicitly 
searching for regions of approximate “spatial” coherence 
to assign meaning; isolated bins that reach extreme values 
are considered “noise.” This implicit additional require- 
ment for “spatial” coherence should somehow be incorpo- 
rated into the formal bin-by-bin measure of significance. 
Just as in the normalizations, we have introduced this re- 
gional aspect into the surprise significance measure by 
using a moving average (gaussian) along the corresponding 
diagonal histogram of surprise values. The underlying hy- 
pothesis for this smoothing process is that the values in 
individual bins are independent’; recall that the surprise 

* This (null) hypothesis is based on the assumption that the time interval 
between the bins considered is large enough such that the single neuron’s 
sDike-generating mechanism will not Droduce aDoreciable correlations 
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calculation is bin by bin. In such a situation, the joint 
probability for having any particular combination of bin 
values is simply the product of the individual probabilities. 
Here we encounter another advantage of the logarithmic 
surprise measure of significance: the joint surprise for any 
particular bin constellation is found simply by adding the 
corresponding individual surprise values. In our specific 
case, we require a large proportion of high values over 
some limited region of the surprise matrix; the addition of 
surprise values in such a region translates into the smooth- 
ing operation. Note that the added surprise values, how- 
ever, cannot directly be interpreted as a measure for statis- 
tical significance. This is quite obvious, because the addi- 
tion would lead to amazingly low significance probabilities. 
The correct statistical procedure for significance analysis of 
combined surprise values is the subject of current investi- 
gation. 

We can now interpret the surprise measure in Fig. 30. 
The surprise histogram shows no coherent structure except 
along the diagonal, where many points surpass the 1% “ex- 
citation” criterion. The corresponding diagonal histogram 
is relatively flat along its length. We take this result to 
indicate that the diagonal feature &en in the normalized 
JPSTH (Fig. 3E) is indeed a significant departure from the 
null hypothesis; the two neurons are not to be considered 
independent, and their interaction (which is “excitatory”) 
is not modulated by the stimulus. This means that our 
calculations are capable of recovering the detailed structure 
that had been built into the simulated circuit. Although 
there are occasional single bins in the remainder of the 
surprise histogram that reach extreme values (note extrema 
indicated in Fig. 3G), we do not consider these to be signifi- 
cant according to our extended criterion which incorpo- 
rates the additional requirement of “spatial” coherence in 
the surprise matrix. 
CALIBRATION BY SIMULATED NEURONAL 
CIRCUITS 

As we continue to calibrate the sensitivity of the normal- 
ized JPSTH and the surprise significance, we turn to sev- 
eral additional simulated neuronal circuits, as shown in 
Fig. 4, A and B. Both circuits have stimulus-locked modu- 
lation of the connectivity between the neurons. The objec- 
tive is to investigate whether the normalized JPSTH allows 
detection of such stimulus-modulated connectivity, even 
when this modulation is masked by direct stimulus influ- 
ences on each of the two neurons. 

The simpler case is shown in the left column of Fig. 4. 
(The layout of each column in Fig. 4 matches the right- 

among these bins. A possible source for such correlations would be the 
neuron’s refractory mechanism: the firing in one bin would be negatively 
correlated with the firing in adjacent bins (especially because WC assume 
our bins small enough to have at most one spike per bin per trial). Such 
negative correlations would manifest themselves as paradiagonal features 
of decreased coincidence counts in the auto-JRSTH, which is obtained by 
taking the same single-neuron spike train along both the x- and y-axis of 
the JPSTH. What we are, in fact, assuming here is “sparse firing”: fuing 
rates are so low that, even in stimulusdriven activity, the intervals be- 
tween adjacent spikes are (considerably) larger than the neuron’s refmc- 
tory period. With this assumption, which does not appear implausible for 
cortical neurons with typical, low firing rates, we can extend the null 
hypothesis to the e&t that also the spikes in different bins for the same 
neuron are independent. 

hand column of Fig. 3, as well as the columns of Fig. 5.) For 
this simulation, the average firing rates are -4/s; this is a 
lower rate than in Fig. 3, because there are no direct stimu- 
lus effects on the neurons. The connectivity was a triangu- 
lar function of time as shown in Fig. 2B, with the peak after 
the first quarter of the stimulus cycle. The numbers were 
specifically chosen to give an average connectivity of 0.1, 
the same value as the constant connectivity in Fig. 3. Fig. 4, 
C, E, and G, in that order, shows the “raw” JPSTH, the 
normalized JPSTH, and the surprise measure. The PST 
histogram along the x-axis, corresponding to neuron 1 (the 
“driver”), is flat, as expected from Fig. 4A. The connection 
between neurons 1 and 2 is sufficiently weak (although 
physiologically realistic) to make the PST histogram along 
the y-axis (neuron 2, the “driven”) also appear flat. The 
only feature in the “raw” JPSTH (Fig. 4C) is diagonal, and 
its intensity, shown in the PST coincidence histogram, 
matches what we know of the modulation of connectivity 
in the circuit. Given that the PST histograms are both flat, 
the normalized JPSTH (Fig. 4E) simply reflects a changed 
scale and base line. Finally, the surprise measure shows a 
diagonal feature that has many bins exceeding the 1% crite- 
rion level. The corresponding diagonal histogram also fol- 
lows the known connectivity function. To interpret these 
smoothed values, we also calculated a comparable histo- 
gram for the diagonal stripe that is two bins laterally dis- 
placed. That histogram does not rise above one-tenth of the 
peak values here. From this we conclude that the diagonal 
feature in the normalized JPSTH is highly significant; we 
have recovered the structure of the simulated circuit. 

