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ABSTRACT

To study neural interaction it is necessary to simultaneously
record spike trains from a population of neurons under dif-
ferent experimental conditions. Evaluation of the data is nor-
mally done by crosscorrelating the spike trains of all possible
pairs of neurons and inspecting the results for possible signs of
coherence. With recording from relatively large populations
(10-30) of neurons becoming experimentally feasible, this pro-
cedure starts to be prohibitively tedious. Moreover it does not
really address the issue of interest: cooperativity in larger
groups of neurons, possibly involved in so-called assemblies.

In this paper we discuss a recently developed technique for
multi-unit analysis, explicitly designed to overcome these dif-
ficulties: ’gravitational clustering’. The basic idea is the
following: each of the recorded N neurons is associated with a
charged particle in a fictitious (N-)space. Due to the time
varying charges, determined by the respective neurons’ spike
trains, the particles mutually exert forces which cause them to
move: coherently firing neurons result in particles aggregating
into clusters.

We also describe a slightly modified version of this approach:
the "dynamic correlation matrix’,

Both techniques will be illustrated with the results of their ap-

plication to multi-electrode recordings from the cat's visual
corlex.



I. INTRODUCTION

Much of our understanding of the functioning of the nervous system is based
on electrophysiological recordings of the activity of individual neurons, the single unit
spike trains. There is, however, ample evidence that the nervous system is more than
simply a collection of independent elements. Especially at more central levels. it is
thought to involve functional assemblies of neurons, acting together in a coherent
manner, mediated by anatomical, presumably ’plastic’ connections [20,12,6,31]. In
order to gain understanding of processes within and between neuronal assemblies it is
necessary to observe simultaneously and separably the activity of many neurons during
appropriate experimental manipulation of the whole organism.

Within this context it is understandable that we are witnessing a growing
interest in the study of neuronal interaction. Mainly due to recent developments in
multi-neuron recording technology (multi-micro-electrodes, spike separation
techniques), the simultaneous recording of spike trains from a population (10-30) of
neurons has become a feasible enterprise (reviews are given in [15,27]).

The search for 'meuronal assemblies’ raises an interesting sampling problem: What is
the size of such an assembly and how large a fraction of an assembly does one have to
observe in order to draw conclusions about the assembly as a whole? Since this issue
remains largely unsettled, it is generally felt advisable to try to record from large
groups of neurons. A relatively new technique which seems to be well suited to
achieve this goal is the method of ‘optical recording’, which uses voltage sensitive
fluorescent dyes [18,19]. Provided that this technique, when applied as a multi-unit
recording device, reaches a spatial resolution which is in the single neuron range (the
present resolution i1s - depending on the preparation - at best some 30 microns), it
should be possible to record simultaneously and separably from some hundred neurons
at a time. This means that a substantial part of the network is available for
observation, as compared to relatively low fractions attainable with multi-electrodes.
The advantage of this higher 'sampling’ ratio for the analysis of network properties
can hardly be overestimated.

Another potential advantage of the optical recording technique is that the neurons one
is recording from, are literally visible. This in principle opens the way for a long
overdue attempt to combine multi-neuron recording with a more thorough analysis of
anatomical structure than currently possible with multi-electrodes "poking in the dark’.

Facing the massive flow of data resulting from evermore sophisticated multi-
neuron experiments, it must be granted that, unfortunately, theoretical developments
regarding analysis and interpretation of these data have not been able to keep pace.
The principal tool for analysis in use continues to be the cross correlation of pairs of
spike trains (two neurons at a time), a method which was developed already in the
sixties [34]. Although proven to be quite adequate for few-unit (2-3) recordings, this
approach i1s being strained beyond extent in a situation where recording from some
ten neurons simultaneously has become a relative routine in a number of laboratories.
In this context the present paper discusses recently developed techniques of multi-unit
analysis: 'gravitational clustering’ [17,14,1], and the related technique of ‘dynamic
correlation matrix analysis’. These techniques will be described heuristically and
illustrated with the results of their application to multi-electrode recordings from the
cat’s visual cortex [25].
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2. CONVENTIONAL ANALYSIS OF MULTI-UNIT RECORDINGS

In the following we will look somewhat more closely at a tvpical multi-unir
recording, in this case from Area |7 in the cat In these experiments use was made of
a hinear array of twelve glass covered Pt-Ir electrodes, arranged in arganpipe -like
manner with a distance between electrode tips of 160 microns. The array  was
introduced into the left hemisphere of the visual cortex at an angle of 45° such that
the electrode tips were situated approximately vertically underneath each other (far
detmls see [25]). The actual recording sites could be reconstructed after the experiment
on the basis of lesions made by some of the electrodes (generally 3 to 4). In the
present example the array of recording sites indeed was shown to be approximately
perpendicular to the cortical layers; individual sites were situated in the Following
layers: electrode number | in the white matter underneath laver VI, 2 in layer VI, 3
in VI 41n VI, 5 in ¥V, 6 in IV, 7 in IV, 8 on the border of IV and III. 9 in I11/111
and, finally, 10 mn L The remaining two electrodes in this particular case did not yield
a useful recording and are left out of consideration. Five out of ten electrodes (nrs. 2.

4, 3, 6 and 8) each gave a reliable single unit recording, the remaimning five (nrs. |, 3.

7, 9 and 10) were judged to be probably single unit, with possibly some additional
spikes trom a second unit.

The stmulus in this experiment consisted of a light bar (length 3°, width 14) maving
at constant velocity n a direction perpendicular to its orientation (distance travelled
3%, duratuon 1.8 sec). At the end of the movement the bar remained stationary for 0.4
sec, after which it moved in the opposite direction (same distance and duration)
'imally the bar was rotated over 22.5° (duration | sec) after which another, identical
cycle of movement back and forth, perpendicular to the bar orientation started This
scheme was repeated periodically, so that after R cycles of 5 seconds the original
direcion of movement was reached again. The complete stimulus sequence. lasting 40
seconds, was presented repeatedly, in general some 20 to 30 times. In the particular
example discussed below, the stimulus was presented to the right (contra-lateral) eve.

2.1 Representation of Multi-Unit Spike Trains

Spike trains recorded during 10 consecutive stimulus sequences are shown as
dot displays in Fig. 1, with different neurons represented by different calours. Time
runs horizontally, covering the complete stimulus sequence of 40 sec. vertical lines in
the dot displays signify the different movement cycles of 5 sec each. Dat displays are
arranged 1n the way the corresponding recording sites were located in the cortex: the
pink dots at the top represent spikes from electrode 10 which occupied the maost
superficial position in the cortex (in layer 1), the yellow ones at the hattam correspond
to spikes from electrode | which was down in the white matter below laver V1. In the
lowest part of Fig. | we have schematically indicated the stimulus program with
arrows shawing the direction of bar movement. From this Figure it becomes quite
clear that not all directions are equally successful in eliciting a response: for instance
the stimulus where the bar is moving to the upper left corner under an angle of 45°
appears to be clearly favoured in the recordings 5 to 8. The more or less unanimous

preference tor direcuon of bar motian i1s consistent with the earlier mentioned vertical
alignment of recarding sites.



Figure [. Dot displays of spike trains from a twelve electrode recording tn the cat's
visual cortex. Two electrodes were omitted because they did not vield a useful
recording. Different colours represent different electrodes. The stimulus program (bar
moving 1n different directions) is indicated schematically at the bottom. Further
explanation 1s given in the text.

Figure 1. Dot display showing a selected part of the data from Fig. I: one direction of
bar movement ndicated at the bottom of the Figure. At the left the data are
displayed as in Fig. | (sweeps per umit), whereas at the right the adjacent traces in
each box represent synchronous activity of the different neurons (units per sweep).
different boxes corresponding to different stimulus presentations. The colour code is
the same as in Fig. |.
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In order to study the effects of bar movement direction more closely, the
data as displayed in Fig, 1 could be 'cut’ into different vertical slices by selecting an
appropriate time window, such that in every slice one has only one direction of
stimulus movement. Using this procedure of editing the spike trains ("cut’ and ‘glue’)
we have artificially produced multi-unit recordings, in which the stimulus is a bar
periodically moving in one and the same direction. In Fig. 2 we have displayed the
response to the earlier mentioned preferred stimulus direction (45°, top left), by
selecting a time window between 22 and 24 sec in the 40 sec sweep. On the left hand
side the data are displayed in the same way as in the previous Figure (organized in
sweeps per unit), whereas on the right hand side adjacent traces in each box represent
the simultaneous activity of different units during one stimulus presentation (units per
sweep), the different boxes corresponding to subsequent stimulus presentations. The
latter representation, where colour now is essential to identify the different units
("Neurochrome' [10]), in fact is the more natural one. since it reflects most properly
the acuvity as it happens to occur in the brain. Consequently, it is also the most
appropriate one to look for possible time patterns in multi-unit activity. In Fig, 2 one
observes how different neurons react differently to stimulation, both regarding the
magnitude and the time course of the responses. Whereas the left hand part of Fig. 2
clearly shows the average dynamic properties of each single neuron's response to the
ensemble of identical stimulus presentations, the right hand part emphasizes the
intricate inter-relationships between the individual responses of different neurons
during each single stimulus sweep, Note also the considerable variability of multi-unit
firing patterns over subsequent presentations of the same stimulus (different boxes in
right part of Fig.2). In this context we note that. when looking for temporal structure
in multi-unit activity it should - apart from proper visualization - also seriously be
considered to present the data to the investigator truly as signals in the time domain
e.g. as idenufiable, audible signals (*"Neurophone’ [2]).

