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From Neuron to Assembly: Neuronal
Organization and Stimulus Representation

A. AERTSEN!, G. GERSTEIN?, and P. JOHANNESMA3

1 Introduction

The study of information processing in the sensory nervous system may be
viewed as an investigation of images. Let us consider, for instance, the auditory
nervous system. Throughout the auditory system, starting at the hair cells in
the cochlea and the auditory nerve fibres, through the various stages of the
auditory processor, composed of the numerous individual neurons with their
different patterns of interconnections, we have what might be called “the neural
image of sound” in its different realizations. The external world is paralleled
by an internal representation (e.g., Craik 1943, McCulloch 1965). The acoustic
environment of an animal, consisting of patterns of air pressure variations at
the external ears, is represented and transformed internally by a network of
neurons which communicate by complex spatio-temporal patterns of action
potentials, the all-or-none events generated by the individual neurons.

1.2 Single Unit Analysis

A central paradigm in the study of the sensory nervous system is that mean-
ingful information regarding its principles of operation can be obtained from
experimental investigation of the functional characteristics of its elementary
components, i.e., the single neurons. This is reflected in the vast amount of
literature on single unit experiments. In the periphery, the single neurons can
quite adequately be described by characteristics such as frequency tuning and
temporal pattern of firing to stimulation with tones. This type of characteris-
tics, grossly speaking, serves to cover all relevant aspects of the various possible
sounds occurring in the external world (e.g., Evans 1974). Moreover the periph-
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eral neural image can be characterized by simple organization principles like
tonotopy, i.e., an orderly spatial representation of the spectral composition of
the acoustic environment. The picture becomes increasingly more complex and
shows more and more blanks when progressing towards the more central parts
of the auditory system. Classical experiments using “simple” stimuli such as
tones and clicks appear to lose their claim to completeness.

A theoretical description and related experimental and data-analysis pro-
cedures developed by the Nijmegen group provide for single neurons in more
central parts of the auditory nervous system, a functional representation of the
neuron as an element of the auditory processor (for a review see Eggermont et
al. 1983b). This approach is based on statistical analysis of the relation between
the extra-cellularly recorded single unit activity and the presented ensemble of
sound stimuli. A question of special interest has been to what extent such a
description covers the neuron’s behaviour under a variety of different acoustic
stimulus conditions (e.g., tones, noise, natural sounds).

The analysis is focused on the evaluation of the spectro-temporal prop-
erties of those stimuli which precede the occurrence.of action potentials, the
neural events, as compared to the characteristics of the complete ensemble of
stimuli presented to the animal. This approach, formally related to the eval-
vation of the.second order stimulus-event cross correlation function, results
in the “spectro-temporal sensitivity” (STS) as a characteristic of the neuron’s
stimulus-event relation. In order to get an impression of the extent of stimulus-
invariance of this neuron characteristic, the outcome of the correlation analy-
sis has to be normalized with respect to the a priori known spectro-temporal
structure of the stimulus ensemble, used to measure it. Under certain condi-
tions, regarding both the neuron’s system function and the stimulus ensemble,
a stimulus-normalization procedure can indeed be derived using the formalism
of nonlinear systems theory. If the spectro-temporal sensitivity of the neuron
can be normalized in this way, a “spectro-temporal receptive field” (STRF) can
be derived. This STRF forms the functional characteristic of the contribution
of this particular neuron to the auditory processor.

Experimental investigations have been made of the receptive field proper-
ties of single neurons in the auditory midbrain of the grassfrog (Rana tempo-
raria L.) under a variety of stimulus conditions (tones, noise, species specific
vocalizations). It appeared that, even after elaborate stimulus normalization
procedures in a considerable number of cases the result cannot be reconciled
into a single model of the sinle unit receptive field. This is illustrated in Fig.1
which shows the spectro-temporal sensitivity for seven neurons from the frog’s
midbrain, determined with three different types of stimulus ensembles. As a
general conclusion it can be stated that in a considerable number of cases the
single-unit receptive field turns out to be stimulus-variant, possibly context-
sensitive. This, obviously, poses interesting problems when using the receptive
field as a conceptual tool in modelling brain function.