The right-hand column of Fig. 4 presents a combination 
of direct stimulus modulation of the two firing rates and 
the stimulus-modulated connectivity that we have just an- 
alyzed. The circuit is shown in Fig. 4B. The “raw” JPSTH 
of Fig. 40 shows the expected vertical, horizontal, and 
diagonal features. The PST histograms show the direct 
stimulus effects, but again there is no obvious signature of 
the modulated connectivity in the driven PST histogram 
(along the y-axis). The corresponding PST coincidence his- 
togram shows a clear stimulus modulation of the near- 
coincident events; presumably this represents both the 
modulation of the firing rates and of the connectivity. 

The direct stimulus effects are removed in the normal- 
ized JPSTH of Fig. 4F; only the diagonal feature persists. 
Note that Fig. 4F looks generally like Fig. 4E, its counter- 
part for the circuit that only has stimulus-modulated con- 
nectivity: in both cases, the normalized PST coincidence 
histogram closely follows the known modulation profile of 
the connectivity. Finally, the significance measure in Fig. 
4H indicates that the diagonal feature in the normalized 
JPSTH represents a highly significant departure from the 
null hypothesis of no interaction. Therefore, even in this 
case of mixed direct and indirect stimulus effects, we have 
consistently recovered the simplest network that is suffi- 
cient to explain these data; this network appears to be 
identical to the (known) simulated circuit. 

QUANTITATIVE ASSESSMENT OF “EFFECTIVE 
CONNECTIVITY” 

It should be emphasized that in all of the above develop- 
ment of normalization, no assumptions whatsoever were 
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made regarding the structure of the underlying neuronal 
network: the approach is essentially model free. Under 
these conditions, the proper strategy is to test the data 
against the null hypothesis of no interaction; the possible 
outcome of this test is basically “yes” or “no” to some 
significance level. 

Once a significant departure from the null hypothesis of 
independence has been established, we can move to a sec- 
ond, model-related stage of interpretation. So far, we have 
only implicitly and qualitatively assigned meaning to the 
magnitude of the departure from the null hypothesis: the 
larger the departure, the stronger the “connectivity.” This 
notion can be made more explicit and quantitative by 
making specific assumptions about the underlying network 
structure. This means a mode/-based approach and aims at 
evaluation of the model’s parameters. From an excess (or 
deficit) of correlated events, we can make the conceptual 
transition to a statement of “effective connectivity.” The 
latter is expressed as a minimal neuronal circuit model that 
would reproduce such correlation measurements. 

An important example of such a model would be the 
simple circuit in which neuron a (x-coordinate in the 
JPSTH) drives neuron b (y-coordinate) with a specifically 
defined (linear or nonlinear) synaptic transfer function. 
The normalized JPSTH in this case will show an above-di- 
agonal feature that is displaced from the principal diagonal 
by an amount equal to the latency of the connection. In 
fact, we used just this model for the simulations that pro- 
duced the data analyzed in Figs. 1, 3, and 4. 

To quantitatively assess the strength of direct interaction 
among neurons, Levick et al. (23) introduced the notions 
of “efficacy” and “contribution.” Efficacy was defined as 
the fraction of spikes from the driver that are time related 
to spikes from the driven neuron, contribution as the frac- 
tion of spikes from the driven neuron that are time related 
to spikes from the driver. These two quantities remain the 
principal quantitative measures for “connectivity” devel- 
oped so far; consequently, they are widely used in the ex- 
perimental multi-unit literature (references can be found in 
Refs. 12 and 20). Adopting a model-based approach, we 
may generalize the quantities of efficacy and contribution 
to include possible stimulus-locked time variations. Such 
manipulations allow the assignment of specific numerical 
values for this type of dynamic “effective connectivity.” A 
discussion along these lines is given in Appendix 2; here we 
will only list the final results. 

