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SUMMARY AND CONCLUSIONS 

I, Simultaneous and separable extracellular 
recording of substantial populations of neu- 
rons under chronic and behavioral conditions 
is becoming experimentally feasible. We have 
recently described a conceptual transforma- 
tion of such multiple spike train data that al- 
lows the experimenter to analyze the entire 
network of observed neurons as an entity 
rather than as a summation of neuron pairs. 
The basic transformation represents each of 
N neurons as a particle in an N-space. Each 
particle is given a “charge” that is related to 
the spike train of the corresponding neuron. 
The resulting forces on the N particles cause 
aggregation of those particles that represent 
neurons with time-related firing. The present 
paper extends the visualization and possibili- 
ties of this way of analyzing properties of neu- 
ronal assemblies. Data are taken from com- 
puter-simulated neuronal networks in order 
to provide known properties. 

2. We demonstrate projection of particle 
positions from the N space to a plane. Under 
the right conditions the spatial arrangement 
of the particles forms a Venn diagram of func- 
tional relationships in the entire neural net- 
work. 

3. We introduce revised force rules in the 
transformation that allow detection and study 
of inhibitory connections among the observed 
neurons. Sensitivity is lower than for excitatory 
connections. 

4. We introduce revised “charge” rules that 
improve “signal-to-noise” properties and in 
addition allow inference of directed connec- 
tivity. The original transformation only allows 
identification of neurons with time-related fir- 
ing. The two-charge transformation allows ex- 

plicit identification of presynaptic and post- 
synaptic neurons. 

5. Finally we examine sensitivity of the 
transformation to individual and near-coin- 
cident firing rates. Some criteria are presented 
for choice of charge normalization rules in the 
transformation. 

INTRODUCTION 

A number of neurophysiological laborato- 
ries have recently turned their attention to the 
direct observation of neuronal assembly ac- 
tivity (a very partial list includes Refs. 3, 4, 9, 
11, 16, 18). Such multineuron experiments 
involve the simultaneous recording of many 
spike trains and subsequently require an in- 
terpretation of the data in terms of neuronal 
assembly properties. The principal approach 
to the interpretation phase of such work until 
now has been based on computation of cross- 
correlograms among pairs or triplets of Ispike 
trains. This well-tried approach allows the in- 
ference of connectivity between and to the 
corresponding pair of neurons, as well as iso- 
lation of direct stimulus effects on the neurons. 
A tutorial with many references to the original 
literature appears in Glaser and Ruchkin ( 10). 

The use of pairs forces a combinatorial pro- 
liferation of calculations ( 10 neurons means 
45 pairs, X 2 for 2 time resolutions, X 2 for 
stimulus shift controls = 180 cross-correlo- 
grams for a single stimulus or behavioral 
condition). If the experiment compares 10 dif- 
ferent stimulus conditions, the overloaded ex- 
perimenter must assimilate some 1,800 cross- 
correlograms, not to mention another 100 
poststimulus time histograms, in order to 
specify how the assembly of 10 neurons be- 
haves in these particular circumstances. The 
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combinatorial situation is much worse if we 
calculate with triplets of spike trains. It is 
therefore entirely appropriate to seek a con- 
ceptual tool that allows a more direct inter- 
pretation of multineuron experiments in terms 
of neural assemblies. 

In a recent paper (8) we have described a 
new representation for activity of the spike ac- 
tivities recorded in a multineuron experiment. 
This “gravitational” representation transcends 
the usual and problematic approach of ad- 
dressing a group of neurons as a collection of 
all possible pairs or triplets and stresses the 
properties of the entire group of neurons as 
an entity. The basic representation associates 
each of IV observed neurons with a particle in 
N-space, the ith particle located at xi. Each 
such particle carries a time-varying charge (qi 
for the ith particle), which is a filtered and 
normalized version of the spike train from the 
corresponding neuron The resulting forces 
between charges will cause relative movement 
of the particles. Those particles corresponding 
to neurons that tend to fire in close time re- 
lationship will tend to aggregate. Different 
clusters of particles will signify different func- 
tional groups of neurons. 

Explicit equations describing the charges, 
propulsive fields, forces, and displacements are 
given in the previous paper (8). At the location 
of a particular particle, we calculate the pro- 
pulsive field due to the charges of all other 
particles (this is a vector summation). The re- 
sulting force on that particle is given by the 
product of the propulsive field and the local 
particle’s charge. In formal notation total force 
on the ith particle is 

Fi = 4i C 4jrij 

j+i 

where rii is the unit vector pointing from par- 
ticle i to particle j. We have used a high-vis- 
cosity model, so that there are no accelerations; 
velocity is proportional to the force. Simple 
integration leads to the displacement of the 
particle. This process is carried out for all par- 
ticles, resulting in a set of trajectories in Iv- 
space. 

In the previous paper (8) it was shown that 
spike trains from simulated nets of neurons 
containing excitatory connections indeed led 
to appropriate clustering. This was inferred 
from the time development of all interparticle 
pair distances. In the present paper we show 

more explicit projection methods to visualize 
the actual clustering in N-space and demon- 
strate that the aggregation actually produces a 
kind of Venn diagram for the neural network. 
Such projections are best seen on color dis- 
plays and, for their dynamic aspects, in an an- 
imation movie. Some of the flavor is apparent 
in the present monochrome illustrations. In 
subsequent parts of the paper we examine the 
analogous investigation of inhibitory connec- 
tions and then present a variation of the orig- 
inal representation, which addresses the prob- 
lem of direction of connections rather than 
just association of firing times. This modifi- 
cation also has favorable consequences for 
sensitivity and signal-to-noise properties. Fi- 
nally, we examine the consequences of rate 
normalization in calculating the charge on 
each particle. 