2.2 Cross Correlation Analysis of Pair Interaction

The commonly used technique to investigate coherence among simultaneously
recorded activity of different neurons is to select from the observed group two

neurons at a time, and analyze this pair's firings for possible temporal relations. This
analysis 15 based on the cross correlation function of the two simultaneously recorded
spike trains [34]. Departures from background in the correlogram are taken as
indicative of a 'functional connection’ between the two neurons, where this
‘connection” may take different forms: excitatory or inhibitory connection, shared
input, stimulus coupling [30]. We use here the term ‘'functional connection’ as purely
descriptive: for some, as yet not specified, reason there is a statistical relationship
between the probabilities of firing of the two neurons.

An example of this type of analysis is shown in Fig. 3, which presents correlograms
with different time resolutions for the pair of units 7 and 8, calculated for the
activity evoked by presentation of the '45°, top left'-stimulus (cf. Fig. 2; for the
correlograms we used 16 stimulus sweeps instead of only the 10 shown in the dot
display). In the upper correlogram (Fig. 3a), the one with the largest time scale (-4 to
4 sec, 80 ms/bin), one clearly sees the dominating effect of the stimulus: periodical
waxing and waning of synchrony of firing, with a period of 2 sec, corresponding to
the period of stimulus presentation in our 'edited’ spike trains. Even at this resolution,
though, one also notices that the synchrony around zero time shift (middle peak:

simultaneous activity) is slightly higher than in the adjacent peaks (corresponding to a
time shift of one stimulus period). This is shown in more detail in the lower correlo-



grams which have increased time
resolution (Fig, 3b and 3c: 10
ms/bin, Fig, 3d and 3e: |
ms/bin). In each of these pairs of
correlograms the top one (3b
resp. 3d) corresponds to zero time
shift (simultaneous recording),
whereas the lower one (3¢ resp.
3e) shows the synchrony for a
time shift of one stimulus period
(the so-called 'shift control' [16]).
Comparison of simultaneous cor-
relogram and  shift control,
especially in the lower pair,
clearly shows that, during this
particular stimulus, the firings of
units 7 and 8 exhibit a degree of
synchrony which significantly
goes bevond the much higher de-
gree of synchrony induced by
stimulation per se. The fact that
this 'extra’ synchrony has its peak
at the origin suggests that at least
the main contribution is due to
shared neuronal input, whereby
the rather irregular and unsym-
metric form of the elevation does
not exclude other neuronal sour-
ces of coherence.

Careful inspection of the
shape of correlograms and the
evaluation of quantitative charac-
teristics, such as peak width,
height, displacement from zero
etc., are used to make inferences
about possible connectivity in the
network, An account of an ana-
lysis in these terms was given by
Kriger [26]). It should be noted
here that under conditions of re-
latively sparse firing, which is
the normal case in cortex, the
method of cross correlation of
spike trains was shown to strong-
ly favour the detection of excita-
tory connections (signified by an
elevation in the correlogram)
above inhibitory ones (a trough

in the correlogram) [3).
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Figure 3. Cross correlograms of the
spike trains from neurons 7 and 8 with
three different time resolutions (a.
80 ms/bin; b, and ¢. 10 ms/bin: d. and
e. 1 ms/bin). Data are the same as in
Fig. 2 (only one direction of bar move-
ment). Two correlograms (b. and d.)
display the coherence between neurons
7 and 8 in a simultaneous recording,
whereas ¢. and e. show their synchrony
with a time shift over one stimulus-pe-
riod (‘shift control'). Further explana-
tion is given in the text.



The problem about this approach is that the number of correlograms which
have to be examined grows nonlinearly with the number of recorded neurons: for N
neurons one has N(N-1)/2 different pairs, which in the present case of 10 neurons
(cf. Figs. 1 and 2) implies 45 correlograms. Going to 30 neurons (this is about the
maximum number of simultaneous recordings that came forward in the last few years,
see e.8. [28]) the number of correlograms increases to 435. These numbers have to be
multiplied still further, e.g. with the number of different stimuli (in our case, for
instance, we have 16 directions of bar movement) and with the desired number of
different time resolutions. After examination of all the individual pair correlations,
the inference has to be recombined by the experimenter into a single conceptual
picture. Quite evidently this procedure becomes prohibitively tedious for growing
numbers of recorded neurons (imagine the pairwise analysis of a 100-unit recording
from a fluorescent dye experiment!). Furthermore one may question whether the
pairwise analysis of correlation addresses the real issue of interest: cooperativity in
larger groups of neurons, possibly involved in so-called "assemblies’

3. '"GRAVITATIONAL CLUSTERING’

In order to overcome the difficulties discussed above, recently a new analysis
technique was proposed: 'gravitational clustering' [17]. A formal description of this
approach has been given elsewhere [1.14,17]; we will restrict ourselves here to a short,
rather more heuristic description.

The basic idea is as follows: with each of N neurons we associate a point-particle in a
(fictitious) N-space. Initially these particles are located such that mutually they all
have the same distance. This is achieved most easily by placing them on the vertices
of an N-dimensional hypercube. Now each particle is given a time varying charge,
which is determined by the respective neuron's spike train: each spike induces a
charge increase which decays in the course of time (we have used an exponential
decay with different time constants, e.g. 8 ms). Because we assume that in our
fictitious space a kind of Coulomb law is valid (for equations see Appendix) the
particles mutually exert forces, which cause them to move. As a consequence of
temporal overlap of charge histories some of the particles will cluster, whereas others
will on the average preserve their original positions.

The rules of the charge functions can be defined such that the forces lead to
aggregation of those particles which correspond to neurons that tend to fire iIn
synchrony (excitation) or, on the other hand, where firing in one is associated with
silence in others (inhibition). Different clusters correspond to different assemblies. By
this procedure we have translated the amount of temporal coherence among different
spike trains into a distance measure in N-dimensional space: the higher the coherence

among neurons, the smaller the distance between the corresponding particles and vice
Versa.

Since the gravitational representation translates synchrony into clustering, it is to be
expected that the high degree in synchrony induced by stimulation per se (cf. Fig. 2
and 3) will lead to profound clustering of almost all particles, thereby effectively
masking the much smaller amount of coherence of neuronal origin. Since at this point
our main interest is in the latter contribution to multi-unit coherence, this purely
stimulus-related component has to be taken care of. In a first order approximation
this was accomplished by resorting to a differential type of analysis which may
perhaps be characterized best as being analogous to subtracting the ’shift control’ from
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the simultaneous correlograms in Fig. 3. We wili return to this methodological issue in
Sect. 4; a more extensive discussion on procedures to normalize for directly stimulus-
induced nonstationarities c.q. synchrony will be presented elsewhere (Aertsen et al., in
preparation). All results in the remainder of this Section were normalized for direct
stimulus effects by this differential correction procedure.

3.1 Coherence as Proximity: Analysis of Distance

The original problem of analyzing temporal coherence now has been traded
for the problem how to investigate the N-space for clusters of particles. Qur first
approach was to plot the different inter-pair distances as a function of time:
downgoing curves will signify clustering particles while horizontal curves indicate that
no net attraction occurred. This was done for the experiment described above. Again
we selected the activity during the (45°, top left)-direction of bar movement (cf. Fig.
2) and subjected these spike trains to the gravitational analysis. The resulting pair
distances, plotted against time are shown in Fig. 4, where colour was used to identify
the pairs, Note that time runs horizontally from 0 to 32 sec: for the gravitation
analysis we used 16 (instead of 10, cf. Fig. 2) stimulus presentations of 2 sec each. In
this Figure four different bands of curves can be distinguished :

(1) The particles corresponding to neurons 5,7 and 8 cluster most strongly: their
pair curves have the strongest negative slopes. Among these three especially the
neurons 7 and 8 appear to have a high degree of coherence in their firing patterns (cf,
Fig. 3). It should be noted here that in the gravitational algorithm, in order to avoid
oscillations around a singularity, the attractive force between any two particles is
'switched off’ the moment these particles have approached each other to a certain
fraction (here 10%) of their initial distance. The interactions with the other particles,
however, continue to be present so that eventually the clustered particles may drift
apart again, whereupon their own pair force is switched on again. From the curves in
Fig. 4 it can be observed that for these three particles this switching of pair forces
actually took place several times.