The dynamic generalization of efficacy and contribution 
can be expressed in terms of the experimentally observable 
JPSTH and the single-neuron PST histograms 

e(u, v) = ( %b@, u>) - (%(u))(nb@>) 

(n,(u))(l - (n&))) 

c(u, v) = 
(nab@ v) - (f’hdu)>(nb(~)> 

(nb@))(l - (nb@))) 

(A2.1 I) 

(A2.12) 

These expressions for the dynamic efficacy and contri- 
bution can be related in an interesting way to the normal- 
ization of the JPSTH. When we compare Eqs. A2.11 and 
A2.12 with Eqs. 8 and 9, we observe that the normalized 
JPSTH takes an “intermediate” position between the com- 
plementary pair of efficacy and contribution, In contrast to 
the efficacy and contribution, the expression for the nor- 
malized JPSTH is symmetric with respect to both neurons, 
as one should expect for a model free descriptor. The “in- 
termediate” position of the normalized JPSTH between 
efficacy and contribution takes the form of a geometrical 
average 

(normalized JPSTH)2 = Efficacy X Contribution W) 

MULTI-NEURON RECORDINGS FROM REAL 
NEURONS 

In the above, we have‘described a new, extended quanti- 
fication of the old joint-PST Scatter Diagram ( 10, 11) in 
terms of the “raw” JPSTH, the normalized JPSTH, and the 
surprise measure of significance. These quantities were cal- 
ibrated by the use of spike trains derived from simulations 
of particular neuronal circuits. Analysis of these simulated 
spike trains showed that stimulus-time-locked variations of 
connectivity can indeed be untangled from the direct stim- 
ulus modulations of individual firing rates. In this section, 
we present illustrative examples of the “inverse problem”: 
we analyze the spike trains from real neurons to infer an as 
yet unknown “effective connectivity.” 

We have taken data from two preparations: cochlear nu- 
cleus of the rat and visual cortex of the cat, both lightly 
anesthetized. These data were available on tape, and we did 
not perform any exhaustive or systematic searches. The 
only criterion for selection of data to be examined was an 
“adequate” number of firings over an “adequate” number 
of stimulus presentations (for obvious statistical reasons). 
For more detail of the experimental arrangements, original 
intent, and results on other issues than dealt with here, see 
Refs. 17, 19, and 20, respectively. Cochlear nucleus experi- 
ments were done with a repeated long sequence of 50-ms 
tone pips with different frequencies and amplitudes. Data 
corresponding to the repetitions of a particular tone pip 
near best frequency, to which the two observed neurons 
responded with an on-burst and an off-burst (see PST his- 

FIG. 4. Evaluation of dynamic correlation and its significance for spike trains from 2 additional simulated neuronal 
circuits. A and B: schematic representation of the 2 simulated circuits. In both circuits, neuron 1 excites neuron 2 with 
identical stimulus-locked modulation of intemeuronal connectivity (cf. Fig. 2B). In addition, the circuit in B has direct 
stimulus modulation of the single-unit firing rates (cf. Fig. 2A); this circuit thus presents a combination of the 2 circuits in 
Figs. 3A and 4A. The layout of each column in Fig. 4 matches the right-hand column of Fig. 3. Furthermore, to enable 
comparison across results for different circuits, scaling within the lower 2 horizontal rows of Fig. 4 was set to identical values 
(scaling between rows is different though). Binwidth in all cases was 4 ms. Total numbers of events were as follows: left: 1,578 
(neuron 1, x-axis), 1,911 (neuron 2, y-axis), 2,000 (stimulus triggers); right: 2,658 (neuron 1, x-axis), 3,221 (neuron 2, 
y-axis), 2,000 (stimulus triggers). C, E, and G (left): the “raw” JPSTH, the normalized JPSTH, and the significance of 
correlation for the spike trains generated by the circuit in A. D, F, H (right): similarly for the spike trains generated by the 
circuit in B. 
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tograms in left-hand column of Fig. 5), was sorted out for 
analysis by the JPSTH. Cortical data involved repetitions 
of long sequences of moving bar stimuli (different orienta- 
tions; one cycle of moving back and forth lasted 5 s), and 
was similarly sorted to isolate responses to the repetitions 
of a particularly effective stimulus (in this case optimal bar 
orientation). 

We show results of the JPSTH analysis in Fig. 5. The left 
column is for a pair of rat cochlear nucleus neurons, the 
right column for a pair of cat visual cortex neurons. The 
layout is similar to that in the preceding figures, with the 
“raw” JPSTH on top, followed by the normalized JPSTH 
and the surprise measure for significance. 

Both these sets of data show in the “raw” JPSTH all 
features that we have encountered above for the simulated 
spike trains: features parallel to the axis, corresponding to 
direct stimulus effects on the single-neuron firing rates, and 
diagonal features corresponding to the correlation of firing. 
The normalized JPSTHs in both cases remove most of the 
horizontal and vertical features, and leave only the diago- 
nal feature. In both cases, when we examine the diagonal 
feature with the normalized PST coincidence histogram 
(tallied over the band indicated in the figure), we observe 
that the normalized correlation is clearly time varying 
along the diagonal. The significance of these effects is 
shown in the surprise matrices, which clearly confirm sig- 
nificance of the diagonal features. 