RESULTS 

Project ion 

The basic gravitational representation of 
multineuronal activity, which we have pre- 
sented earlier (8), maps the activity of the N 
observed neurons into an N-dimensional 
space. The Iv points that respectively represent 
each of the neurons move in an N - I di- 
mensional subspace under the influence of 
forces produced by a fictional “charge” on 
each point. The restriction to N - 1 dimen- 
sions is because all forces are infernal to the 
system of IV particles. Furthermore, since any 
two particles exert equal forces on each other, 
the center of mass remains stationary. Various 
rules and convenient parameters in this rep- 
resentation have been presented in the pre- 
vious paper; in the basic version, the time- 
varying “charge” of each point is related to 
the times of occurrence of action potentials 
from the neuron represented by that point. In 
due course, points in this representation will 
aggregate if the corresponding neurons fire in 
a time-correlated way. The arrangement of 
points in this aggregation and its time course 
can be used to infer the functional (and per- 
haps dynamic) connectivity of the entire neu- 
ronal assembly under examination. Note that 
in examining the aggregation of points in N- 
space we are able to go beyond the usual state- 
ments about neuron pair relations as measured 
by cross-correlation; the entire assembly can 
be studied as an entity rather than as a com- 
bination of neuron pairs. 
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Mathematically there is no serious difficulty 
in dealing with the full N-dimensional space. 
It is only if we want to visualize the aggregation 
process that we are forced into some sort of 
projected representation. For convenience we 
restrict this discussion to a two-dimensional 
projection. Thus we are looking for a projec- 
tion plane that adequately represents the 
movements of points in the N-space. 

Any mapping that involves reduction of di- 
mensionality (like projection) necessarily in- 
volves loss of information. Different types of 
mapping may lose different types and amounts 
of information; there may be an optimal 
choice for retaining particular features of the 
original N-dimensional distribution. Let us 
first examine a straightforward geometric pro- 
jection onto a plane within the N-space; the 
plane will be chosen on the basis of preknowl- 
edge about the neuronal network. This is of 
course inappropriate to analysis of real neu- 
ronal data; however by using data produced 
by a neuron-simulator program we may better 
examine the possibilities of the projection 
rules. 

In the following we use the same computer- 
simulated neuronal circuit that we have ex- 
amined in the previous paper (8); 10 neurons 
are arranged so that 1) there are two indepen- 
dently firing presynaptic neurons, 2) there is 
a set of four postsynaptic neurons for each 
presynaptic one, two neurons in each of these 
sets being driven by both presynaptic neurons, 
and 3) there are two independently firing con- 
trol neurons. All connections are taken to be 
excitatory; the corresponding cross-correlo- 
grams are shown in Fig. 6 of Ref. 8. The 
strength of these interactions falls into the 
weak-to-moderate category encountered in 
physiological recordings. A Venn diagram of 
the neuronal circuit is shown in an inset in 
Fig. lA, A plot of various pairwise distances 
during the aggregation process was shown in 
Fig. 7 of Ref. 8 and is replicated here in 
Fig. 1A. 

We choose a projection plane that is deter- 
mined by the three points corresponding to I) 
the particles 1 and 2 (representing the 2 drivers 
in the circuit), and 2) the point at the center 
of mass of particles 9 and 10 (representing the 
independent neurons). The origin is chosen at 
the center of mass of particles 1 and 2 (i.e., 
halfway between them). Note that this defi- 
nition results in a dynamic projection plane; 

as the several points move in the N-space so 
will the plane. In the following results we have 
determined this projection plane and the pro- 
jections of all particles at each step of the cal- 
culation. 

The projected trajectories of all points 
throughout the entire time span (O-16 s) of 
the calculation are presented in Fig. 1D. In 
effect this is a “time exposure” of the entire 
calculation. Identification of the traces that 
were originally in color obviously is lost in this 
black-and-white reproduction. Some of the 
traces and their directions can be identified 
with the aid of Fig. 1, E and F, which corre- 
spond to early (O-4 s) and middle (4-8.8 s) 
time spans. The independent particles (9 and 
10) spend most of their time in an arc that 
evolves from the bottom of the display window 
and passes through the upper left. Particles 1 
and 2 (the drivers) start at the extreme right 
and left of the screen and move inward in 
straight lines, as expected from the definition 
of the projection plane. All other particles (the 
driven) start at a point near the middle of the 
screen and are rapidly dragged to a small re- 
gion near the origin of the projection plane 
(indicated by the dashed frame in Fig. 1D) 
where they congregate with particles 1 and 2. 

Two typical enlarged “snapshots” of this 
region are shown in Fig. 1, B (at 4.84 s) and 
C(at 8.8 s). Even before 4.84 s this projection 
shows a configuration of particles that is rem- 
iniscent of the Venn diagram that describes 
the original network. Each driver particle has 
drawn in its own exclusively driven particles; 
the jointly driven particles (7 and 8) form a 
“bridge” between these two clusters, as shown 
in Fig. 1B. As time moves on, the configura- 
tion “boils” but continues to aggregate. Ulti- 
mately a single dense cluster is produced but 
still maintains the basic character of the Venn 
diagram (Fig. 1 C). 

A very good impression of the whole aggre- 
gation process can be obtained by combining 
“snapshots” into an animation movie. Such 
a movie clearly demonstrates that after the 
initial condensation of each driver with its di- 
rectly driven particles, the bridge (7 and 8) 
takes over the role of attractor and pulls to- 
gether the two clusters that had formed around 
its shared drivers (1 and 2). Note that conden- 
sation to the Venn diagram state has occurred 
before 5 s. This is an extraordinary sensitivity, 
since by then each neuron has given only some 
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50 spikes. (We have chosen the particular 
times shown in Fig. 1 for maximum clarity in 
separating overlapping trajectories and particle 
positions. The Venn diagram state persists for 
the entire period from 4.5 to 9 s in the cal- 
culation.) 