Theoretical considerations at the same time have shown that for neuron
models which can be characterized as not having any feedback connections
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Fig. 1. Spectro-temporal sensitivity of 7 neurons (upper 7 rows) in the auditory midbrain
of the grassfrog (Rana temporaria L.), determined with different types of acoustic stimuli (8
columns: tone pips, stationary Gaussian wideband noise and species-specific vocalizations).
The average spectro-temporal structure of each of the three stimulus ensembles is shown in
the bottom row. Further explanation in text. (From Johannesma and Eggermont 1983)
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across nonlinear elements, the receptive field can be defined and, in principle
be measured in a neat way (Van den Boogaard et al. 1985a). This receptive
field then should be a stimulus invariant neuron characteristic. As soon as
feedback loops (e.g., through circuits of neurons) enter into the description,
a formal definition of a stimulus invariant receptive field becomes much more
cumbersome, if not impossible (Van den Boogaard 1985b). The terms “reactive”
versus “creative” systems have been coined in this context (Johannesma et al.
this Vol.).

Both for experimental and theoretical reasons we thus appear to reach
a boundary where single unit analysis, using concepts like the receptive field,
ceases to be the single explanatory vehicle it is (implicitly) assumed to be.

1.3 Multi-Unit Analyis

Recent years have shown an increasing interest in going beyond the single unit
paradigm. In several laboratories techniques have been developed to record
the activity from different individual neurons simultaneously (for a review see
Gerstein et al. 1983). Multi-unit recordings from some 10 to 20 neurons si-
multaneously have become feasible; the possibility of going to higher numbers
is coming within reach (e.g., Grinvald 1984). Behind these experiments is the
idea that essential properties of single neuron behaviour can only be under-
stood when considering the neuron in its natural context: being an element
in a massively connected network of similar elements. A further assumption is
that meaningful information can be obtained from observation of the activity
of a relatively small fraction of this network (e.g., 10 neurons from a connected
total in the order of thousands).

The classical approach to the analysis of multi-unit data is the evalua-
tion of the cross correlation function of pairs of simultaneously recorded spike
trains (Perkel et al. 1967), or procedures derived from that (e.g., Gerstein and
Perkel 1972, Perkel et al. 1975). This cross correlation gives an indication on
the amount of (near) synchrony in firing (or silence) between the observed neu-
rons. Since synchrony could also be induced by both neurons being driven by
the same stimulus, a control measurement is performed. The stimulus ensemble
is presented at least twice and one evaluates the cross correlation between spike
trains from different units, now, however, with the time shift in the correlogram
around the stimulus period (“shift predictor”). This correlogram measures the
direct stimulus influence on the firing synchrony. The “difference” (not neces-
sarily the algebraic difference) between these two measures of coincidence in
firing is interpreted as the sign of true connectivity between the neurons.

Recent results using this type of approach (Eggermont et al. 1983a, Frostig
et al. 1983, Bloom and Gerstein 1984, Espinosa and Gerstein 1984) have sug-
gested that a similar problem exists as described above for the single unit
receptive field: in a considerable number of cases the neural correlation, after
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application of a stimulus normalization procedure, may be stimulus-dependent.
An example of this is given in Fig.2, which shows the simultaneous and the
non-simultaneous cross correlation of firing for a pair of neurons from the grass-
frog’s auditory midbrain, determined -with different types of stimuli.

This observation gives rise to the hypothesis that the stimulus-variance of
both the single unit receptive field and the neural correlation are intrinsically
interconnected, in fact they are both manifestations of the same underlying
mechanism: the neurons being elements in an interacting population, possibly
giving rise to neuronal assemblies or related concepts (Hebb 1949, Braitenberg
1977, Palm 1982). This hypothesis can only be addressed by analysis methods
which transcend the usual approach of addressing a group of neurons as a
collection of all possible pairs or triplets, but instead, stress the properties of
the entire group of neurons as an entity.