To “explain” the diagonal features, we make the con- 
ceptual transition to the notion of “effective connectivity”: 
the minimal neuronal circuit model that will reproduce 
these features. In such a minimal model there is a mono- 
tonic relation between diagonal feature strength and con- 
nectivity. Thus time variations along the diagonal features 
of the normalized JPSTHs in Fig. 5, C and D, are inter- 
preted as indicators of time modulated “effective connec- 
tivity.” 

The notion of “effective connectivity” usually can be 
split into two types of circuitry: direct interaction and 
shared input. This difference is reflected in characteristics 
of the diagonal feature such as width and (a)symmetry 
around the principal diagonal. The inferred “equivalent” 
circuits based on these criteria are shown in Fig. 5, G and 
H, bottom. The narrow, slightly above-diagonal feature in 
the normalized JPSTH for the cochlear nucleus pair (Fig. 
5C) is interpreted as the signature of a direct, excitatory 

synaptic connection from neuron 1 to neuron 2, its time 
course is taken to reflect stimulus modulation of the con- 
nection; we thus arrive at the model circuit in Fig. 5G, 
similar to our simulated circuit in Fig. 4B. Such a direct 
connection is not visible in the cortical data (Fig. 5, D and 
F): the diagonal feature is symmetrical around time shift 0, 
suggesting shared neuronal input. The strong time varia- 
tions along the diagonal are taken to reflect stimulus mod- 
ulation of the (unobserved) source(s) of shared input and/ 
or of the connections from source(s) to neurons 1 and/or 2 
(cf. Fig. 5N). 

In these two bodies of data, without systematic or ex- 
haustive search, we have encountered other neuron pairs 
with similar stimulus-modulated “effective connectivity.” 
We have also encountered neuron pairs in which the nor- 
malized PST coincidence histogram is relatively flat, indi- 
cating that the “effective connectivity” is not modulated in 
a stimulus-locked fashion. Obviously, we have also en- 
countered neuron pairs that showed no diagonal futures at 
all; these presumably were noninteracting neuron pairs. 

DISCUSSION 

In this paper we have developed a quantification proce- 
dure for the study of stimulus-locked, time-dependent cor- 
relation of firing between two neurons. This procedure 
starts from the ancient joint-PST scatter diagram and 
makes it possible to unravel and quantitatively describe 
direct and indirect stimulus effects on correlated firing of 
two neurons. The direct stimulus effects are shown by the 
predictor for the JPSTH; this predictor is the cross-product 
of the two single-neuron PST histograms and represents 
the null hypothesis of independent firing. The indirect 
stimulus effects (residual correlation) are described by the 
normalized JPSTH (Eq. 9); this is the algebraic difference 
between the “raw” JPSTH and the predictor, with subse- 
quent dynamic scaling by the cross-product of the standard 
deviations in the single-neuron PST histograms. Finally, 
we have demonstrated the use of a new measure for signifi- 
cance of features in the normalized JPSTH: surprise. 

We have investigated several other possible normaliza- 
tion procedures (one of which is explicitly considered in 
this paper; see also Ref. 27). In comparison, these altema- 
tives proved to be unsatisfactory in performance. The nor- 
malization of the JPSTH that we have selected is basically a 
test statistic for departure from the null hypothesis. It starts 

FIG. 5. Evaluation of dynamic correlation and its significance for physiological spike trains recorded from 2 neurons 
simultaneously. The left column is for a pair of rat cochlear nucleus neurons, the right column for a pair of cat visual cortex 
(area 17) neurons. In each of the experiments, spike trains were recorded during repeated presentation of an effective 
stimulus. Total numbers of events were as follows: left: 5 11 (neuron 1, x-axis), 48 1 (neuron 2, y-axis), 242 (stimulus triggers); 
right: 756 (neuron 1, x-axis), 2,13 1 (neuron 2 y-axis), 75 (stimulus triggers). The layout is similar to that in Figs. 3 and 4: the 
“raw” JPSTH on top (A and B), followed by the normalized JPSTH (C and D) and the significance of correlation (E and F). 
At the bottom, we show the inferred “effective” circuitry (G and H). The U symbol in H denotes unobserved other 
neuron(s). Scaling is done independently for each of the figure elements. Note the different time resolutions for these 2 sets 
of data: binwidth was 1.5 ms (left) and 50 ms (right), sweep duration 75 ms (left) and 5,000 ms (right). The lack of counts in 
the band along the main diagonal of the “raw” JPSTH for the cochlear nucleus neuron pair (A) and, hence, the negative 
values in the cross-correlograms of C and E, are an artifact: the multi-unit spike trains in this case were recorded on a single 
microelectrode and subsequently sorted on the basis of spike waveforms. The spike sorter used in these experiments has a 
dead time that discards temporally overlapping spikes. This dead time, admittedly, is a most unfortunate artifact of all spike 
sorter algorithms developed so far. This holds in particular, because it affects the central features in the cross-correlogram, 
which presumably are the signs of direct interactions. The alternative of using data from different microelectrodes, with 
consequently larger interneuron distance, however, has the disadvantage of only rarely showing direct interaction among 
recorded neurons (such as shown here). 
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from the deviation of actual stimulus-locked correlation 
from its expectation, but weighs such deviation, bin by bin, 
for the a priori expected statistical spread as expressed by 
the single-neuron standard deviations. This normalization 
is intrinsically model free; accordingly, it is symmetric with 
respect to the two neurons. 