We have investigated a number of other 
choices of projection plane within the same 
general framework. Variations we tried in- 
cluded other choices of the three basis points 
defining the plane and freezing the plane at 
some appropriate point during the computa- 
tion, Many of these projections were about as 
informative as the example of Fig. 1. 

The projections described here all depend 
fundamentally on a priori knowledge about 
the structure of the network for choosing the 
projection plane. This obviously is not satis- 
factory for an arbitrary set of data resulting 
from a physiological experiment. Other meth- 
ods of visualization, not depending on pre- 
knowledge, will have to be considered; we re- 
turn to this in the DISCUSSION, 

Detection of inhibition 

The previous paper (8) was mostly con- 
cerned with excitatory neuronal connections. 
In order to deal with inhibition in terms of 
our representation we wish to produce aggre- 
gations as a consequence of favored configu- 
rations like presynaptic spike followed by 
postsynaptic silence (rather than presynaptic 
spike followed by postsynaptic spike). A simple 
way to attain this result is to reverse the sign 
of the force. This, in reversal of the original 
representation, will produce particle aggrega- 
tion for spike-silence combinations and par- 
ticle repulsion for spike-spike and silence-si- 
lence combinations. 

The sign-reversed version of the gravity 
representation was calculated for a set of sim- 
ulated spike trains from 10 neurons in which 
unit 1 was inhibiting unit 2 and the remaining 
8 units were firing independently (the simu- 
lation algorithm is described in Ref. 1). The 
time development of a number of inter-pair 
distances from this set are shown in Fig. 2A. 
Note that the distance between the two par- 
ticles corresponding to the inhibitory pair (I, 
2) decreases considerably faster and further 
than do the distances between unrelated pairs; 
the sign-reversed gravity representation indeed 
has the potential to detect inhibition among 
neurons. The rate of coalescence for the in- 

hibitory pair in Fig. 2A compared with the re- 
sults for excitation (cf. Fig. 1A and the results 
in Ref. S), however, indicates a substantial re- 
duction in sensitivity for inhibitory interac- 
tion. A similar asymmetry in sensitivity for 
the detection of excitation and inhibition was 
recently observed in cross-correlation analysis 
of spike trains ( 1) and can be shown to be for- 
mally related. 

For the present spike-train simulation the 
strength of the inhibitory connection was set 
to be quite large (0.75 on a possible range of 
0 to 1). Nevertheless the inherent noise in the 
spike trains causes some of the unrelated pairs 
to “diffuse” towards each other at rates that 
are uncomfortably close to that of the inhib- 
itory pair (cf. Fig. 2A). In realistic situations 
this may well lead to serious problems with 
respect to signal-to-noise ratio. Evidently some 
sort of criterion for significance and an appro- 
priate measure for the “thermal noise” will be 
necessary; we leave this point for future theo- 
retical analysis. 

A surprising phenomenon in Fig. 2A is that 
there is a clear time variation in the velocity 
of approach of the particles corresponding to 
the inhibitory pair. The distance function 
shows an initial fast decrease (O-l s) followed 
by an interval of slow or even absent decrease 
(l-4 s); then the rate of decrease rises to a 
higher and approximately constant value (4- 
14 s), and finally there is virtually no decrease 
at all (14-32 s). The phenomenon is real and 
data dependent and not due to a saturation 
inherent to the representation or to its numeric 
implementation. This is proven by the obser- 
vation that time reversal of the spike trains 
essentially resulted in a time reversal of the 
distance curve. 

Deviations from the calculated average fir- 
ing rate produce variations in force that in turn 
could produce effects as in Fig. 2A. Such spike- 
rate fluctuations (of - 1 s) can be ruled out 
here because in this particular example the 
charge history of each particle was normalized 
with a 20-interval moving average of the cor- 
responding neuron’s firing rate. This leaves 
only the possibility of a real time dependence 
(due in this case to statistical fluctuation) in 
the degree of synchrony of firing and silence 
of the units involved. This was investigated by 
evaluation of the cross-correlation function of 
the two spike trains. Cross-correlograms were 
calculated over two separate observation in- 
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0 16 - t (s) 32 

8-"""' C 14-24s 

n 

-128 0 128 -128 0 128 
- T (ms) - T (ms) 

FIG. 2. Gravitational clustering of inhibitory pair (neuron 1 inhibits neuron 2) among a group of 10 otherwise 
unrelated, simulated neurons. All 10 spike trains were Poisson-like; mean rates were IO/s; the inhibitory synapse had 
a strength of -0.75, a delay of 5 ms, and silent intervals in the postsynaptic train with duration of 80- 100 ms ( 1). A 
shows the time development of a number of interpair distances; the distance between the pair of particles corresponding 
to the inhibitory neuron pair is indicated by the label 1,2; all other curves correspond to unrelated pairs, Avows alofig 
the 1,2 distance curve mark the time intervals with different rates of aggregation of the 1,2 pair. The cross-correlation 
functions of the spike trains from neurons 1 and 2 over these two intervals are shown in B (4-14 s) and C (14-24 s), 
Note the relative similarity in the inhibitory trough in the correlogram (positive time shift, between 5 and 100 ms) and 
the distinct excess in correlated firing prior to the inhibition in C compared with B (negative time shift between -32 
and 0 ms). Note that this excess correlation is due to statistical fluctuations. Further explanation in text, 