(2) The three curves which lie closely together and slightly above the former three
curves represent the somewhat smaller coherence between neuron 6 and the three
previous ones.

(3) Sull higher in the Figure one observes a yellowish band of curves which reflects
the lower, but still significant degree of coherence between neurons 9 and 10 and the
earlier four.

(4) Finally, the remaining particles (I, 2, 3 and 4) more or less preserve their
mutual distances which indicates that the coherence among the corresponding neurons
is negligible. The slight decrease in distance between the particles in this group on the
one hand and those in groups (1), (2) and (3) on the other hand is an artifact the
distance between two particles may slightly decrease without the two themselves
having anything to do with each other, simply because one of the two particles
belongs to a certain cluster and the other one does not. A simple example in two
dimensions may illustrate the point: imagine three particles on the corners of an
equilateral triangle. If two of the particles are attracting each other and therefore
decrease their mutual distance, this will also affect the distances between these two
and the third, non-moving particle: these will also decrease slightly (to a minimum of
about 87%). This decrease, however, does not reflect a genuine coherence. Small
decreases in pair distances therefore should not be overinterpreted, in fact, they add

to the obvious lower limit for effects to be significant, set by the diffusion type
influence of the stochasticity of neuronal firing [13].



Figure 4, Gravitational clustering: inter-pair distance as a function of time for the 45
pairs of neurons in the 10-electrode recording of Fig. 2. The arrow indicates that the
direction of motion of the stimulus was towards the upper left corner of the screen.
The colour coding for the pairs is displayed in the upper left corner. For f{urther
explanation see text,

Figure 5. Gravitational clustering: distance plots tor the 45 pairs of neurons. The
arrow Indicates that the direction of bar movement was towards the upper right
corner of the screen. Further detatls as in Fig. 4.
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Apart from the global behaviour of the various curves (overall shape). Fig. 4
also entails quite detailed information about the temporal structure of multi-unit
coherence. Note, for instance, the temporal variations in slope along each individual
curve and the temporal relationship between these variations amang different curves.
These reflect substanuial variations in synchrony among spike trains as time proceeds
and are obviously related o the stimulus induced time structure of the multi-unit
spike trains, revealed in the 'Neurochrome” (cf. right hand part of Fig.2).

3.2 Stimulus-Dependence of Coherence

Being interested in a possible stimulus dependence of coherence among the
multi-unit firings (remember we corrected for directly stimulus-induced coherence).
we also analyzed the spike trains corresponding to the other directions of bar
maovement. Using again the spike train editing procedure, the data displayed in Fig. |
were ‘cut’ into 16 vertical slices, each 2 seconds wide, such that each slice corresponds
1o one particular direcuon of bar movement; these data were submitted to the gravity
procedure, Figure 5 shows the resulting distance curves for one of the other
directions: 45° to the top right, which is perpendicular to the previous one. In this
case one abserves that, apart from some noise related ‘diffusion’. basically all particles
remain their mitial positions. Only the curve corresponding 1o neurons 8 and 9 shows
a sudden, small decrease in particle distance after some 14 seconds of recording: this
15 caused by a coincident burst of firing early in the eighth stimulus sweep. which
involved four neurons, with strongest contributions from numbers & and 9. On the
whole Fig. 5 shows that for this particular direction, perpendicular to a more favoured
direction (as far as single unit responses are concerned), at this point there 15 no
evidence For coherence in firing, which goes bevond directly stimulus-induced effects.

In order to get a mare complete picture of the influence of direction of
movement on the degree of multi-unit coherence, one might plot all the distance
curves corresponding to all the directions tested and compare these, Again we are
facing a congestion of data, therefore we shall momentarily take a step back and g0 10
a more global measure of coherence. To this end we disregard the dynamics of
clustering for a moment and only look at the final result: the inter-pair distances after
6 sumulus presentations. More specifically, we have made a bar graph of the net
decrease 1n pair distance: the higher the functional connectivity between a pair of
neurons (i1.e. the smaller the final distance between the corresponding particles), the
higher we draw the bar for this pair.

In Fig. 6 three of these bar graphs are displayed. The arrow in the upper left corner
ot each graph represents the direction in which the stimulus moved. The upper graph
corresponds to the direction 45°, top left (cf. Fig. 4), the middle graph to the
movement in the obverse direction, and the bottom graph correspands to a direction
perpendicular to the other two (cf. Fig 5). Comparing the upper two graphs it is
apparent that the coherence among the earlier mentioned neurons in groups (1), (2)
and (3) is comparably strong for movement back and forth along the negative diagonal
of the screen, with the exception of neuron 6 which only 'joins in' during movement
to the top left (in the middle graph the corresponding large bars for particle 6 are

missing). In the orthogonal direction {lower graph) the coherence is generally quite
wedk, as we had already seen 1n Fig. 5.

Figure 7 summarizes the analysis of coherence for the whole spectrum of

directions tested, In this Figure bar graphs were positioned at the tip of the vector
which indicates the direction of motion of the stimulus, e.g. the graph for direction
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Figure 6. Stimulus dependence of coherence: three bargraphs for different directions
of stimulus movement. Colour coding is the same as in Figure 4. The heigth of each
bar corresponds to the degree of coherence in the respective pair of neurons, The
direction of motion of the stimulus is displayed by the arrows in the upper left corner
of each Figure, Further explanation in the text.
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Figure 7. Stimulus dependence of coherence: bargraphs for all 16 directions of sti-
mulus movement, Each graph is positioned on the tip of the vector indicating the
direction of motion of the stimulus. Further details as in Fig. 6.
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45, top left (ct. upper graph in Fig. 6) is situated at 45°, top left in Fig. 7. The
conclusion we drew from Fig. 6 15 confirmed in Fig 7 The degree of coherence
between neurons is shown ta be quite strongly stimulus dependent. At this point it
should be emphasized once more that this is not simply due ta the single neurans
showing a stronger response to some directions of movement than to others: the
directly suimulus-induced coherence was 'corrected” for by a differential procedure,
thus Fig. 7 represents coherence that goes beyond the synchrony in spike trains which
s merely due to the temporal carrelation of single unit PST-histograms. This suggests
that information about (the direction of) a stimulus may very well be represented also
in the coherence among firings of ditfferent neurons and not only mn single unit
responses. Although we did not perform a quantitative analysis of direction tuning al
single unit responses in our data yet, comparison with Fig. | suggests that in this
particular experiment the directions with higher coherence globally coincide with the
directions of stronger single unit responses. This might be taken to indicate that the
difterences between the individual bar graphs in Fig. 7 do not so much reflect a
genuine stimulus dependence of coherence, but rather suggest that stimulus related
rate variations were not adequately normalized for. Indeed it will be argued later
(5ect. 4.4) that a true quantitative measure of coherence requires additional dynamic
scaling for remaining stimulus effects. Application of this second stimulus '‘carrection’,
however, will be shown to confirm and further diversify the stimulus dependence
suggested in Fig. 7, rather than reducing it to a mere artifact that can be eliminated
by proper scaling.

Finally it should be emphasized that the abstraction of using the bar graphs, 1.e. using
only the final configuration and not the dynamics of clustering, provides a measure of
the summated amount of coherence, integrated over time. and thus necessarily only
presents a global picture. Temporal variations of coherence which might signify
interesting dynamic reorganizations among different assemblies are integrated out;
oscillations may even lead to cancellation and thus complete invisibility of substantial
coherence. Furthermore the global picture may be distorted by the earlier mentioned
saturation of attraction for very small distances (cf. Fig. 4) which will produce a
negative bias for very strong coherence. Evidently for an analysis of temporal
variations in multi-unit ¢coherence and their dependence on dvnamic properties of the
sumulus ensemble one has to consult more detailed and dynamic measures, such as the

distance curves (cf. Figs. 4 and 5) and/or other methods of visualization ta be
described 1n the next Section.

3.3 Visualization of Clustering: Projection

To envisage a process taking place in N dimensions, so far we have been
using a one dimensional method: the analysis of pair distances as a function of time.
We have seen that it results in curves which contain a wealth of quite derailed
information. However, it may still be difficult for the investigator to imagine, from
these curves, the actual particle trajectories in N-space. In order to enhance the
spatial impression of the gravitational representation it may be worthwhile to extend
our scope to two dimensions: project the N-dimensional particle trajectories on a
plane, such that they can easily be visualized e.g. on a video screen.