Assumptions 

Throughout the development of the normalization pro- 
cedure, we have made two major assumptions. First, we 
have assumed that spike trains during successive stimulus 
presentations are “periodically stationary,” i.e., that indi- 
vidual trials are statistically indistinguishable. This as- 
sumption in itself is not particularly new: any analysis of 
(single- or multi-unit) spike trains involving averaging over 
stimulus sweeps (as in, e.g., the common PST histogram or 
any measure derived from it) is based on the same assump- 
tion. The second assumption involves the choice of bin- 
width in the analysis window: bins should be taken small 
enough such that per trial we collect at most one spike per 
bin. This assumption is essentially connected to the proba- 
bilistic nature of our approach: it allows the interpretation 
of trial averages of various counts as probabilities, i.e., with 
values between zero and one. This implies that also the 
second assumption is not restricted to the present issue: 
any analysis procedure of spike trains that treats a trial 
average (e.g., a PST histogram) as an event density in the 
probability sense must necessarily make the same assump- 
tion to guarantee interpretable values between zero 
and one. 

The assumption of “periodic stationarity” excludes 
long-term trends or other sources of variability on medium 
to large time scales. Clearly, if such sources should be pres- 
ent, our predictors for the JPSTH (Eq. 4) and its statistical 
vtiation (Eq. 7) would be incorrect and, consequently, the 
normalized JPSTH would yield erroneous results. The way 
in which the predictors and, consequently, the normalized 
JPSTH are affected is highly dependent on the nature and 
form of the nonstationarities. A simple example may serve 
to illustrate this point. In the case of a trend in overall firing 
rate of only one of the two neurons, while the other one 
remains constant, the PST-based predictor (Eq. 4) still is a 
correct estimator of the expected coincidence counts under 
the null hypothesis [the variance estimator (Eq. 7), how- 
ever, in general is no longer correct]. For a linear trend in 
both neuron firing rates, however, the PST-predictor (Eq. 
4) can either be an underestimate or an overestimate, de- 
pending on whether the trends in the two neurons go in the 
same or in obverse directions. The result thus is an incom- 
pletely normalized JPSTH: remaining horizontal/vertical 
features and/or possibly delusive suggestions of modula- 
tion of “effective connectivity” (as we have sometimes en- 
countered). Careful screening of the spike train data for 
such nonstationarities, therefore, is mandatory (such 
screening was performed for all results presented here). 
Especially in data from the cortex, where medium- to 
long-term neuronal variability, not under the control of the 
experimenter and highly correlated within groups of 
neurons, has been demonstrated (5), and in spike data from 
awake, behaving animals, the possible effects of nonsta- 

tionarities across stimulus presentations on any kind of 
average measure should seriously be considered. If neces- 
sary (and possible), one may use the procedure of “slicing” 
the spike trains into different sections, each one periodi- 
cally stationary, and compare the results across sections. A 
more general analysis of the effects of nonstationarities and 
the development of appropriate control calculations is cur- 
rently in progress. 

Implementation 
Software realizations of the various calculations we have 

described were implemented in Fortran 77; a wide range of 
graphic display devices is trivially accomodated. Computa- 
tion time on any current computer is negligible: reading the 
spike data and calculation (without specific attempts at 
optimization) of the “raw” JPSTH plus its normalized ver- 
sion, the surprise matrix and the ordinary PST histograms, 
as well as the diagonal histograms and cross-correlograms 
for each of the three matrices for spike trains involving 
some 3,000 spikes over 2,000 sweeps (Fig. 4, D, F, and G) 
on the Institute’s Vax-750 took -35 CPU-seconds; com- 
parable timing should be accomplished on any modem 
microcomputer. Both display and publication printing, 
however, are more difficult. We have used a Vectrix-384 
color display device (672 X 480 pixels, 5 12-color palette) 
attached serially to our computers. This type of device with 
its serial connection requires a considerable time to build 
the kind of pictures used in this paper. Currently available 
display devices that are directly attached to the computer 
bus eliminate this time problem. We have found the use of 
color in these displays quite useful in the laboratory and for 
making slides. Publication costs of such color material, 
unfortunately, remain prohibitive, so that we had to use 
gray scales here. The results on the screen are quite satisfac- 
tory; however, we have found the technical process of get- 
ting from the gray screen to the printed page to be quite 
difficult and disproportionately time consuming. 