tervals corresponding to the case of fast (4- 14 
s) and slow ( 14-24 s) coalescence, Results are 
shown in Fig. 2, B (fast) and C (slow). Com- 
parison of these correlograms shows that in 
this particular example it is not the synchrony 
between events in train 1 and silences in train 
2 that is changing; the troughs in both correl- 
ograms are virtually identical. However, the 
two periods differ in the numbers of nearly 
coincident firings of the two units; there is an 
increased probability of firing of unit 2 pre- 

ceding an event from unit 1 in the interval of 
14-24 s (Fig. 2C) compared with the earlier 
interval of 4-l 4 s (Fig. 2B). Note that this ex- 
cess in correlated firing prior to the inhibition 
is purely due to statistical fluctuations in the 
simulation; the model did not contain any ex- 
citatory connection. During the interval cor- 
responding to Fig. 2C the excess correlation 
causes a repulsive force, which in this case 
manages to balance the attractive force due to 
inhibition. Consequently the rate of change of 
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the interpair distance, which can be shown to 
be related to the area under the time-depen- 
dent correlogram, drops to approximately 
zero. 

The conclusion from the observed time de- 
pendence of the inter-particle distance is two- 
fold. The gravity representation apparently is 
sensitive to time dependence of the degree of 
connectivity as manifested in the correlation 
of firing and/or silences. This obviously should 
be considered an advantageous property for 
detection of possible dynamic changes in 
strength of functional neuronal connections 
associated with stimulation, context, behavior, 
learning, and the like. At the same time, how- 
ever, the example of Fig. 2 shows that the per- 
formance of the original gravity procedure is 
adversely affected by the symmetry of the force 
rules: event from 1 precedes event from 2 and 
event from from 2 precedes event from 1 are 
treated equally. With a unidirectional neural 
interaction this symmetry causes roughly half 
of the elementary contributions to the force 
history to consist of noise. The sensitivity and 
selectivity will drop accordingly. This is the 
situation during the period between 4 and 14 
s. During the later period between 14 and 24 
s the situation becomes even worse; the irrel- 
evant part of the correlation (left side of the 
correlogram) not only adds noise but also adds 
a force component which on average coun- 
teracts and actually balances the attractive 
component. 

This adverse consequence of symmetry in 
the force rules becomes manifest in the case 
of inhibition, whereas it was not evident for 
excitatory interaction. The reason for this is 
that the gravity representation is considerably 
less sensitive for inhibition to begin with. The 
foregoing discussion clearly points to the de- 
sirability of having asymmetric force rules. Not 
only can this possibly address the question of 
direction of the connection (causality), it 
should also improve the sensitivity and selec- 
tivity of the gravity representation by a con- 
siderable amount. 

Direchon of connections: the two-charge 
representation 

In the original model (8) the force on an 
individual particle is the product of its own 
charge and the propulsive field at that partic- 
ular Dosition. The field in turn is calculated as 

the vector sum of the individual fields gener- 
ated by the other particles, i.e., a function of 
their individual charges and positions. Thus 
“charge” is used for two purposes: I) for gen- 
eration of the field, and 2) as a coefficient that 
evaluates the force on the individual particle. 
Now let us consider a model in which separate 
classes of charge are associated with these two 
separate functions. One class of charge will be 
used to calculate the propulsive field; we will 
call this the efector charge qe. Thus the pro- 
pulsive field at particle i is now given by 

where rij represents the unit vector given by 

‘0 = (Xj - Xi)/Sfj (2) 

Here xi and xj are vectors representing the po- 
sitions of particles i and j, while SO is the Eu- 
clidian distance between them. 

The second class of charge will be used to 
calculate the net force on that particular par- 
ticle; we will call this the acceptor charge qa. 
Thus the force on particle i is 

Fj = qaifj (3) 

In this modification each particle is associated 
with two distinct charge histories, each serving 
a different purpose in the calculation. In the 
original model these charges and purposes 
were combined. 

In the original model, each charge was nor- 
malized in two ways: for average spike rate 
and to obtain zero mean charge. Such nor- 
malizations are included in our definitions of 
q; we have made a slight modification by using 
a sliding rather than global spike-rate average. 
As in the original model we will continue to 
have high viscosity. Therefore the velocity of 
each particle will be proportional to the force 
upon it 

dxi/dt = aqai(t)fi(t) (4) 

with l/c representing the viscosity. Finally, the 
displacement is calculated by simple integra- 
tion 

AXi = hc%i(l)fi(t) (5) 

where h denotes the time step in the compu- 
tation. 

This modification of the charge rules to- 
gether with appropriate operation rules leads 
to a model from which it is possible to infer 
causality, i.e., to produce directed graphs (wir- 
ing; diagrams). The original model. due to its 
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inherent symmetry, only detects temporal as- 
sociation of firing regardless of pre- and post- 
synaptic identification. 

The most important requirement for the 
new charge rules is that they differentiate be- 
tween two favored patterns: a spike from neu- 
ron 1 precedes a spike from neuron 2 versus 
the reverse situation. Such favored patterns are 
the prototype signatures of the two possible 
directions of neuronal interaction: 1 drives 2 
versus 2 drives 1. 