Also for purely pragmatic reasons such an approach seems inevitable. The
very proliferation of correlation functions resulting from a multi-unit experi-
ment clearly points to the necessity of a more integrated representation of the
relevant interactions. A 10-unit recording, for example, results in 45 different
cross correlograms to be calculated and, what is more, to be interpreted; a
20-unit recording leaves the poor experimenter with 190 correlograms. Fur-
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Fig. 2. Simultaneous and non-simultaneous cross coincidence histograms for two neurons
from the auditory midbrain of the grassfrog (Rana temporaria L.), under tonal and noise stim-
ulation. The non-simultaneous coincidence histograms are shaded. The difference between
both histograms is interpreted as a measure for the strength of neural interaction. It is ob-
served that this difference is negligible for stimulation with 48 ms tonepips presented once
per s (upper); is confined to a few bins in case stimulation was done with 16 ms tonepips
presented once per 128 ms (middle); and is quite clear and more extended for stimulation
with stationary wideband noise (lower). (From Eggermont et al. 1983a)
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thermore, these numbers have-to be multiplied with the numbers of different
stimulus conditions and possible other parameters of interest, such as time res-
olution of the correlogram. A more global and integrative method of analysis
seems imperative, if only for logistics reasons.

A new conceptual representation of cooperative behaviour in a population
of observed neurons, evolved from earlier ideas in statistical pattern recogni-
tion (Wright 1977), has recently been described (Gerstein et al. 1985, Gerstein
and Aertsen 1985). This representation leads to a new technique for detecting
and studying functional assemblies: “gravitational clustering”. The multi-unit
problem is mapped into an N-body problem; functional similarity between spike
trains is translated into metrical distances. This representation being purely a
mental construct, the rules governing the transformation can be defined at
will, preferably such that the behaviour of the “model” system in a natural
way induces inference regarding the relevant relations in the original problem.

2 Gravitational Representation of Multi-Unit Activity

2.1 Particles, Space, and Charges

As a first step we set up a geometrical representation of the problem at hand.
With each one of the N units recorded from, we associate a fictitious point
particle; this particle is located in an abstract Euclidean space. According to
dynamic equations which will be specified in the following, the particles will
travel through space. The rules governing these movements will be defined such
that: higher than average coincidence in firing of different units leads to a higher
degree of proximity of the corresponding particles.

The proximity is measured by the normal Euclidean distance. Before the
particles are set into motion, a starting configuration has to be chosen. In the
absence of any prior information regarding the association of neuronal firings,
the most natural starting configuration is to require every particle to have equal
distance to all the other ones. This necessarily leads to the representation space
being N-dimensional: at time ¢t = O the particles are positioned at the vertices
of an N-dimersional hypercube, all initial mutual distances are equal to some
starting value do. After the system starts to evolve the position of the particle
corresponding to neuron t is at any time ¢ given by the N-dimensional vector
r,‘(t).

We now have to specify the rules according to which the particles will
move. To this end we associate with each particle an “electric charge” Q;(t), and
have this charge be determined by the spike sequence z,(t) of the corresponding
neuron ¢. In the present work we chose for the charge function a low-pass filtered
version of the actual spike sequence:

Qi(t) = [ds q(s)zilt - 9) (1)
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with the impulse response g¢(s) given by
q(s) = qoexp(—s/7) . (2)

The time constant 7 is a parameter, the value of which is chosen by the inves-
tigator. The charge history for a segment of a typical spike sequence is shown
in Fig. 3.

Due to the electric charges the particles will exert forces onto each other,
and, as a consequence, will start to move. In the present formulation we define
the force between any two particles to be proportional to the product of their
charges. The direction of the force is along the line conjoining the instantaneous
position of the two particles involved, being attractive for equal signs of charge.
Analogous to the Coulomb interaction in physics we may, in addition, have the
force be distance dependent. The total force acting on a particle is obtained
by vectorial addition of the individual contributions from all pair interactions
involved.

Note that, unlike the normal case in physics, the electric charges are fluctu-
ating functions of time. Through this time dependence the force field between
particles is modulated in time by the activity patterns of the corresponding
neurons. As a result those particles that correspond to neurons that tend to
fire in synchrony will exert mutual attractive forces, and, consequently those
particles will start to aggregate. As time proceeds their mutual distances will
keep decreasing; after a sufficiently long interval has passed the sets of syn-
chronously firing neurons will have collapsed to clusters in N-space, with every
cluster corresponding to a different coherently firing group of neurons among
the population that was recorded from. These clusters can be identified and
characterized by standard methods of cluster analysis and pattern recognition
(e.g., Fukunaga 1972).