“E,ffective connectivity” 

The normalized JPSTH erases all vertical and horizontal 
features (signatures of direct stimulus effects) and leaves 
only the diagonal features as it should. These diagonal fea- 
tures represent correlation of firing that goes beyond stimu- 
lus-induced modulations of single-neuron firing rates. To 
“explain” such residual correlation, we invoked the notion 
of “effective connectivity”: the minimal neuronal circuit 
model that will reproduce the diagonal features. Note that 
“effective connectivity” should not be understood as a 
unique statement of the actual anatomic connectivity, be- 
cause more than one arrangement (involving, e.g., extra 
intcmeurons) could provide the same overall behavior. 

The usual approach when interpreting neuronal correla- 
tions in terms of “effective connectivity” is to separate two 
types of circuitry: direct interaction and shared input. In 
the present context, we can base this separation on the 
characteristics of the diagonal features. In Appendix 2 we 
have elaborated some of the quantitative measures that are 
appropriate for the case of direct neuronal interaction. We 
generalized the commonly used measures of “efficacy” and 
“contribution” to incorporate stimulus-time-locked varia- 
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tions. It turns out that the normalized JPSTH is the geo- 
metrical mean of these two measures. We note that the 
variance in the denominator of the expression for the nor- 
malized JPSTH (Eq. 9) was originally introduced for sta- 
tistical reasons. It is interesting (and reassuring) that the 
variance now also appears as the result of probabilistic rea- 
soning underlying dynamic generalization of efficacy and 
contribution. 

One of the benefits of the normalized JPSTH procedure 
is an improved way to normalize the ordinary cross-correl- 
ogram to remove the direct effects of stimulus. We have 
shown that tallies over long bins parallel to the diagonal of 
the normalized JPSTH provide a better estimate of such a 
normalized cross-correlogram than possible with any pro- 
cedure applied directly to the “raw” cross-correlogram. Of 
course, this procedure loses all stimulus-locked time struc- 
ture of the correlation-it is a time average. The effects of 
this were clearly demonstrated in Figs. 3, 4, and 5. 

Modulation of “ecffective connectiirity” 
Application of the normalized JPSTH to simulated spike 

trains in which we knew the underlying circuit allowed 
recovery of the known “effective connectivity.” In particu- 
lar, we showed that the normalized JPSTH has the sensitiv- 
ity to detect stimulus-locked modulation of “effective con- 
nectivity,” even when strongly masked by direct stimulus 
rate modulations. We then applied this procedure to sev- 
eral sets of spike trains from physiological recordings in 
different preparations. Without exhaustive search, we 
found examples of both rapidly modulated and constant 
“effective connectivity”; these findings occurred both for 
direct interaction and for shared input. We observed time 
constants for these stimulus-locked modulations as low as 
tens of milliseconds for cochlear nucleus; in cortex the time 
constants seem to be somewhat longer. Similar observa- 
tions have recently been made in multi-neuron recordings 
from a number of different laboratories and preparations; 
the phenomenon seems to be robust across animals, brain 
areas, stimulus modalities, and detailed recording proce- 
dures (15 and Gerstein and Aertsen, in preparation). 

We suggest that it is appropriate to incorporate rapid 
modulation of “effective connectivity” into brain theory 
and modeling. Note that there are various physiologically 
reasonable mechanisms for achieving such rapid modula- 
tion of “effective connectivity,” in terms of both direct 
connections and shared input. One possible type of mecha- 
nism would involve rapidly modulated synaptic strength 
(24), but there are many alternative possibilities that will 
work with constant synaptic strength (e.g., Ref, 9). One 
possibility is that the observed time variations in “effective 
connectivity” among two neurons are due to shared input 
from a large network of neurons in which the stimulus 
induces a reverberation. The underlying system-theoretical 
question in choosing the proper model-to represent resid- 
ual correlation is whether one regards a description in 
terms of a small network with varying connectivity or in 
terms of a large network with constant connectivity as the 
simpler one. Both types of description are always logically 
possible for data such as presented in this paper. Further 
theoretical and experimental work is needed to select 
among the various possibilities. 

APPENDIX 1 

Surprise 
The surprise for “excitation” S(E), given a count z of m coinci- 

dences in a particular bin is defined as (27) 

S(E) = -In (prob [z 2 m]) 

Similarly, for “inhibition” it is defined as 

(Al.1) 

S(E) = -In (prob [z < m]) (Al .2) 

Under the assumption that the coincidence counts z are approxi- 
mately normally distributed, we can derive an explicit relation 
between the surprise values for significant “excitation” (or “inhi- 
bition”) and the corresponding large positive (or negative) values 
of the normalized JPSTH. The assumption of normality is more 
realistic, the larger the number of stimulus presentations; see Ref. 
27 for a discussion on this issue. In that case, we get for significant 
“excitation” 

prob [z 3 m] = 1 - erf’(m’) (A1.3) 

where erf denotes the error function, and m’ is the standardized 
coincidence count, i.e., after subtraction of the expected value 
and scaling by standard deviation. For large m’ this can be ap 
proximated by 

prob [z >, m] NN a exp(-bm”) (Al 4) 

for some appropriate constants a and b. Thus we obtain for the 
surprise 

S(E) NN bm’2 + c (AM) 

for some appropriate c. Analogous reasoning for the case of signif- 
icant “inhibition” leads to the same result. 