For the two required charges let us introduce 
the functions shown in Fig. 3; one charge con- 
sists of a decaying exponential starting at and 
following the spike, whereas the other charge 
consists of a rising exponential that terminates 
at the spike. Note that we have not yet assigned 
these charges to “effector” or “acceptor” roles; 
in fact, it will be necessary to consider both 
possible assignments, as we will see below, 

Let us examine the forces and resulting po- 
sition changes of two particles when the fa- 

FIG. 3. Conversion of a train of action potentials (I 
spike schematically shown in top trace) to a charge function 
used in the gravitational calculations may be based on 
different elementary charge functions. Two examples are 
shown here: a decaying exponential starting at and follow- 
ing the spike (middle trace) and a rising exponential that 
terminates at the spike (bottom trace). 

vored spike configuration is that a spike from 
neuron 1 precedes that from neuron 2 (i.e., 
neuron 1 drives neuron 2). For the three pos- 
sible assignments of charges (original and 2 
new) Fig. 4 depicts schematically the forces on 
each particle resulting from the overlap of the 
appropriate charge histories as well as the final 
net position change. Original positions are in- 
dicated by the dashed circles. In Fig. 4 column 
1 refers to the original model; the two alter- 
native charge assignments for the two-charge 
model are given in columns 2 and 3. The 
charge profiles are given in the top row. The 
interesting observation to be made from this 
figure is the difference in the three sets of po- 
sition changes indicated in the bottom row. 
In the two-charge model only one particle will 
move while the other stays stationary; one 
particle is acting as a stationary attractor of 
the other, In the conditions of column 2, the 
particle representing the presynaptic neuron 
moves towards the particle representing the 
postsynaptic neuron. In the conditions of col- 
umn 3 the point representing the presynaptic 
neuron acts as the attractor. In the original 
model both points move towards their center 
of mass; no inference about pre- and postsyn- 
aptic identification is possible. Examples of 
such movements in the original and two 
charge models are shown in Fig. 6. The circuit 
here was the same inhibitory connection used 
for Fig. 2, See DISCUSSION for additional as- 
pects of Fig. 6. 

If the favored spike pattern had been re- 
versed, i.e., neuron 2 drives neuron 1, Fig.‘4 
still holds, provided that 1 and 2 are every- 
where interchanged. For this simple synapti- 
cally related neuron pair, it is not necessary 
to consider both versions of the two-charge 
model; the causal implications of columns 2 
and 3 are identical. However even in slightly 
more complicated neuronal configurations 
both calculations are essential, as shown 
below. 

Figure 5 shows a small catalog of three-neu- 
ron circuits and the movements and final po- 
sitions associated with each of the three sets 
of charge rules. The circuits considered here 
have at most one direct connection between 
any two neurons. Since only three neurons are 
involved, the movements of the points are re- 
stricted to a two-dimensional plane and can 
be fully depicted without the complications of 
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FIG. 4, Forces and resulting position changes of 2 particles for 3 possible assignments of charge functions when the 
favored spike configuration is that a spike from neuron 1 precedes a spike from neuron 2 (1 drives 2). The three 
assignment rules of charges are given in the top YOW: original gravity representation (forward acceptor and forward 
effector, Zej column) and the two alternative assignments for the present two-charge representation (forward acceptor 
and backward effector, middle column; backward acceptor and forward effector, right column). In rows 2 and 3 the 
forces on each of the two particles involved are graphically derived from the overlap in the relevant charge histories. 
Bottom row shows the resulting position changes of the two-particle configuration for each of the three charge assignments 
(original positions are indicated by the dashed circles). Note that both versions of the two-charge representation make 
a distinction between pre- and postsynaptic neuron in the final displacement of the corresponding particles, unlike the 
original representation, which only shows that both neurons are associated, without allowing inference regarding the 
direction of the connection. 

projection. As before, each of the position col- 
umns corresponds to a particular set of charge 
rules (as in Fig. 4). Overall calibration is pro- 
vided by row one, corresponding to a set of 
three independent neurons; there is no sys- 
tematic position change in any of the three 
representations. The simple connection of Fig. 
4 is repeated in the second row. Divergence 
and convergence of simple excitatory connec- 
tions are contrasted in rows 3 and 4. Row 5 
considers an open cascade, whereas a closed 
loop is shown in row 6. The remaining possible 
three-neuron circuit is given in row 7. 

Using the original version of the gravity 

representation (position column 1) all of the 
networks with more than one connection 
(rows 3-7) produce identical trajectories to a 
single cluster at the center of mass. This means 
that the different circuits cannot be distin- 
guished in this way. However if we have avail- 
able the results of both two-charge calcula- 
tions, all circuits are clearly distinguished. 
Note that for the charge assignment in position 
column 2, the points representing postsynaptic 
elements act as attractors. For the assignments 
of position column 3, the points representing 
presynaptic elements act as attractors. For 
some networks, it is necessary to know both 
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0 

0 

FIG. 5. Catalog of 3-neuron circuits (/efi column) and the movements and final positions of the corresponding 
particles in the gravity representation (original positions are indicated by the dashed circles). As in Fig, 4, each of the 
three position columns corresponds to a particular set of charge rules, given in the top YOW. Circuits considered here 
have at most 1 direct connection between any 2 neurons. The different cases considered are: I) three independent 
neurons, 2) one excitatory connection (cf. Fig. 4), 3) divergence of excitation, 4) convergence of excitation, 5) cascade 
of three neurons, 6) closed loop of three neurons, and 7) cascade, shunted by direct connection (or combination of 
divergence and convergence). Note that the original gravity representation ( 1st position column) does not distinguish 
between neuron configurations 3-7; combination of final positions and trajectories from the two alternative 2-charge 
representations leads to a clear distinction in all cases. Further explanation in text. 

final particle positions and the trajectories. An open cascade dominates the convergence and 
example is the distinction between the open divergence that are also present. Finally, the 
cascade (row 5) and the mixed cascade (row sense of the connections in the closed loop 
7). Note that in the latter the signature of the (row 6) can be determined from the sense of 
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the trajectories. The analysis of similar circuits 
involving more neurons will generally follow 
similar principles. 