S S A N N

Fig. 8. Conversion of spike train to charge used in the gravitational representation. At the
time of each neural impulse, the existing charge of the particle corresponding to that neuron
is incremented by a fixed amount. Between neural impulses the charge decays with a fixed
time constant. In the “rate normalization” used in the present paper the magnitude of the
charge increment is different for each neuron, and is inversely related to its mean firing rate.
(From Gerstein et al. 1985)
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2.2 Dynamic Equations

The propulsive field E;; at position r; generated by the particle 5 at position
r; is given by

Eij = Q;A(ri;)fy; (3)
with the unit vector #;; given by
g re—
Py=rl= I (4)

ri - il

Since we are not really interested in intricate dynamic behaviour the distance
dependence of the field has been eliminated by setting A(r) = 1. The total field
E; at position ¢ is obtained by vectorial addition:

E; = .E.ijij . (5)
JF#

The force F, acting on particle 7 at position r; is then given by
F, = Q;E; . (6)

As a consequence of this force the particle will move. For the equation of motion

we define
uti=F; . (7)

The acceleration term has been omitted because of computational convenience
since, again, we are not really interested in detailed dynamics. Physically, it
means that in our representation the particles move in a medium with high
viscosity u: the velocity of the particle is proportional to the force acting upon
it.

The resulting displacement, finally, is obtained by simple numeric integra-
tion (Euler) using a time step 6:

ri(t +6) = ri(t) + (6/p) Fi(t) . (8)

This computational scheme is applied to all particles repeatedly as often as
necessary to cover the duration of the multi-unit recording. The result is a
collection of trajectories of the N particles in N-space.

Note that actually the movement is restricted to N — 1 dimensions since
no external forces are involved. Furthermore, since all interactions are symmet-
rical, the center of mass of the system of particles is preserved.

2.3 Attraction and Repulsion

The gravitational rules given so far will necessarily lead to a collapsing universe.
This is caused by the charges being definite non-negative [Egs. (1—2)]: all par-
ticles attract and will eventually aggregate into the system’s center of mass.
Although it is certainly possible to infer functional proximity from studying
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the dynamics of evolving clusters, i.e., the time it takes the particles to aggre-
gate (Wright 1977), we chose a slightly different approach. For our purpose we
require particles which correspond to independently firing neurons to neither
attract nor repel one another when studied over sufficiently long time. In this
way only those particles will cluster which represent neurons that fire in a truly
coherent fashion. The other ones will be subject to purely random influences;
no systematic movement will occur: random walk with expected displacement
equal to zero.

One way to obtain this behaviour is to impose an overall force on the
particles which points outwards from the center of mass. This outward “drift”
can be accomplished in several ways. In the present formulation of the gravi-
tational representation we modify the charge rule [Egs. (1-2)] to this effect:
the original charge Q(t) is replaced by shifted version Q’(t), such that the time
averaged value of Q'(t) equals zero:

Q'(t) = Q(t) - Q). (9)

The bar denotes taking the time average. A more general way to obtain zero
mean charge would be to modify the impulse response ¢(s) [Eq. (2)] to have no
DC-component: the lowpass filter should be made bandpass to reject extremely
low frequencies.

As a result of this modified charge rule the time averaged force for a system
of two particles corresponding to two independently firing neurons, which is
proportional to QQ(t)Q;- (¢), will be zero. When both neurons have fired recently,
both charges Q' are positive: the particles will attract. When one neuron has
fired recently and the other one remained silent, the signs of the charges differ:
the particles will repel, the magnitude of the force being smaller than in the
former case. Finally, when neither of the neurons fired recently, both charges
will be negative: the particles will attract, the magnitude of the force dropping
once more. These are precisely the properties needed to insure aggregation of
those particles whose neurons either tend to fire in synchrony, or (more weakly)
tend to be silent in synchrony. Particles that correspond to neurons which fire
in an uncorrelated way will, on the average, exert no net force onto one another.
Finally, particles whose neurons fire in anti-synchrony (antagonist type firing)
will show a net divergent force.