Therefore, the significant values in the surprise matrix should 
be approximately proportional to the square of the normalized 
JPSTH. This relationship amounts to a “sharpening” of peaks (or 
troughs) in the surprise matrix, as compared with the corre- 
sponding peaks (or troughs) in the normalized JPSTH matrix, as 
indeed can be observed in our Figs. 4, E and G, Fand H, and 5, C 
and E. 

APPENDIX 2 

Quantitative assessment of connectivity: “eficacy” and 
“contribution ” 

In this appendix, we will generalize the concepts of eficacy and 
contribution, which were first introduced by Levick et al. (23). 
These concepts are meaningful only in a context in which one 
neuron drives another. We will assume that neuron a (x-axis of 
the JPSTH) drives neuron b (y-axis). The signature of this situa- 
tion in the normalized JPSTH is an above-diagonal feature, with 
displacement from the principal diagonal corresponding to the 
connection’s latency. 

It will be convenient to adopt a notation in terms of probabili- 
ties rather than correlation densities. This is trivially realized, 
because after appropriately binning the spike trains, we obtain a 
(0, I)-process, for which expectation values (correlations) equal 
probabilities 

E[n,(u)] = p (a = 1 in u, u + A) = p,,(a) 

E[nb(v)] = p (b = 1 in v, v  + A) = p,(b) 

E[nab@, @I = P (a = 1 in u, u + A and b = 1 in v, v  + A) 

= Pl.&, b) (A2. I) 

As in the rest of this text, the time indices (u, U) refer to the time 
since the most recent occurrence of the stimulus marker. 
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The classical quantities to describe a direct connection are effi- 
cacy (effectiveness) and contribution (23). Eficacy was defined as 
the fraction of driver spikes that are related to the driven spikes by 
virtue of a precise time delay (number of near-coincidences di- 
vided by total number of driver events). Contribution was defined 
as the fraction of driven spikes that are time related to the driver 
spikes (number of near-coincidences divided by total number of 
driven events). Note that the quantities, as defined by Levick et al. 
(23), are numbers and not functions of time; the implicit as- 
sumption is that they are never modulated by the stimulus. 

We now propose a time-dependent generalization of these no- 
tions. Because in our model we have assigned neuron a to be the 
driver and neuron b to be the driven, our first approximation to a 
time-dependent generalization is 

e Aa, b) =--=p(bla) 
PC4 

and 

c= PM9 b) 
-=Pmo 
P(b) 

(A2.2) 

(A2.3) 

For brevity, we have omitted the time arguments (u, u); it is 
understood, however, that Eqs. A2.2 and A2.3 are restricted to (u, 
@-values corresponding to the above-diagonal feature in the nor- 
malized JPSTH; this is where the model applies initially. We will 
lift this restriction later. 

On closer inspection of Eqs. A2.2 and A2.3, it becomes clear 
that these expressions actually overestimate the magnitude of ef- 
ficacy and contribution. This is most easily realized when we 
gradually decrease the strength of the connection; in the limit of 
completely independent neurons a and b, we would have 

and 

e=~(b/a) =p@) 

c=p@Ib)=p(a) 

(A2.4) 

(A2.5) 

which, in the case of spontaneous activity and/or other unob- 
served drivers, would not yield the values of zero that are intu- 
itively appropriate for this case of “unconnected” neurons. 
Clearly, in the original definitions (Eqs. A2.2 and A2.3), we are 
also counting “accidental” coincidental events: those b-events 
that would have occurred anyway near a-events in the absence of 
the (a, &connection. Evidently, we need a “correction” term to 
compensate for these “accidental” coincidences. 

Let us for the moment concentrate on the efficacy; the contri- 
bution measure can be treated in completely analogous fashion, 
and we will give the corresponding results later. A possible esti- 
mate of the portion of Eq. A2.2 that represents accidental events 
could be p(b). The probability of an a-driven event would then be 
obtained by subtracting p(b) from the conditional probability 
p(b 1 a). This would resolve the paradoxical result of Eq. A2.4 for 
independent neurons; the resulting efficacy in that case would be 
zero. Actually, this correction is precisely what is accomplished by 
the subtraction of a PST-based predictor. This has been common 
usage in the context of usual cross-correlograms (29; for reviews 
see Refs. 11 and 19): to measure the truly driven time-related 
events, one takes the area of what is left of a peak in the cross- 
correlogram after subtraction of the predictor correlogram. 