We stress that unambiguous and robust 
conclusions require the calculation of bodh 
possible charge assignments, i.e., both right- 
hand columns in Fig. 5. All the above assumes 
that all synapses have equal strength and that 
there is negligible contribution from random 
fluctuations. In particular, the final configu- 
rations where a particle arrives at the center 
of mass of the others (cf. Fig. 5 row 3, position 
column 2) are unstable equilibria; if there is a 
small difference between the two synaptic 
strengths, the moving particle will rapidly 
reach the vicinity of the center of mass and 
will subsequently slowly drift towards the par- 
ticle representing the neuron with the stronger 
connection. Random fluctuations of the in- 
terparticle forces resulting from the stochastic 
nature of the spike trains set a lower limit to 
the synaptic strengths or differences of 
strengths to be discerned. 

If we allow more connections between any 
two neurons, the situation becomes more 
complicated, but the analysis proceeds along 
similar lines. For instance, a similar arrange- 
ment as in row 2, now however with two con- 
nections in obverse directions (mutually ex- 
citatory pair), will result in both corresponding 
particles being attracted to their center of mass 
for each of the three sets of charge rules; all 
three position columns in that case will show 
the particle arrangement given here in Fig. 5 
(row 2, position column 1). 

Aggregation and the normalizations 
We have observed in a number of instances 

that two data sets with apparently quite similar 
cross-correlograms between spike trains of the 
interacting neurons show different rates of ag- 
gregation in the gravity representation. This 
discrepancy turns out to be partly a function 
of visual interpretation of relatively sparse 
cross-correlograms (i.e., containing many bins 
with no counts). More important, however, 
the discrepancy depends on the type of spike- 
rate normalization that is installed in the 
gravity representation. Note that the discrep- 
ancy is only a matter of aggregation rate; the 
correct aggregations always occur. 

In all variants of the gravity representation 
that we have so far presented, each particle 
charge was normalized in two ways. One nor- 

malization adjusted for zero mean charge on 
each particle. This served to keep particles 
from aggregating unless their charge histories 
were temporally correlated. An improvement 
we have used throughout this paper is to use 
a sliding rather than a global average for such 
normalization. 

The second normalization adjusted for av- 
erage firing rate. Again the average is best taken 
in sliding form. The original rationale for rate 
normalization was to keep a fast-firing neuron 
from dominating movements of the particles. 
It turns out, however, that there are tradeoffs 
in overall performance of the gravity repre- 
sentation when different rules for rate nor- 
malization are invoked. 

We have arbitrarily chosen the elemental 
charge to be a decaying exponential of time 
constant, which is incremented by q at the time 
of an action potential. Within this context 
there seem to be several logical choices for fir- 
ing rate normalization. These are calculated 
as follows: 

The area of an elemental charge described 
by q = qoe-‘lT is just qo7, If there are J4 such 
events in time T, the (global) mean charge is 

4 = Gmo4IT = qodcl (6) 

where p is the mean interval between spikes 
of that train. In order to attain rate normal- 
ization, qmust be made independent of p by 
appropriate definition of q. and/or 7. Some 
possibilities are as follows: 

MODEL 1. Charge-increment normalization, 
Let qo = p/p0 where p. = 1 ms. We may choose 
any reasonable 7 (which will be used for all 
particles). Thus for all particles 

4= ho. 

MODEL 2. Time-constant normalization. Let 
r = p/c where c is a constant (c should be - 10 
to preserve the temporal pattern details of the 
spike train in the charge history; c determines 
the degree of smoothing). We may choose any 
reasonable qo (which will be used for all par- 
ticles). Thus for all particles 

67 = 40/c. 

MODEL 3. No normalization. Here we are free 
to choose both q. and T (which will be used 
for all particles). Thus 

4 = 4odP 
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but this is dzferent for each particle because 
the value of p is different. 

In all three models, qis subtracted from each 
instantaneous charge value to produce an ef- 
fective charge of zero mean as required by the 
first (mean charge) normalization. Note that 
the value to be subtracted is universal for all 
particles in models 1 and 2, but different for 
each particle in model 3. 

Model 1, charge-increment normalization, 
has been used throughout this and the previous 
paper (8). Model 2, time-constant normaliza- 
tion, was suggested to us by Prof. H. Jasper as 
a way of attaining better sensitivity to detailed 
firing patterns. 

It turns out that the three choices of nor- 
malization produce different velocity of par- 
ticle aggregation for a given near-coincidence 
rate. In addition, performance with the three 
normalizations differs in its sensitivity to in- 
dividual spike rates. To make this explicit, let 
us characterize two spike trains by each of their 
rates p1 and p2 as well as the rate of near co- 
incidences p12, The number of counts in the 
cross-correlogram peak (calculated for data 
duration T) is therefore p I2 T. The correlogram 
“background” will be TP1P2At where Al is the 
bin width. 

For each of the rate normalization models 
defined above we may use the gravity calcu- 
lation to obtain the reduction of distance be- 
tween the two particles whose charges repre- 
sent these two spike trains. The results are 

MODEL 1. AS12 = KJP12IPIP2 

MODEL 2. a2 = K2TP12/(P1 + P2> 

MODEL 3. AS,2 = &TP,~ (I@ 

(The three constants K1, K2, and K3 of course 
have different units.) 