For the data in our 45°, top left example {(cf. Figs. 2 and 4) we have
calculated 2-dimensional trajectories from the 10-dimensional ones. using standard

geometric projection rules. When plotted on a video monitor this results in an
animation movie with particles wandering around on the screen. From this movie sy
snapshots, taken at equal intervals of 6 sec. are shown in Fig. 8. The projection plane
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Figure 8. Geometrical projection: six ‘snapshots’ of the particle trajectories in N-space
projected onto a 2-dimensional plane. The snapshots were taken at equal time
intervals; uume 1s indicated in the upper right corner of each Figure. Colours code for
neurons {(cf. Figs. 1 and 2). Further explanation is given in the text
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was chosen such that the imitial N-dimensional particle configuration with equal
mutual distances is preserved at least 1o a certain extent {(cf. Fig. 8a) {obviously a 2-
dimensional projection of 10-space still entails a considerable information loss).
Observanon of Fig. 8 shows that the information which had to be distilled from Fig. 4
by close inspection of the distance plots, now s much more evident: The particles
corresponding 10 the neurons 56,7 and 8 are rather far apart in the heginning but
already after (at most) 12 seconds (ct. Fig. 8¢) they have formed a cluster at the
center of the screen. The finding from Fig. 4 that the neurons 7 and 8 are very
strongly connected is also clearly reflected in Fig. 8 already after (at most) 6 sec
(ct.Fig 8b) they have formed a tight cluster. As time proceeds the cluster of four
continues to collapse, moreover it starts to attract the particles 9 and 10. which
apparently are less tightly connected to the former ones. The remaining particles on
the average keep their mutual distances and wander around on the screen in a
Brownian-motion like manner, which indicates that the corresponding neurons are
firing incoherently. It may be noted that, although in the gravitational algorithm we
used charge rules such that a distinction is made between the case of a neuron i
drwmg a neuron j and the obverse case of j driving i [14], nevertheless the particles
in Fig. 8 are attracting each other in a hlghl}' symmetrical way. This indicates that
also the coherence among the neurons in our example 18 guite symmetrical. i.e.
although there are clear associations of firing hetween cerrain neurons. there is no
indication of a specific directionality in these associations. This in turn points to the
coherence being the sign of shared neuronal input, rather than being the result of
directed connections between members of the group. This observation is in accordance

with our finding concerning the neurons 7 and 8 from imspection of their cross
correlograms (cf. Fig. 3).

The results of projecting the particle trajectories onto a plane thus give a
strong spatial impression of the aggregation process taking place in the N-space. This
Is especially so when actually witnessing the movements on a screen in the form of an
animation movie; the snapshots in Fig. 8 in this respect give only a faint flavour of
the dynamic experience. This spatial impression is much harder to be gained through
conceptual reconstruction from the distance curves (such as Figs. 4 and 5) and even
more cumbersome from analysis of all correlograms involved (such as those in Fig. 3)
Especially the hierarchy in clustering, reflecting a hierarchy in coherence and pointing
at a hierarchy in assembly organization, becomes quite evident from this type of
visualization of the particle trajectories.

As already noted, mapping the N-space onto a 2-space clearly introduces a
high information loss, Therefore the results strongly depend on the choice of the

projection plane. An unfortunate choice may result in trajectories which are not of
much help in analyzing the coherence of the investigated neuronal group. Evidently it
Is not a desirable situation when the outcome of an analysis technique is so highly
dependent on an “inspired guess’ (or, in its absence, on a great deal of trial and error).
A promising alternative would be to use the so-called 'structure preserving’ nanlinear
mapping introduced by Sammon [35] or modifications thereof [5,36]. A related
possibility might be to use the self organizing mapping proposed by Kohonen [24].
These methods best preserve the shortest distances in the original N-dimensional
distribution; therefore one would expect to see the same clusters as in the direct
geometric projections shown here, It remains to be seen, however, how the
relationships between clusters will be preserved in this type of approaches. There are
a number of unsolved problems involved in this type of data dependent and iterative

mappings, such as the dependence of the map on starting configuration, and the
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distortion of trajectories. Moreover these methods generally involve heavy
computation.

The utility of projection schemes is to provide visual feedback to the investigator in a
readily interpretable form involving information about the entire assembly of neurons.
An alternative to this type of visualization would be to develop methods that describe
the evolution of clusters and their shapes directly in the N-space. An undistorted
description in terms of e.g. hyperspheres and hypertubes in N-space might be more
accurate and provide more insight than projections, Visualization could then be
obtained by (mentally) projecting such gestalts (rather than the individual points) to a
iwo- or three-space [37].

4. THE "'DYNAMIC CORRELATION MATRIX’' : A HEBBIAN ALGORITHM

We have also investigated a slightly modified version of the gravitational
representation, based on the evaluation of a dynamically modifiable connectivity
(correlation) matrix. In this approach also the formal relation which exists between
gravitational clustering and cross correlation analysis becomes more explicit, To this
end we now shortly return to the conventional approach of analyzing the coherence in
a group of neurons by cross correlating pairs of spike trains, two at a Lime.

4.1 Logical Wiring Diagram and Correlation Matrix

In Sect. 2.2 it was already observed that, when applied to the simultaneously
recorded activity of larger groups of neurons, the pairwise analysis of cross correlation
inevitably leads to considerable numbers of correlograms. It was soon realized that
there is the need for a compact representation of results, in order to avoid a state of
conceptual plethora when faced with such numbers of correlograms. One possible way,
inspired by graph theory and electronics schematics, 15 to present ‘abbreviated’
correlograms of the whole group in the form of a so-called logical wirtng diagram’
[13]), with the width (colour, length) of the connecting wires between any two nodes
representing a specific aspect of the correlation of the corresponding neurons (e.g.
strength or latency). The ‘logical wiring diagram’ thus aims at giving a global
visualization of the ‘functional connectivity’ within the observed group of neurons.
Note that, unlike in normal electronics diagrams, the connection between any two
nodes i a logical wiring diagram may consist of two directional 'wires" the

‘connection’ between neuron i and neuron j needs not be symmetrical (neither does
the cross correlogram).

Another compact way to present the correlations within a larger group of
neurons, 1somorphic to the previous one, is related to linear algebra: the Sfunctional
conneclivity mairix’, in which the value at a particular entry (i,j) denotes a specific
aspect (e.g. strength) of the functional connection from i to j. Again, in general the
correlation matrix will not be symmetrical: C(1,j)#C(j,i). A visual representation of the
‘connectivity matrix® is obtained by displaying the matrix values using a grey- or
pseudo-colour coding. A question of considerable interest arises when the connectivity
matrix is relatively sparse, i.e. when it contains a considerable number of zero (or
very small) elements. In that case one may try to reorganize the matrix into some

desirable form by means of an appropriate reordering algorithm [7). One may hope 1o
arrive in this way at a more or less 'natural’ form of the connectivity matrix, which
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by 1ts appearance allows direct inference regarding the global properties of the
connectivity structure (e.g. a band, a block triangular or a block diagonal form).

4.2 Hebb's Rule: 'Learning’ the Correlation Matrix

We have adopted the format of the connectivity matrix in a modified
realization of the ‘gravitational clustering algorithm'. It was observed [1] that the
equations defining the gravitational representation bear a close resemblance to the
formalism describing plasticity of synaptic connections between neurons, the so called
Hebb's rule’ [20]. According to this rule, the principal drive for ‘learning’, i.e.
changing synaptic weight, resides in pair interactions of participating neurons
(coherent pre- and post-synaptic firing). The image of particles moving around in N-
space, subject to mutual attractive and repellent forces as a consequence of
dynamically varying charges, by only minor modifications can be translated into a
Hebbian-type learning algorithm (formal equations are given in the Appendix). The
functional connections (i.e, correlations) between N neurons are represented in a NxN
correlation matrix. Initially the matrix is specified to be uniformly zero, which
corresponds to our complete lack of knowledge at the outset of the analysis. With
every near-coincident firing of two neurons the value of the corresponding entry in
the matrix 1s increased slightly, completely analogous to the charge interaction
between any two particles in the gravity representation: Each spike generates a local
influence ('charge’) which diminishes in time, this influence is 'sensed’ by another
neuron, provided it has a spike, the influence of which overlaps in time with that of
the first one. The increase in ’synaptic’ weight for that particular pair then is
proportional to the amount of overlap of the influence (charge) histories. In the course
of the analysis the spike trains are processed step by step: at each time step the
connective weights in the correlation matrix are updated. Thereby the investigator is
able to observe how the matrix gradually ’learns’ the functional connectivities
underlying the observed spike trains. This learning is based on Hebb’s rule which
mirrors a supposedly similar development in real neuronal networks.

The updating of matrix entries is defined such that it distinguishes between a
spike from neuron i, closely followed by a spike from neuron j (entry i.j), and the
opposite case: a spike from neuron j, closely followed by a spike from neuron i (entry
J.1) (analogous to the 'two-charge rule’ in the gravitational algorithm, see [14]). The
resulting connectivity matrix needs not be symmetric, which allows for inference of
directionality of the ’connections’. Analogously to gravitational clustering, the time
constants in the influence ("charge’) histories can be manipulated and thus provide the
means to focus on specific temporal configurations in spike patterns. Through the
selection of the time course of the elementary (i.e. single spike) charge function, the
experimenter effectively makes an operational definition for the ‘coherence’ being

evaluated in that particular analysis run. Throughout the work presented here we have
used an exponential waveform, with a time constant of 8 ms.