2.4 Rate Effects

The original charge rule [Egs. (1--2)] induces another peculiar property of the
charge Q(t). Due to the fact that for every particle the charge increases with an
equal amount go whenever the corresponding neuron fires, the propulsive influ-
ence of the charge would be proportional to the neuron’s mean firing rate. Such
a rate dependence may not be desirable. Therefore, in the original description
of the gravitational representation (Gerstein et al. 1985), a “rate normaliza-
tion” was applied: the increment of charge added at the time of each action
potential was made proportional to the mean interspike interval for the neuron
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represented by that particular particle. In this way the mean value of charge
Q(t), considered over the whole recording (or a sufficiently long interval in
the case of a sliding normalization) is the same for all particles; consequently
the possibly undesirable effect of rate differences between neurons on the time
averaged propulsive influence of the corresponding charges is canceled.

The more fundamental modification of the charge rule discussed earlier in
connection with attraction and repulsion, i.e. going from Q(t) to Q'(t), causes
a “rate normalization” in the above mentioned sense to become superfluous.
Since the time averaged charge Q’(t) by definition is zero, the overall effect of
mean firing rate on propulsive “potential” no longer exists. More precisely: with
equal increments in charge go for every action potential clearly the magnitude
of fluctuations in the charge Q’(t) (the deviation from the expected value zero)
will be proportional to the neuron’s mean firing rate; however, the time avearage
of the charge, and hence its global propulsive influence, is insensitive to it. As
a consequence, when considering the force between any two particles it is not
the rate of firing as such but truly the rate of “near-coincident” firing from
both neurons which determines the net movement that will result. The only
remaining effect of firing rate per se is on the “noisiness” of the trajectories,
not on the systematic trends.

Not only is an additional “rate normalization” thus made superfluous,
what is more, it even becomes counterproductive in the case of genuine cor-
related firing. The combination of the “rate normalization” and the transfor-
mation from @ to Q' [Eq. (9)] effectively amplifies the propulsive influence of
“near-coincident” firings when one or more neurons with low mean firing rate
are involved, while reducing it for neuron(s) with higher mean rate(s). This
thus creates an undesired effect on the velocity of particle aggregation.

From the foregoing reasoning we conclude that, as far as the rate of co-
alescence is concerned, a charge rule without any specific “firing rate normal-
ization” is probably the best choice for unbiased analysis of unknown data.
This same conclusion was arrived at recently by a somewhat different reason-
ing (Gerstein and Aertsen 1985). It was pointed out there also, however, that
the choice for a normalization rule must take into account additional factors,
such as different selectivity for specific spike patterns. Results shown in the
present paper were obtained while using a charge increment normalization as
described by Gerstein et al. (1985).
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3 Results

In this Section we show some results of applying the gravitational representa-
tion to simulated spike trains, generated by a simple neural network simulator
(Gerstein et al. 1985, Aertsen and Gerstein 1985). More results can be found
elsewhere (Gerstein et al. 1985, Gerstein and Aertsen 1985).

The aggregation process in the gravitational representation can be evalu-
ated by studying the time evolution of the distance between pairs of particles.
This should provide an indication about the functional connectivity of the cor-
responding neurons. Figure 4 shows the results for a simple neuronal circuit
consisting of a pair of synaptically connected neurons together with a set of
independently firing control neurons. The strength of the excitatory synaps
was varied in the simulation, using values of 0.25, 0.50, and 0.99 (on a linear
scale between 0 and 1) for different runs. Mean firing rates were in the or-
der of 10 events per second. The figure shows, for each case, the time course
of the distance between the points corresponding to pre- and postsynaptic
neurons as well as those of an unrelated pair. The particles corresponding to
unrelated neurons move about in a random fashion, their mutual distance re-
maining approximately constant. The particles corresponding to the connected
pair of neurons, however, clearly show a systematic, albeit irregular, tendency
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Fig. 4. The time to gravitational aggregation decreases as the strength of synaptic connection
increases. Distance between selected pairs of points is shown as a function of step number
(time) in the gravitational calculation. All pairs start at the distance of 100 arbitrary units;
each time step corresponds to 2ms of real time. The time constant for the charge decay was
set at 10ms, the distance moved per unit force was 3.5 x 10~5 units. The three descending
curves show distances between particles that represent neurons connected with (left to right)
decreasing excitatory synaptic strength of 0.99, 0.50 and 0.25, respectively. Distances between
typcial particles representing independently firing neurons are at the top of the figure and
remain essentially unchanged as the computation progresses. (From Gerstein et al. 1985)
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to approach each other. The speed of aggregation appears to be monotoni-
cally related to the strength of the connection: the stronger the connection, the
faster the coalescence. Note that coalescence was obtained already after about
40 spikes (4s) in the case of strongest connectivity; the weaker interactions
need approximately 7 and 10s, respectively.