Thus, if we contrast two spike train pairs 
that have the same near-coincidence rate (i.e., 
identical peaks in the cross-correlation) but 
with different spike rates, we find that the 
higher rate pair will show slower aggregation 
in model 1 and model 2. Only model 3 will 
show aggregation independent of individual 
spike rates and hence will behave more in 
keeping with our intuitive interpretation of 
cross-correlogram peaks. The conclusion of 
these calculations is that model 3 (no rate nor- 
malization) is probably the best choice for un- 
biased analvsis of unknown data. 

DISCUSSl:ON 

We have demonstrated that the gravity rep- 
resentation is very capable of analyzing the 
interrelationships within a group of observed 
neurons without having to decompose the as- 
sembly into pairs or triplets. The sensitivity is 
extraordinary, as shown in Fig. 1, where a mere 
50 spikes from each contributing neuron were 
enough to produce aggregation and to show 
the essential Venn diagram of the complete 
network. This sensitivity transcends at least 
by an order of magnitude that of the joint PST 
scatter diagram (7) or the three-neuron 
“snowflake” ( 17), which produce comparable 
information, but only for two- and three-neu- 
ron networks, and require hundreds to thou- 
sands of spikes from each neuron. The basic 
improvement in sensitivity is related to the 
time integration implicit in the gravity rep- 
resentation. 

In the present paper we have dealt with four 
issues: 1) visualization of the clustering process 
in N-space by projection to a plane, 2) detec- 
tion of inhibition by tailoring the force rules 
of the gravity representation, 3) inferring cau- 
sality (i.e., direction of connectivity) by intro- 
ducing new charge rules, and 4) some conse- 
quences of the normalization rules. 

Projection 

Our experience with this type of visualiza- 
tion involved a color display and showed the 
utility of movies for representing dynamic as- 
pects of the clustering process. Neither of these 
tools could be demonstrated here. Neverthe- 
less, some of the flavor has been shown by the 
“time exposures” and “snapshots” of Fig. 1. 
For an actual investigation such tools remain 
essential. 

The projections described all involved 
choice of an actual plane in the N-space, and 
depended critically on a priori knowledge 
about the connectivity of the network. In a 
real laboratory situation this preknowledge is 
absent, and more general methods from pat- 
tern recognition and cluster analysis must be 
employed (5). One promising possibility would 
be the so-called “structure preserving” non- 
linear mapping introduced by Sammon (19) 
or modifications thereof (2, 20). These meth- 
ods best preserve the shortest distances in the 
original distribution; therefore we would ex- 
pect to see the same clusters as in the direct 
geometric proiections presented here. It re- 
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mains to be seen, however, if the relationships 
between clusters, as in the Venn diagrams 
shown, will be preserved in the nonlinear 
mappings. There are a number of unsolved 
problems involved in this type of data-depen- 
dent and iterative mapping, such as the de- 
pendence of the mapping on starting con- 
figuration in the projection plane and the 
distortion of trajectories. Moreover, these 
methods generally involve very heavy com- 
putation. 

The utility of projection schemes is to pro- 
vide visual feedback to the experimenter in a 
readily interpretable form involving infor- 
mation about the entire assembly of neurons. 
It may be useful to avoid this procedure, and 
to develop methods that describe directly the 
evolution of clusters and their shapes in the 
N-space. For example an undistorted descrip- 
tion in terms of hyperspheres and hypertubes 
in the N-space might be more accurate than 
projections. Visualization could be obtained 
by (mentally) projecting such gestalts (rather 
than individual points) to a 2- or 3-space (21). 

Inhibition 

We analyzed inhibition by reversing the di- 
rection of force between any two particles, thus 
causing aggregation when the corresponding 
neurons show association of spike and silence. 
We noted that the aggregation process was 
slower than for comparable excitatory con- 
nections. 

The underlying reason for this difference in 
sensitivity is the relationship of forces and 
charges in the gravitational representation. 
Force is produced by the vector sum of prod- 
ucts of suitably normalized charges. Among 
other things the normalization subtracts av- 
erage charge. Thus the normalized charge of 
a particle is large and positive immediately af- 
ter a spike of the corresponding neuron and 
subsequently decays to a small negative value 
during the interval between spikes. A spike- 
spike configuration between two neurons im- 
plies a product of two relatively large and pos- 
itive charge values (little decay has occurred). 
The spike-silence configuration has one charge 
large and positive, and the other small and 
negative; the product therefore is smaller and 
negative. Finally the silence-silence configu- 
ration involves two small charges, both neg- 
ative; the product therefore is small and pos- 
itive. 

When we dealt with excitatory connections 
the force in the first and third configurations 
was defined as attractive; the force in the sec- 
ond configuration was correspondingly repul- 
sive. The modification of force rules that we 
used for detection of inhibition involved the 
reversal of these relationships. Keeping in 
mind the relative magnitude of the several 
components, it is obvious that the aggregation 
will be slower for the rules used in the inhib- 
itory case, In this form, the gravitational rep- 
resentation is less sensitive for inhibition than 
for excitation. 

Other possible rules may not suffer from 
this limitation. For example, as proposed in 
the previous paper (8), we may define a pos- 
itive charge to favor silences of some particular 
duration, This would be a two-charge repre- 
sentation of a different sort than discussed in 
the present paper. 

Two-charge representatiun 

The forward and backward charge histories 
described in the present paper allow us to infer 
the direction of connections between neurons. 
It is essential to evaluate both the “final” po- 
sitions of the particles and the paths by which 
they get there. Furthermore the catalog in Fig. 
5 shows that it is necessary to calculate both 
possible sets of charge assignments in order to 
attain robust conclusions. 