4.3 Normalization: Stationary Activity

Even in the case of completely incoherent spike trains the algorithm sketched
above would result in positive matrix values for all pairs of neurens, simply because
in any two spike trains one would a priori expect a number of near-coincidences for
purely statistical reasons. For stationary Poisson spike trains this can be corrected for
by requiring that each neuron’s ’charge’ history has a total value of zero, when
integrated over time [|7]. One possible way is to define the elementary charge



17

function such that it has zero mean value (bi- or poly-phasic wavefarm): another
way, in fact the one we used here, is to subtract from the various charge histories the
corresponding ume average, which amounts to a simple DC-shift. For uncorrelated,
stationary Poisson spike sequences, this zero-mean-normalization aof the charge
histories will, in expectation, result in a value of zero for the respective entry in the
carrelation matrix. A relative abundance of spike-spike and silence-silence
combinations will lead to a positive 'connection’ (‘excitation’), whereas a net surplus
of spike-silence combinations will give rise 1o a negative value (“inhibition’).

In order to illustrate the working of this correlation matrix algorithm, we
have applied 1t o artificial spike trains generated by a simulated network of 10
neurons, which was analyzed extensively in the original ‘gravity’ papers [17,14,1]. The
network 1s shown schematically in Fig. 9a. each of the neurons Fires spontaneously
according to a Poisson statistic with a spontaneous firing rate of about 10 spikes per
sec. The connections in the network all have a strength of 0.35 (on a linear scale from
O to 1), a latency of 1 ms and a width of 4 ms (for details of the simulatar see [3].
Fig. 9b shows the correlation matrices at 4 different moments during the ‘learning’
analysis: after I, 2, 4 and 8 seconds. Values in the i-th column of the matrix (i
numbered from left to right) represent weight factors of 'outgoing’ ¢onnections, i.e.
OTIgINAting in neuron i values in the J-th row (j numbered from bottom to top)
represent weight factors of ‘incoming’ connections, i.e. ending in neuron j. Values
along the diagonal (entries 1.1) have not been updated and thus represent zero
correlation. The strength of the correlation is coded in grev: the larger the value, the
darker the greyv. The four matrices in Fig. 9b have been drawn with identical scaling

in order to enable a direct comparison of matrix values and to emphasize the "growth’
aspect of the analysis.

Comparison of Figs. 9a and 9b shows thar already after 2 seconds of
‘recording’ (i.e. after a mere 20 spikes of each neuron) the connectivity structure staris
(o show up clearly in the two bottom rows. with additional weak correlations scattered
over the entire matrix. These background correlations either represent partial
coherence (indirect correlation, e.g. entry 7.8) or are due to purely statistical effects.
As time progresses the values in the two bottom rows, corresponding (o ‘real’
connections 1n Fig. 9a, keep increasing steadilv. The other locations in the matrix
show this growing behaviour to a clearly smaller extent and rather more erratic.
Effectively this implies that, as time proceeds the algorithm, through ’learning’,
gathers evidence for 'true' correlations, and improves its 'signal to noise ratio” with
respect to statistical background correlations. This increase of reliahility with time is
emphasized in Fig. 9¢, where the same matrices from Fig. 9b are shown, but now
each matrix was scaled individually, according to its own range of values. Again we
notice the dominating 'connections’ in the two bottom rows. In this case, however,
these values no longer grow (i.e. become darker) in time. a direct consequence of the
dynamic scaling applied. In contrast with the relatively stable bottom row correlations,
the background correlations appear to be diminishing in time: the noisy background in
the matrix gradually cools down w0 a comfortably quiet landscape, against which the
‘true’ correlations are gradually gaining significance. It should be noted that in this
representation already after one second of recording {only some 10 spikes per neuron.
cf. Fig. 9¢c, matrix at top left) the structure of the network starts to be visible. This
makes the dypamic correlation matrix, like the gravitational clustering, a very
sensitive tool to analyze coherence in multi-unit spike trains.
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Figure 9. Time evolution of a correlation matrix for a simulated network of neurons.
In a. the 'wiring diagram” of the network is given: h. and ¢. show the evolution of the
correlation matrix at different moments in tme (indicated at top right). In b. all Tour
matrices are shown with one scaling based on the overall range of values, whereas in
c. each matrix 1s scaled individually according to its own range of values. For further
explanation see text
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Figure 10. Four versions of "dynamic correlation matrix' analysis, applied to the spike
traans from Fig. 2. a. synchrony matrix; b, PST-matrix; c. differential correlation
matrix (first ‘correction’ for stimulus effects); d. normalized correlation matrix (second
‘correction’ for stimulus effects). Further explanation is given in the text.
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4.4 Normalization: Stimulus-Induced Nonstationary Activity

It is clear from the dot displays in Figs. 1 and 2 that multi-unit activity
recorded from the visual cortex under dynamic stimulus conditions does not qualify as
a stationary Poisson process. The firing rates of the different neurons show clear
variations in time, which appear to be connected to the stimulus: more or less
reproducible behaviour over subsequent stimulus presentations. Moreover the time
course of these variations appears to be linked to the nature of the stimulus:
movement of the bar in different directions leads to different variations of firing rate.
This, of course, is all very well known, and in fact is used as the common
experimental paradigm to study single neuron response properties. At the same time,
however, this stimulus-induced nonstationarity of firing probability presents a
nontrivial problem in the analysis of coherence among multi-unit spike trains. First
there 18 a formal problem: the mere fact that spike trains under stimulation become
nonstationary causes severe theoretical problems in a field where the mathematical
formalism of stationary Poisson processes remains the only mathematical tool to
describe spike trains that was developed to any useful extent. Secondly, and more
importantly, there is a substantial problem: stimulus-induced nonstationarities provide
an additional, strong source of synchrony among spike trains from different neurons
(see also our remarks in connection to Fig. 3), In contrast to the simulated example in
Fig. 9, neurons may not only fire in close coincidence because they are connected or
share a common neural source of input, they may also show coherence in their firing
patterns because they are affected in synchrony by some (not necessarily the same)
properties of the stimulus (the shared preference for the direction of bar movement
among a number of neurons in Figs. | and 2 provides a clear example). At this point
one may proceed along different, not mutually exclusive ways.

4.4.1 Synchrony Matrix

The first way is simply to treat the spike trains for what they are: time
varying signals, transferred from neuron to neuron in a massively interconnected
network. Information is thought to be carried both by the time variation of single
neuron firing rates as well as by the time varying degree of coherence among spike
trains from different neurons. In this view, coherence is considered as a ‘code’ which
signals sensory configurations in the ‘outer world' and which at the same time reflects
the instantaneous activity state and functional connectivity structure of the neuronal
network. This implies that it is worthwhile to look for synchrony of firing.
irrespective of what possibly brought it about (stimulation and/or connectivity). This
also more or less reflects the way the nervous system is confronted with the problem:
how to handle incoming information with time varying characteristics, having no
independent knowledge of the external world, or, to put it more strongly: how to
‘construct’ an external world with its stationary and nonstationary properties, without
actually knowing what these are, and only the time varying spike trains to go on.

Based on these considerations, we have analyzed the spike trains from our
45°, top left example (cf. Fig. 2) for synchrony per se, quite irrespective of what
caused it (we did use the stationary, zero charge correction, though). The resulting
synchrony matrix is shown in Fig. 10a, values were coded using a linear grey scale,
From this Fig. it is clear that the high synchrony between neurons 7 and 8 (c¢f. Fig. 3)

completely dominates the other pairs, Apart from the synchrony between these two,
one also observes a fair amount of co-firing for the pairs (6,8), (5,8), and, although
hardly discernible, (5,7) and (6,7). Note that the synchrony of firing for these pairs is
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quite symmetrical (cf. Fig. 2). A slightly ’negative’ synchrony, i.e. the co-occurrence
of firing 1n one spike train and silence in another one, can be observed (although
hardly discernible) for the pair (8,9). This can be understood from the suppression of
firing in neuron 9 and the simultaneous activation of neuron 8 (cf. Fig. 2). From the
comparison of Figs. 2 and 10a it is also clear that the visibility of synchrony using
this kind of measure is strongly influenced by the numbers of spikes involved: the
higher the firing rate of a neuron, the larger (in general) the matrix entries involving
that neuron. It should therefore be considered seriously whether some kind of scaling
procedure, e.g. division by the product of the numbers of spikes of the neurons
involved, to arrive at something like a ‘synchrony index’ might not be the more
appropriate way to proceed [9].

4.4.2 PST-Matrix

The second approach to the question of stimulus-induced nonstationarities
also involves scaling, but rather for more substantial reasons. This approach interprets
comncident firing in different neurons as the sign of 'functional connectivity’ and aims
at recovering the ’logical wiring diagram' from coherence analysis of the multi-unit
spike trains. From this point of view the synchrony brought about by stimulation is
considered a nuisance, which masks the effect of primary interest (see also our
remarks 1n connection to the correlograms in Fig. 3); consequently one needs a
‘correction procedure’ which "unmasks’ the connectivity-related coherence. To this end
we developed a procedure, which will be described here heuristically: formal
expressions are given in the Appendix, a more fundamental discussion on this
methodological issue will be presented elsewhere (Aertsen et al., in preparation).