A more complex and interesting network of (simulated) neurons is shown
in Fig.5. The network consists of (1) two independently firing presynaptic
neurons, (2) a set of four postsynaptic neurons for each presynaptic one, two
neurons in each of these sets being driven by both presynaptic neurons, and (3)
two independently firing control neurons. This example provides direct synaptic
interaction, as well as two degrees of shared input. Firing rates of the individual
neurons again were in the order of 10 spikes per second, connections were
excitatory with a strength of 0.35, which puts them into the weak to moderate
category encountered in physiological recordings. The time evolution of the
clustering process is illustrated in Fig. 6, where, once again, pairwise distances
are plotted as a function of time. The identities of the particles involved are
indicated at the right hand side. Going from the top of Fig. 6 to the bottom, we
observe the following: The distance between the particles 9 and 10 (unrelated
control neurons) remains essentially constant throughout the entire run, which
covers 16s of “recording”. The distances for the pairs (9,3) and (9,4) (one
control neuron and in each case one postsynaptic neuron) initially decrease,
later increase. The distances for the pairs (10,3) and (10,4) (the second control

Fig.5. A Venn diagram of more complicated neu-
ronal connectivity that was simulated in a set of 10
@——’ @ spike trains. These data are analyzed in Figs. 6 and 7.
Neurons 1 and 2 are drivers. Neurons 7 and 8 receive

0 excitatory input from both drivers, while neurons 3,5
@ - and 4,6 receive excitatory input only from one driver.
Neurons 9 and 10 are independent control neurons.

(From Gerstein et al. 1985)
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neuron and one postsynaptic neuron) slowly decrease through the calculation.
Finally, the pair distances for various transsynaptic pairs, for the two drivers
(1,2) and for an independent postsynaptic pair (4,3) all show similar rapid
coalescence. Full aggregation is obtained after some 8s. Analysis of the same
data, but excluding the spike sequences from the driver neurons 1 and 2 leads
to essentially the same result (not shown here): curves look very similar, the
main difference being that aggregation is somewhat slower. In the latter case
full aggregation is reached after about 12s (Gerstein et al. 1985). This shows
that also in case the multi-unit recording fails to include the presynaptic driver
neurons the interacting neurons can clearly be distinguished from the control
neurons.

All synaptic connections in the spike generating network (Fig.5) have been
set to be equally strong. Thus each driver attracts equally (and is attracted
by) each of its postsynaptic partners. Indirectly this will bring all of the post-
synaptic partners of one driver neuron together in one small cluster, quite
independent from the degree of direct interaction between the postsynaptic
neurons. For similar reasons particles 7 and 8, which both are connected to
both drivers 1 and 2, through the symmetry of the gravitational interaction
will act as attractors for the clusters around the drivers. This eventually leads
to clustering of all particles 1 to 8, although, for instance, the pairs (1,2) (the
drivers) and (3,4) (unrelated postsynaptic neurons) represent neurons which,
as such, are not in any way functionally related. Apparently the analysis of pair
distances can identify a subset of interacting neurons; in itself it is insufficient
to infer the circuit or the strength of connections in it.