Once again, however, this procedure makes an overestimate, 
this time of the number of “accidental” coincidences; hence, we 
are underestimating the connection’s efficacy: This becomes 
especially clear when we examine another limiting case: full de- 
pendence of b on a, i.e., all b-events are due to a-events, and there 
are no “accidental” b-events. In this case, takingp(b) to represent 
the “accidental” coincident events would in fact assign all 
(driven) b-events to be “accidental” and, hence, would measure 

the efficacy of the connection to be an erroneous zero rather than 
the correct positive value. In the general case, p(b) is an overesti- 
mate of having an “accidental” coincidence, because besides 
these “accidental” coincidences, it also incorporates the a-driven 
events. 

What we actually need is an estimate for the probability p(b’) of 
a b-event as it would be in the hypothetical situation that the (a, 
b)-connection were not present. Let us sort the total (a, b)-coinci- 
dences into two classes: those that are driven, and those that are 
“accidental.” This corresponds to the assumption that the pro- 
cesses responsible forthese events are additive. The probability of 
truly driven coincidences can then be written asp(a, b) - p(a, b’). 
The second term, by definition, represents independent events 
and can be written as a product: p(a)p(b’). To calculate the hypo- 
thetical p(W) we take the total p(b) and subtract from it the above 
given probability of truly driven coincidences. This leads to the 
following recursive relation 

PW = Pm - (Ph b) - P@lpW) (A2.6) 

which can be explicitly solved for p(b’) 

p(b’) db) - da, b, P(‘, ‘1 = z-z 
1 -P(a) 

p(bl@ (A2.7) 

Thus, under the given assumptions, the hypothetical probability 
p(P) is equal to the measurable probability of having a b-event 
conditional on not having an a-event (i.e., a’). For the efficacy we 
then obtain 

e=P@Ia)-P(bl~ (A2.8) 

For the earlier discussed case of independent neurons, the con- 
ditional probability p(b 1 a) simply equals the unconditional p(b); 
therefore, Eq. A2.8 in this case results in an efficacy of zero, as it 
should. For strongly connected neurons, the second limiting case 
discussed earlier, p(b 1 a’) is zero, so that the efficacy is correctly 
p(b) a). Hence, unlike the two 
efficacy, Eq. A2.8 takes proper 

earlier attempts to formally define 
b care of both limiting cases of very 

weak and very strong connections. 
For the more usual intermediate case of partial connectivity, 

i.e., some b-events are directly due to a, and some are not, Eq. 
A2.8 can be further elaborated 

e Aa, b) ~(6 bl =--- 
PW Pm 

PM, b) =-- P@ -&a, b) 

PW 1 -P(a) 

Collecting terms, we obtain for the efficacy 

Similarly for the contribution measure we obtain 

c 
= 

PM9 b) - PWPVO 
PW - p@N 

(A2.9) 

(A2.10) 

Both of these measures can be evaluated directly from the ob- 
served spike data by using the JPSTH and the single-neuron PST 
histograms by using Eq. A2.1 

e(u, v) = 

c(u, v) = 
(nb@))(l - (nb@>)> 

(A2.N) 

(A2.12) 

These new measures, as all others defined in this paper, have 
been derived and should be evaluated bin by bin. Originally, in 
this section, we restricted the (u, U) time values to only cover the 
range of the off-diagonal feature in the normalized JPSTH. We 
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started this appendix with the model assumption that neuron a 
drives neuron b with a definite timing relationship, as demon- 
strated by the single off-diagonal feature. The implicit assumption 
is that there is no other indication of driving in the normalized 
JPSTH: efficacy and contribution outside the feature region are 
understood to be zero. Because Eqs. A2.11 and A2.12’yield ex- 
actly this result, there is no reason to restrict the (u, u)-values to 
any particular range. 

Similarly, we restricted this discussion to the case of an off-diag- 
onal feature in the normalized JPSTH. Obviously, the extended 
efficacy and contribution notions (Eqs. A2.1 I and A2.12) could 
also be applied blindly to arty normalized JPSTH matrix, includ- 
ing those having a feature that straddles the principal diagonal. 
Such a feature is the signature of shared input to the two neurons. 
However, in such a case, blind application of efficacy and contri- 
bution will assign meaningless parameters to an inappropriate 
model. Meaningful interpretation of efficacy and contribution are 
restricted to the case of off-diagonal features. 

With Eqs. A2. II and A2.12, we have achieved the goal of a 
generalized time-dependent quantitative descriptor of “effective 
connectivity”: the evaluation across the (u, u)-plane provides a 
quantitative characterization of the connection, both along the 
diagonal (time throughout the stimulus period) and at right angles 
to the diagonal (different delays in the near-coincidence). From 
these generalized, dynamic measures of effective connectivity, we 
can return to time-independent measures similar to those origi- 
nally proposed by Levick et al. (23). This can be done by the 
appropriate integrations along the diagonal in a broad enough 
stripe, much the same as was done in going from the normalized 
JPSTH to the normalized cross-correlogram (cf. Fig. 1, E and G). 
The result of this procedure reduces each of our dynamic quanti- 
ties to a single number: its time average over the relevant range of 
running time u integrated across the time difference u - u. 
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