As a first step we want to measure the synchrony induced by purely
stimulus-related modulations of neuronal firing rate. What is asked for. in fact, is an
explanatory model of the relation between sensory stimulation and firing probability
of the neurons under observation. This in general not being available, we have to
suffice with a statistical model, based on the data at hand: different realizations of a
multi-variate point process with time varying rates, The best estimate for the
stimulus-related nonstationarity that can be obtained from these data is simply the
average: for each unit the spike trains recorded during consecutive stimulus
presentations are mapped onto a single time interval, covering one stimulus sweep. By
this procedure we obtain a new multi-unit spike train, each single train being roughly
M times as dense as the corresponding original spike train, the latter of course being
M umes as long, with M the number of stimulus presentations in the experiment, This
new tramn we call the multi-unit PST-train: the time varying density of each single
unit component is estimated by the well known peri-stimulus time histogram (PSTH).
The multi-unit PST-train presents our best statistical estimate of the relation between
stimulation and firing probability. By subjecting this multi-unit PST-train to our
correlation matrix analysis we can estimate the purely stimulus-induced component of
coherence. The resulting PST-mairix, being scaled for the number of stimulus sweeps,

for our particular example is shown in Fig. 10b, using the same scaling as in the
synchrony matrix (Fig. 10a).

4.4.3 Differential Correlation Matrix

In order to assess the neuronal component of multi=unit coherence one has to
compare the synchrony matrix (Fig. 10a) with the PST-matrix (Fig. 10b): any
coherence in the multi-unit spike trains which goes beyond purely stimulus-induced
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coherence is taken to reflect functional connectivity in the network. Note that this is a
one-way statement: from the absence of any difference between the two matrices one
cannot infer the absence of functional connectivity; the effects of the latter might
simply be buried under (generally much larger) stimulus effects. Not surprisingly (cf.
Fig. 3), in the present case the synchrony matrix (Fig. 10a), looks conspicuously like
the PST-matrix (Fig. 10b), which once more emphasizes the dominating role played
by stimulation. In order to quantify the dissimilarity between synchrony matrix and
PST-matrix we chose to calculate the algebraic difference of the two: the 'di fferential
correlation matrix' equals the synchrony matrix minus the PST-matrix (analogous to
the subtraction of the ’shift control’ in Fig. 3). The result is shown in Fig. 10c, grey
scale being adjusted to the range of values in the differential matrix. For the present
example this matrix represents the first order estimate of the connectivity contribution
to multi-unit coherence. The conclusions from this Figure are completely in register
with those from gravitational analysis (¢f. Fig. 4), where in fact the same differential
procedure was used to get rid of purely stimulus-induced coherence.

4. 4.4 Normalized Correlation Matrix

It may be illustrative to note that the actual calculation of these differential
measures took a somewhat different path, although numerically the outcome is

completely equivalent. In the stationary case (cf. Sect. 4.3) the gravitational
representation and the dynamic correlation matrix were calculated on the basis of the
respective charge histories, each one corrected for overall rate by undergoing a DC-
shift to obtain zero total charge. In the nonstationary case this DC-term, representing
the statistical estimate of the time invariant firing rate, was replaced by its time
varying analogon: the (properly scaled) charge history of the (periodically continued)
PST-train. In other words: the differential correlation matrix measures the coherence
between time varying signals which have been shifted dynamically to obtain a
constant expectation value equal to zero. This, of course, 15 quite a common procedure
in the correlation analysis of ensembles of time varying analog signals (so-called 'cross
covariance function” [4,33]. As a matter of fact, this analogy can be pushed one step
further: in order to arrive at a normalized cross covariance function. i.e. with values
between -1 and +1, in conventional signal analysis an additional scaling with auto-
covariance is apphed, equivalent to a transformation to ensembles with zero mean and
unit variance. Also in the present case such normalization appears mandatory, First of
all, our measure for coherence so far is only a relative measure, not an absolute one.
Moreover, in the differential measure we still have rate effects playing an important
role for the obvious reason that when the expected firing rate is high, then also the
magnitude of the deviation of actual firing rate from expected rate is expected to be
high. This implies that, although stimulus induced modulations of firing rates were
subtracted, the differential correlation matrix still presents a distorted picture of
neuronal coherence, with strongly firing neurons dominating through the sheer
amount of their output, and hence, the expected large variability over subsequent
stimulus sweeps (compare Fig. 10c with Fig. 2). The same statement holds for the
‘differential’ gravitational results (cf. Figs. 4-7)

In order to overcome these difficulties, and inspired by the analogy with
conventional signal analysis, we have applied additional dynamic scaling to arrive at
the ‘mormalized correlation matrix', with matrix values at any moment by definition
restricted to the range between -1 and +1, The precise form of the scaling procedure

is given in the Appendix, it amounts to a dynamical scaling of entries in the
differential correlation matrix with the appropriate time dependent auto covariance of
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the (shifted) charge histories (spike trains) involved. The resulting normalized matrix
for the present example is shown in Fig. 10d, values range between -0.03 (white) and
+0.14 (black). From this Fig. one observes that the normalized matrix indeed differs
significantly from the differential matrix (Fig. 10¢c): the picture now is rather more
diverse: the coherence for the original group remains present, but is not dominant
anymore, in addition one observes connections entering the scene which so far
escaped from being noticed, especially involving the lower electrode numbers.
Coherence on the whole assumes only moderate values, with a maximum of 0.14.

This Figure also points to a problem of the normalized correlation matrix: its
sensitivity to noise. Due to the scaling procedure, which in fact amplifies the
influence of weakly and/or regularly firing neurons at the expense of strongly and/or
irregularly firing neurons, certain matrix entries may be blown up for possibly the
wrong reason, e.g. because the respective neuron(s) hardly fired. This is for instance
the case in the pairs (2,10) and (9,4), where the matrix indicates relatively high
coherence for spike trains containing only very few spikes (cf. Fig. 2). Although this
may surely point at a genuine albeit only sporadically detectable coherence, it will be
hard to establish statistical significance. On the one hand the normalized correlation
matrix is asserted to be our best theoretical approximation to the functional
connectivity of the group, on the other hand, however, as a statistical estimate it is
clearly suffering from a high variance. Results therefore have to be interpreted with
care and dot displays of the actual spikes trains should always be within reach; it is
also obvious that the analysis of variance of the estimator and the development of
criteria for significance are important topics for further research.

4.5 Results

The results of application of these different correlation matrix techniques to
the spectrum of all directions of bar movement tested in the experiment (cf. Fig. 1)
are summarized in Figs, 11 to 13. Figure 11 shows the synchrony matrices. Fig. 12 the
differential correlation matrices and Fig. 13 the normalized correlation matrices. The
layout of these Figures is analogous to Fig. 7: each matrix is positioned at the tip of
the vector which indicates the corresponding direction of bar movement. In each
Figure the 16 matrices were plotted using one scale, covering the range of matrix
values in that particular Figure (ranges are indicated above the grey scale in the Fig.).

In Fig. 11 one observes how larger values in the ’synchrony matrices' are
basically restricted to a few directions, associated with movement along or close to the
negative diagonal, with the pair (7,8) very much dominating. The PST-matrices (not
shown here) give practically the same picture, This once more emphasizes the strong
influence of stimulation on multi-unit synchrony, simply through the single unit’s
dependencies on stimulus properties (in this case direction of bar movement, cf. Fig.
1). Subtraction of direct stimulus influence renders the ‘differential correlation
matrices’ (Fig. 12) clearly more sensitive to smaller values of coherence so that the
picture becomes more diverse (more neurons involved): still, basically these results are
in register with the synchrony matrices: high values for certain neurons in the case of
movement along or close to the negative diagonal, for other directions virtually no
signs of coherence (see also the bar graphs in Fig. 7).