The investigation of pair distances is a rather primitive tool to study the
information that is contained in an ensemble of trajectories in N-space. More
insight may be gained by adding one dimension in the representation of re-
sults: visualization of the trajectories by projection on an appropriately chosen
plane. Figure 7 shows the results of a projection where information about the
circuitry was used to define an adequate projection plane within the N-space:
the plane determined by the instantaneous positions of the particles 1 and 2
(the drivers) and the center of mass of the particles 9 and 10 (control neurons).
Note that, since these points are travelling through N-space, also the projection
plane itself will be moving. Figure 7Ta—f shows “snapshots” of the projected po-
sitions of the 10 particles at regular intervals of 1.6s. From the definition of
the projection plane it follows that the particles 1 and 2 will move inwards in
a straight line. The particles 9 and 10 (control neurons) can be observed to
move rather randomly in the lower half of the pictures. All other particles (the
driven ones) start at a point near the middle of the screen, and are rapidly
dragged towards the aggregating drivers 1 and 2. The sensitivity of the grav-
itational representation is quite dramatically demonstrated in Fig. 7c: already
after 4.8s (i.e., after a mere 50 spikes from each neuron) the projection shows
a configuration of particles that is reminiscent of the Venn diagram describing
the network*in Fig. 5. Each driver has collected its own exclusively driven par-
ticles, while the jointly driven particles 7 and 8 form a “bridge” between the
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Fig. 7. Visualization of gravitational clustering by two-dimensional projection. Spike trains
were obtained from the simulated network of 10 neurons, shown in Fig. 5. The projection of
the 10 points (representing the 10 neurons) from the 10-space onto an appropriate plane is
shown in the form of “snapshots”, taken at different moments in time with regular intervals
of 1.6s of “real” time. Particles are identified by their colour and the corresponding neuron
number at the right hand side of each figure. Already after 4.8s (i.e., after roughly 50 spikes
from each neuron) the projection in Fig. 7c shows the Venn-diagram of the original network
(cf. Fig.5). As time progresses the configuration continues to aggregate, however, maintaining
the basic character of the Venn-diagram (Figs. 7d—f). Further details in text
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primary clusters. As time moves on, the configuration “boils” and continues
to aggregate (Fig. 7d—f) until one single cluster remains, which still shows the
characteristic structure of the Venn diagram, already clear in Fig. 7c.

A very good impression of the dynamics of the aggregation process can be
obtained by combining a sequence of such snapshots into an animation movie.
In such a movie especially the role of the “attractors” and the further evolution
of the separate clusters becomes quite manifest. A more elaborate discussion
on the possibilities of visualization by projection, also in the absence of prior
information about the underlying network (used here to define the projection
plane) can be found elsewhere (Gerstein and Aertsen 1985).

4 Discussion

4.1 Gravitational Clustering

We have described a new conceptual approach to representing and analysing
spike train data from a multi-unit recording experiment. As shown by the exam-
ples the method is able to analyse interrelationships within a group of observed
neurons without having to decompose the group into pairs as is usually done.
The strength of interaction between neurons, reflected in the degree of firing
synchrony, is manifested in the velocity of aggregation of the corresponding
particles. The aggregation process can be studied by investigating the time
dependence of interpair distances or, more visually directed, by projecting the
trajectories onto an appropriately chosen plane in N-space.

A number of interesting issues concerning this representation could not
be addressed here. These include, amongst others, the detection of inhibitory
interactions and a modification of the gravitational clustering such that it allows
“causal” inference: representation of the network in terms of a directed graph,
rather than just identifying which neurons show associated firing behaviour.
These and other issues are discussed at greater depth in the original papers
(Gerstein et al. 1985, Gerstein and Aertsen 1985).

4.2 Sensitivity

The sensitivity of the method is extraordinary as becomes apparent from
Fig.7c, where a mere 50 spikes from each contributing neuron suffices to pro-
duce aggregation into a particle configuration which shows the essential char-
acteristics of the circuit’s Venn diagram. This sensitivity transcends at least
by an order of magnitude that of usual measures like the Joint PST scatter
diagram (Gerstein and Perkel 1972) or the three neuron “snowflake” (Perkel
et al. 1975) which require hundreds to thousands of spikes from each neuron
to produce clear pictures, moreover with the constraint that only two or three
neurons are analyzed simultaneously.
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The basic reason for this improvement is related to the different effects of
time integration in these methods. In the gravitational representation the net
distance traveled by a particle is proportional to the time integral of the total
of “interactive force components” Q;Q; acting upon it. As a result of the defi-
nition of the charge function, especially the modification of the type as given in
Eq. (9), the integrated effect of “noisy” spikes on the average cancels to a zero
displacement; only the “near-coincident” firings result in a net effect on the
particle positions. This “differential” behaviour of the gravitational represen-
tation is in contrast with usual correlation type methods as mentioned above,
where time integration results in a steadily increasing noisy background in the
scatter diagrams. The systematic effects of correlated firing usually are hardly
discernible, unless many spikes have been processed to reduce the variance in
the background to a comfortable enough level.