We have shown that it is necessary to eval- 
uate excitatory and inhibitory connections by 
using different rules in the charges and result- 
ing forces. Charge rules are selected to favor 
some particular configuration of spikes and/or 
silences. If we assume only unidirectional 
connections between any two neurons, the 
original gravity representation, due its inherent 
symmetry, is vulnerable to statistical interfer- 
ence from the “noncausal” half of the correl- 
ogram. (Presumably a unidirectional connec- 
tion, whether single or multisynaptic, produces 
a feature either to the left or the right of the 
correlogram origin.) Such interference was 
demonstrated for an inhibitory connection in 
Fig. 2. 

A consequence of introducing the two- 
charge representation is an increase in im- 
munity to interference from the “noncausal” 
half of the correlogram. In effect, sensitivity is 
increased. This effect is demonstrated in Fig. 
64 which shows the development of inter- 
particle distance for the same data and pairs 
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as used in Fig. 2, Computation parameters 
were similar, except that Fig. 6A was obtained 
from the two-charge representations. The 
projected positions of the particles in the single 
charge (as in Fig. 2) and both two-charge rep- 
resentations are shown in Fig. 6,13-D. 

The effect of statistical perturbations may 
be less marked in the particle trajectories for 
the two-charge representations, and the infer- 
ence of causality is trivial. The two-charge 
representation does not eliminate the utility 
of the original symmetric representation. 
There is a doubling of calculation time because 
both possible sets of charge assignments must 
be used. In addition the interpretation is much 
more complicated than for the simple repre- 
sentation (cf. Fig. 5). These time costs suggest 
that initial screening with the original repre- 
sentation is more appropriate for a quasi-on- 
line experimental situation. 

In the original representation the center of 
mass of the total configuration of particles 
remained stationary at all times. In the two- 
charge model Newton’s “action equals reac- 
tion” has been discarded, and as a conse- 
quence the center of mass is no longer a con- 
served quantity. Since we are dealing here with 
an entirely imaginary construct, this violation 
of physical law should be no cause for alarm. 

The previous paper (8) introduced a differ- 
ent type of two-charge representation than we 
have discussed here. The earlier formulation 
involved complications such as two “alter 
egos” for each particle and the arbitrary spatial 
fixing of the locations of the effector “egos.” 
The present formulation allows the same types 
of functional inference with considerably more 
conceptual clarity and without such arbitrary 
restrictions. 

Normalization 
We have shown that velocity of aggregation 

is sensitive to the individual neuronal firing 
rates as well as to the near-coincidence firing 
rates. Several different sets of rules for nor- 

malization were examined. Each of these pro- 
duced different sensitivities to individual firing 
rates in relation to the sensitivity for near-co- 
incidence firing. The choice among different 
normalization rules must take into account 
additional factors. For example, the several 
normalizations also have different selectivity 
for firing pattern or burst structure. Thus nor- 
malization rules involve choices and tradeoffs; 
there is no universal optimal solution. At the 
same time, we emphasize that appropriate ag- 
gregation will take place no matter which nor- 
malization is used. Only the velocity and vari- 
ance of aggregation are affected. 

Implementation 

It unfortunately remains necessary to run 
these computations on a minicomputer rather 
than a laboratory microcomputer. The work 
shown in this paper was done in FORTRAN 
running on a Data General MV 10000 com- 
puter (comparable with DEC VAX 785). With 
this computer power (but no special array 
processors) typical runs for 16 or 32 s of spike 
data from 10 neurons took 3 min. Although 
some improvement is undoubtedly possible, 
this speed will suffice for quasi-on-line guid- 
ance of a multineuron experiment. 

Unresolved issues 
A number of questions require additional 

work: 1) What is the relation between the 
gravity representation and the generalized 
cross-correlation of spike trains? The com- 
putations are obviously different and are’ dif- 
ferently subject to statistical difficulty. We have 
already remarked that in order to arrive at sig- 
nificant conclusions the gravity representation 
requires far less data than do the joint PST 
scatter diagram and snowflake (forms of 2- and 
3-way correlation functions for spike trains). 

2) For unrelated neurons, the correspond- 
ing particles execute motions that are vaguely 
reminiscent of Brownian motion (6, 14). 
However, the situation is fundamentally dif- 
ferent; Brownian motion assumes that a par- 

FIG. 6. Performance of the two-charge representation: development of interparticle distances and projected particle 
positions for neuron 1 inhibits neuron 2, the same spike trains as used in Fig. 2. Charge rules are indicated by inset in 
each panel. A: distances vs. time. Note the steady decrease of the 1,2-distance and the improved “signal-to-noise 
ratio” compared with the results from the original representation (Fig. 2). B: corresponding projected positions. Note 
that particle 1 (presynaptic) moves towards an essentially stationary particle 2 (postsynaptic). C: projected positions 
in the single charge representation. Note that particles 1 and 2 move symmetrically towards each other. D: projected 
positions in the dual of B. Note that particle 2 (postsynaptic) muves towards an essentially stationary particle 1 (pre- 
synaptic). 
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title is acted upon by a very large number of 
forces, and that the whole system is defined in 
3-space. In the gravitational representation, 
only Iv forces are involved, where N is a rel- 
atively small number. However, the system is 
in N-space, and Iv is considerably larger than 
3. At what time in the development of the sys- 
tem will these diffusion-like movements effec- 
tively swamp those indicative of real neuronal 
interactions? Can something like a diffusion 
constant be defined? Such cons iderations de- 
termine the limits of sensit ivity and signal -to- 

4) Finally, it is time to apply the gravity 
representation to real data from real neurons. 
This will necessitate generalization to time- 
varying firing rates induced by stimulation. In 
the case of repeated stimulation, various 
schemes of shuffling of the data, comparable 
with the procedures used in cross-correlation, 
will allow the separate assessment of purely 
stimulus related effects. 
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