Additional scaling leads to the 'normalized correlation matrices’ in Fig. 13: these
present @ much more differentiated picture of coherence and especially of its
stimulus-dependence. Whereas the earlier noted preference of certain neurons to
cohere for movements along the negative diagonal remains present, albeit less clear,
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Figure 11. Synchrony matrices for all 16 directions of bar movement (spike trains
from Fig. 1). Matrices are positioned at the tip of the vector indicating the direction
of motion of the stimulus. All matrices have been platted according to the same grey
scale. Further explanation in the text.
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now also movements 1n other directions, especially those associated with the positive
diagonal, appear 1o result in increased c¢oherence. Purely horizantal or vertical
stimulus movements clearly are less effective in eliciting coherence. In the present
example coherence effects are essentially restricted to the electrodes numbered
between 5 and 10 (corresponding to recording sites in cortical lavers V to 1), the
actual distribution of coherence varying with direction (e.g. 7 and 8 co-vary strangly
along the negative diagonal, 9 becomes involved more strongly with mavement along
the positive diagonal). Values of the coherence in this experiment atiain relatively
small values, between -0.05 and +0.20. The asymmetry of this range of values with
respect to the value zero may reflect a true asymmetry in the connectivity, although
we rather suspect that (a substantial part of) it is due to a preferential sensitivity of
aur analysis techmique for ‘excitatory’ connections above ‘inhibitory’ ones (see a
discussion on this issue in the context of cross correlograms in [3]. Finally, the
matrices 1n Fig. 13 as compared to those in Fig. 12 also show an increased tendency
of not heing symmetrical with respect to the diagonal of the matrix.
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Figure 13. Normalized correlation matrices (second stimulus ‘correction’) for all 16
directions of bar movement (spike trains from Fig. 1). Further details as in Fig. 11.

So tar our discussion of results from dynamic correlation matrix analysis
(Figs. 11-13) has focused on more global properties, such as the degree of
(dis)similarity of matrices for different stimuli. Like gravitational clustering, this
technique provides a comprehensive and readily digestible overview of the distribution
of coherence among larger groups of neurons, and its properties such as dependence
on stimulus and time. It should be born in mind, hawever, that in fact the time
development of each individual grey pixel in each of the matrices represents highly

condensed information regarding the coherent behaviour of a specific pair of neurons
under certain experimental conditions (comparable to the information contained in the
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individual distance curves as in Fig. 4). The more detailed analysis of relatively subtle
effects like variations of individual matrix entries (¢.q. pair distances or projections)
is more comparable to conventional analysis of cross correlograms (cf. Fig. 3). An
adequate interpretation of results from multi-unit experiments regarding the
functional and physiological significance of neuronal interaction requires the
continuous interplay of these different levels of analysis, This type of more substantial
interpretation of these findings, together with detailed analysis of other multi-unit
recordings from similar experiments is subject of current work; preliminary findings
seem to be that in general the coherence in these experiments is clearly stimulus-
dependent, is confined to relatively low values (roughly between -0.1 and +0.3) and is
not so much pointing at small, local circuits but rather at relatively diffuse
distributions of coherence, involving rather large fractions of the neurons in the
multi-unit recording.

In how far these findings are related to, for instance, the experimental program and
the electrode arrangement (linear array, tip distances 160 microns, recording sites po-

sitioned vertically with respect to cortical layers) remains subject to further
investigation,

5. DISCUSSION

In this paper we have described the recently developed multi-unit analysis
technique of ‘gravitational clustering’ and a technique derived from it: dynamic
correlation matrix analysis. These techniques were applied to multi-electrode
recordings from the cat's visual cortex, in order to investigate these recordings for
possible coherence among the activity patterns of different neurons. This coherence is
assumed to reflect the functional connectivity in the neural network recorded from. In
the course of this analysis it became clear that the presentation of stimuli provides a
strong, if not fully dominating effect on multi-unit coherence, simply through the
large, stimulus-induced modulations of single unit firing rates. This evidently poses
severe problems to a naive approach of identifying synchrony of firing with neuronal
connectivity. Different approaches to this problem were discussed.

The first approach is to apply the measures for coherence simply to the spike
trains as they are, thereby measuring the ’'synchrony' or ‘co-variation' of firing,
irrespective of what caused it (stimulation and/or connectivity): the ‘synchrony
matrix’. In this view multi-unit coherence conveys information to the nervous system
about what is going on 'outside’ and, at the same time, reflects the instantaneous
activity and connectivity status 'inside’. This interpretation of coherence is more or
less in line with the proposal that the functional order of a neuronal net may be
defined through the order induced by the cross correlations of signals carried by the
neurons [22,23]. It is also related to the notions of 'syntactic’ and 'semantic' aspects of
activity patterns in neuronal populations, as expressed by Johannesma et al. [21].

In the second approach one is mainly interested in the multi-unit coherence
as far as it goes beyond purely stimulus driven coherence. The aim is to artificially
separate ‘outside’ from ‘inside’ by pealing off the strong stimulus-induced coherence.
Thereby one hopes to obtain the purely neuronal component of coherence, which may
be read as a 'logical wiring diagram’, specifying the instantangous 'functional connec-
tivity' state of the network. In this approach we have argued for a ’'stimulus
correction’ procedure consisting of two stages: subtraction, followed by scaling.
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These two approaches are certainly not meant to be mutually exclusive, we
rather view them as complementary and in their interrelation providing a conceptual
framework for understanding the activity of an entire population of neurons as an
entity, rather than as a collection of single elements. A central issue here is to arrive
at a quantitative notion of appropriate 'state variables' to describe the neuronal popu-
lauon, analogous to the phase space representation of complex systems, used, for
example, in statistical physics. Related to this type of description in terms of micro-
variables would be the introduction of the appropriate macro-variables (like e.g.
pressure and temperature in thermodynamics) to describe the global properties of the
system, disregarding the precise micro-states.

Moreover, the dichotomy between purely stimulus-induced coherence on the one hand
and coherence due to 'true’ connectivity on the other hand is somewhat artificial to
begin with, insofar as, firstly, such a separation requires 'extra-neuronal’ knowledge
about the experiment, which only the experimenter has, and., secondly, there is
assumed to be a strong interaction between the two: connectivity shaping the
stimulus-induced coherence (for structural reasons) and stimulus-induced coherence
shaping the connectivity (presumably by a Hebb-type mechanism).

Related to this 1s the paradoxical observation that in order to separate the
‘connectivity-coherence’ from 'stimulus-coherence’, one has to rely on the 'noise’ in
the system: the more reproducibly the stimulus affects the neurons’ firing
probabilities, the less room is left for connectivity to make itself known. This is
especially clear in the case of highly ’adequate’ stimuli, where subsequent
presentations evoke strongly driven and virtually identical spike trains: the correlation
of multi-unit firing becomes identical to the expected correlation, determined on the
basis of PST-trains, and consequently no inference can be drawn regarding possibly
underlying connectivity. In other words: if we suppose that a Hebb-type mechanism is
operative in shaping the neuronal connectivity, then this implies that the stronger and
more reliable it has done so, causing the network to react to external input in a
relatively deterministic fashion, the harder it is for an external observer to find out
about it. The investigation of functional connectivity by ’‘pealing off’ the ‘purely
stimulus-induced coherence’ through a ‘shift control’-type procedure then effectively
reduces to a case of 'throwing out the baby with the bath water'.

Throughout this discussion the various approaches were illustrated by results
of their application to simulated spike trains and to multi-unit recordings from the
cat’s visual cortex during presentation of a stimulus ensemble, consisting of a bar
moving in different directions. These results show that, like gravitational clustering,
the dynamic correlation matrix is truly a very sensitive device to detect possible
coherence in multi-neuron activity. This high sensitivity, combined with the multi-
dimensionality and the dynamic character inherent to this approach makes these
methods a promising tool, which in principle should also be able to detect changes in
coherence among spike trains with time constants in the range of one to a few
seconds, such as are induced by manipulation of the stimulus and which in our
experimental data indeed were shown to be present,

In the present paper we have used the term ‘functional connectivity’ as
purely descriptive: there exists a statistical relationship between the firing of different
neurons. This notion of 'functional connectivity' (correlation) is used here as opposed
to 'structural’ or anatomical connectivity of the neuronal net, involving mono- and
poly-synaptic connections. Although, obviously, these two notions are intricately

connected, they should not be confused. Functional connectivity may change
dramatically on a short time scale, such as induced by manipulation of the sensory
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environment, as was demonstrated in the present paper (for other experimental
evidence see e.g. [8,13]. It has been proposed that synaptic links in the central nervous
system have to be modifiable on the fast time scale of fractions of a second (*synaptic
modulation® [29]). Simulation studies, on the other hand, suggest that fast changes in
functional connectivity are not necessarily associated with corresponding changes in
structural (i.e. synaptic) connectivity [11]. At any rate, the dynamic connectivity
structure of neuronal networks has certainly become an element in recent
developments in brain theory, and further investigation of the relation between

structural and functional connectivity, both theoretically as well as experimentally,
appears to be essential.