4.3 Type of Interactions

It should be observed that the force rule defined in Egs. (3—6) only takes into
account pair interactions, i.e., interactions of the type Q,;Q;. This implies that
the forces, and thus the trajectories of the particles, are determined by pair
correlations of the corresponding spike trains, i.e., correlations of the type z;z;.
In other words, specific higher order correlations in the neural activity, e.g., of
the sort z;z;zx, which go beyond combinations of participating doublets, are
not considered in this representation.

The vectorial addition of force components from different sources (Eq. 5),
although combining the influence of different doublets, by its linear nature does
not address the possible presence of purely higher order interactions. Analo-
gously to the correlation approach to nonlinear systems (.e.g., Marmarelis and
Marmarelis 1978, Eggermont et al. 1983b) one might say that the gravity rep-
resentation specifically aims at highlighting that component in the neural in-
teraction which can be described by linear spatio-temporal integration (spatial
= summation over different neurons; temporal = (leaky) integration over past
spike activity from observed neurons (e.g., Johannesma and Van den Boogaard,
1985)). As a consequence specific nonlinear (e.g., Poggio and Torre, 1981) or
composed (e.g., Shepherd 1974) synapses may go undetected.

The principal advantage of the gravitational representation as compared
to normal cross correlation of pairs as applied extensively in the analysis of
multi-unit data (e.g., Gerstein 1970), is that all possible pair interactions are
analyzed at the same time. This is precisely what is accomplished by the multi-
dimensionality of the present approach.

Another interesting observation to be made, is that the gravitational equa-
tions described above bear a close resemblance to the formalism describing plas-
ticity of synaptic coupling between neurons, “Hebb’s rule” (Hebb 1949, Palm
1982). In the latter context the principal drive for “learning”, i.e., changing the
synaptic weight, is supposed to reside in pair interactions of participating neu-
rons (coherent pre- and postsynaptic firing). Like the gravitational representa-
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tion, Hebb’s rule does not take into account triple or higher order interactions.
One might say that gravitational clustering considers neuronal interaction in a
Hebbian universe.

This analogy might be pushed even further by imagining a somewhat dif-
ferent realization of the gravitational representation. Instead of working with
particles in an N-space one might represent the N neurons under observation
as a network of N nodes with some initially specified connectivity matrix (e.g.,
uniform or random). Applying the formalism described in the present paper,
with only slight modifications, to gradually “update” the connectivity matrix,
this network could be made to “learn” by changing its “synapses”, such that
the final state would more or less mimic the circuit of neurons that generated
the measured spike sequences in the first place.

4.4 Stimulus-Dependent Neural Interaction

Until now it was implicitly assumed that the pattern of neural interactions re-
mains fixed throughout the recording. An interesting question arises when this
pattern, in fact, does change, for instance induced by changing stimulus condi-
tions (see the example given in the Introduction). This should be reflected in a
change in the aggregation process in the gravitational representation. Clusters
may form and, later in the calculation, may “evaporate” to build new configura-
tions, more or less mimicking the way the corresponding neurons are involved
in a dynamic succession of different assemblies, “ignited” by changes in the
external world (Braitenberg 1977). The dynamics of clustering thus represent
aspects of structure (anatomy) as well as process (physiology). A third aspect,
the function of neuronal interaction, can only be understood once the relation
with the outside world, i.e., the stimulus ensemble giving rise to the observed
phenomena, is explicitly taken into account. The analysis of multi-unit activity
by gravitational-like methods emphasizes the “syntactical” aspects of neural
activity. Stimulus-response correlation focuses on the “semantical” aspects. It
is in the interrelation of both approaches that meaningful models of sensory
information processing may be hoped to emerge.
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