The formal relations between the techniques of ’gravitational clustering' and
the analysis of the 'dynamic correlation matrix’ are strong and relatively direct (see
also Appendix); the same goes for the kind of information yvielded by their application
to experimental data, as illustrated by our examples, There are also differences, the
main one related to the geometrical nature of the gravitational representation: the
influences of different particles (neurons) on another particle (neuron) are combined
by vector addition into a single driving force, whereas the correlation matrix keeps
pair interactions separated into their respective, modifiable matrix entries. Both
approaches have their own virtues, an extensive discussion of which is beyond the
scope of the present paper (an example is the quite straightforward relation which can
be derived between the dynamic correlation matrix and the 'normal® cross correlation
function, see Appendix). Both approaches essentially are highly parallelized
calculations of correlations between spike trains. Although so far all calculations were
performed on conventional, i.e. serial computer configurations, this parallel nature of
both approaches makes them natural candidates to be implemented on a truly parallel
machine. This would enable a much faster evaluation of coherence in multi-unit spike
trains, with the possibility of having (preliminary) results on-line during the actual
experiment; the advantage for the experimenter of having an appropriate feedback
cannot be overstressed. In our lab we are currently investigating the possibility of
implementing this type of multi-unit analysis techniques on a parallel, hardware
realization of an associative network [32]. This would have the additional advantage of
closing the conceptual circle: for the analysis of experimental data from real, neuronal

networks one uses a machine which in itself represents a model of such a neuronal
network.
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7. APPENDIX
7.1 Gravitational Clustering

With each one of a group of N neurons we associate a particle in N-space, with initial
position r: (0} (i=1,...,N) such that all particles are positioned on the vertices of an N-
dlmensmna] hypercube therefore all initial mutual distances are equal to some
constant d After the system starts to evolve, the position of the i-th particle is at
any time gwen by the N-dimensional vector r- (t}

Let z.(t) be the spike train from neuron i. The charge function associated with

particle i, used to generate inter-particle forces is given by a filtered version of the
spike train:

Q;(t) = |ds a(s) z;(t-s) (A1)
In the 'two charge model’ [14], designed to allow inference regarding the direction of

interaction, with each particle we associate two charges: an effector charge which
generates the propulsive field:

Qe (1) =Ids Qg(s) z;(t-s) (Ala)
and an acceptor charge, used to calculate the force on that particular particle;
Qa,im ==J-ds qQ,(s) z(t-s) (Alb)

In the present paper we have used for the elementary effector charge g {t) a decaying
exponential starting at and following the spike, and for the ElEI‘l‘lEI‘ltElry' acceptor
charge qa(tJ a rising exponential that termmates at the spike.

The propulsive field i at position r generated by the particle j at position r_l 15
given by
Eij = Qe.j fij (A2)

with the unit vector E‘ given by

- TioT:
1 1

P = _J - 3 (A3)
ru ” I'“" ”

From (A2) one notes that the field was chosen to be independent of distance. The
force exerted on particle i by particle j is then given by

Fij = Qq i Eij = Qi Qe f; (Ad)

The total force on 1 is given by the vector sum of all the pair forces:

Fi Z ”-ZQHIQEJ VA
¥l j#i
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As a consequence of this force the particles will move. The dynamic equation is
defined by

ut; = F; (A6)

with u denoting the 'viscosity' of the medium in N-space. Note that the acceleration
term 15 lacking in (A6): we assume high viscosity and therefore velocity 1is
proportional to force. The displacement, finally, is calculated by numeric integration
(Euler) using a time step § :

T+ ) = F0 + 2 Fi() (A7)

7.2 Dynamic Correlation Matrix

The formalism of the dynamic correlation matrix is a simple modification of the
equations describing ’gravitational clustering’. With N neurons we associate a NxN-
correlation matrix C, with the entry C;; denoting the correlation ('functional
connection') from neuron j te neuron i, ie. i'-elatecl to the probability of having an i-
event after a j-event. Note that this implies that C needs not be symmetrical:
direction of connectivity is preserved. Initially the matrix C is set to be uniformly
zero, signifying our complete lack of knowledge at the outset of the experiment, In
the course of time the matrix values are gradually updated. according to a Hebb-type
rule for synaptic modification, which is directly borrowed from the gravitational
representation: the pair force F.. (Eq. A4) is interpreted as the drive for modification

of the ’connection’, very much the same as the dynamic equation for the particle
motion (Eq. A6):

"‘Cij - Qa,iQe.j (A8)

In our correlation matrix algorithm we have implemented a somewhat more general
formulation which also incorporates a leakage term:

uCij = QqiQe j - 2C;; (AF)

This extra term, which signifies 'forgetting’ of earlier 'experience’, is guite common
in theoretical work on synaptic plasticity., In the present paper, though, we have
always used Eq. (A8) (i.e. a=0), to enable a better comparison with the gravitational
algorithm.

The main difference between the gravitational representation and the dynamic
correlation matrix is the vector addition (Eq. AS5), which is missing in the latter
approach. In the gravitational representation the influence of different particles
(neurons) on another particle (neuron) is combined into a single force, the correlation
matrix keeps all the pairs separated in the respective, modifiable matrix entries. Both
approaches have their own advantages, one advantage of the correlation matrix is that
certain relations can be derived in a straightforward manner, which, in the
gravitational approach, 1s more cumbersome because of the dynamic interaction of
force vectors.
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7.3 Relation between 'dynamic correlation matrix' and normal 'cross correlation’

As an example of such a relation it may be tllustrative to show the explicit relation
between the dynamic correlation matrix and the 'normal’ cross correlation function of
spike trains. The net ‘change’ of a connection C.. over some period of time, say from

t) to Lo, 1s given by 4
)
F(Cij{tﬂ} - Cij{llﬂ = |dt Qﬂ,i([} QE.j“} (A10)
f
Substitution of the expressions for the charge functions (Egs. Ala and Alb) leads to
2
w(Ciita) - G ) ""j-dslqa(ﬂﬂj‘dﬂzqeﬁsz] Idl zi{t-51)z;(t-55)  (A1l)
t
|

On the right hand side one easily recognizes a term which also appears in the time
dependent cross correlation function:

Rij{T1-T2) = E (2(7))z;( 7)) (A12)

A considerable simplification is obtained when the correlation is not time dependent,
i.e. for stationary processes z; and Zy:

Rij(Ty- Ta} = Ry 7y - 72) (A13)

This implies that, for stanionary spike trains, Eq. (A11) can be rewritten as

,u.((‘u(tzl - Cl_]“l} =J.dﬁlﬂa|:51} dszqet.‘iz} Rijtﬁl-ﬂz;'{].lz} {Alq}
where
t
g

is the estimate of the cross correlation between i and |, obtained by time averaging
over the interval between t l and t5.

Equation (Al4) in lact states that, for stationary spike trains, the net change of the
‘connection’ Ci' over the internal (t],lzj 15 proportional to the (t;. ty)-estimate of the
Cross currelalim]] function between neurons i and j, ‘smoothed’ by Q.(t) and "weighted’
by qa(t]. From this relation it becomes clear how, by appropriate choice of e and d,
one can obtain directional information from the cross correlogram.
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The zero total charge normalization, applied in the case of stationary spike trains

(Sect. 4.3), amounts to a DC-shift in _thE charge functions, equal to the (time

averaged) estimate of firing rates z; resp. 2

“{Clj(tzj ™ CU“I}} =
t
=Jd5|qﬂ{51] j.dﬂgqetﬁz] j.dt {zl{t'fi])‘-fi){zj{t—ﬁzj—ibj} {A]'ﬁ}
t
1

This DC-shift effectively implies a translation from cross correlation to cross

covariance: the departure of the cross correlation from its background level due to the

non-zero expectations Z; and Ej.

The 'differential correlation matrix' applied for nonstationary spike traimns as a first
approximation to ‘functional connectivity’, with direct stimulus effects subtracted
(Sect. 4.4.3), uses precisely the same formalism as given in (A16). with the difference
that now the expected firing rates are time dependent, and in the case of periodic
stimulation can be estimated through the PST-trains (Sect.4.4.2):

M

MZi(t) =3 7 . (1) (A17)
m=]

with M the number of stimulus presentations, and t ranging from O to T, T being the

duration of one stimulus sweep. It is clear that in this case (A16) is directly related to
the time dependent cross covariance function of z; and 2. (e.g. [4]). Furthermore, one

easily sees that, with f}{l) denoting the charge function le:}r the PST-trains, scaled for
the number of sweeps M, it holds that

MT

(M) = ) = [ (@ 1) - Ty (ONQ, ;1) - B 1 =

0
MT MT

: j'dt Qq (1) Qg ; (1) - fdtﬁaiimﬁﬂﬁjm (A18)
0 0

or: the charge-shift procedure to calculate the differential correlation matrix, 18

equivalent to subtraction of the 'PST-matrix’ (Sect. 4.4.2) from the synchrony matrix’
(Sect. 4.4.1).
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The 'normalized correlation matrix' (Sect. 4.4.4) finally is obtained by additional sca-
ling for auto covariances:

C}jftz) - C;j (t)) =

L
2
jdt {Qa‘i(t) = aa‘lil]} {Q&.j(t} - aﬁ,_]{'t}}
Y
= (A19)

ty ty 3
{jm (Qq (1) - Qg (1 * j dt {Qg (1) - '~'_}Ed-{v:)}2
) t)

It is easily shown that, because of the Cauchy-Schwarz inequality, the scaling in (A19)
effectively results in matrix values restricted to the range between -1 and +1, i.e. the
procedure in (A19) is truly a normalization.
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