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1 Introduction

In order to find an optimal visual image of sound three general desiderata for an iso-
morphic representation are formulated.

Formal equivalence. The relation of sound and image should be unique. In the
image all information contained in the sound should be preserved including phase
relations. The optical-acoustic map should be one to one.

Operational definition. The representation can be implemented instrumentally on
the base of the sound without additional information regarding context or meaning
and without human interference. Preferentially the representations are made on a
digital computer with conventional displays. Real time operation is a desirable aspect.

Perceptual congruence. Continuity with the tradition of representation of sound
in music (notes on a staff) and in vocalisations (sonogram). Moreover a simple cor-
respondence should exist between perceptual elements with associated distances and
relations in the original sound (audition) and the perceptual elements with associated
distances and relations in the resulting image (visual).

2 Theory and Representation

The mathematical solution starts from the analytic signal £(t) associated with the
original sound x(t)

E(D): =x(t) +ix(t) (1)
where

IO | x(s)

x(t): = - fds —

is the Hilbert transform or quadrature signal of x(t). In the spectral domain
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) 2x(w) w>0
E(w)= { (2)

0 w<0

where x(w) is the spectral transform of x(t) and £ (w) of £ (t).

The presentation is based upon a second order functional of the analytic signal.
Four equivalent functionals exist: (1) product function IT (7, t); (2) ambiguity func-
tion A (7, v); (3) CoSTID =(w, t); (4) bispectrum I' (w, v). Mathematically these four
representations are equivalent, perceptually a spectro-temporal form is desired. There-
fore only ambiguity function and CoSTID remain. The similarity with sonogram
representing frequency and time, not their differences, eliminates the ambiguity func-
tion. As a consequence we propose the Coherent Spectro-Temporal Intensity Density
(CoSTID) as the formal base for the visual representation of sound. Mathematically it
is defined on the base of the product function

1 1

M(r,t;a): =E*[t+(a-1/2)7)E[t+(at+1/2)7] - §<a< 3 3)

The CoSTID is now the spectral transform with respect to the temporal difference 7
Z(w, t;a): = fdr e YT (7, t;a) . 4)

For a = 0 the product function IT is Hermitic in 7 and the CoSTID is a real valued
function, not necessarily positive, of frequency and time.

In physical optics the CoSTID with a = 0 has been introduced by Wigner (1932)
and used by Bastiaans (1979) and Wolf (1982). In acoustics this function is used by
Claasen et al. (1980) and Flandrin and Escudie (1980). For a = + 1/2 the product
function II is not Hermitic and the CoSTID becomes a complex function. However,
it can now be written as a product of spectral and temporal aspects with an inter-
mediating spectro-temporal (de)modulation.

Z(w,t): =E(w,t;-1/2) (5)
(4) > = [dr e T [I(7,t;-1/2)
(3)~ = [dre™ T £¥(t- 1) £(1)
=E*(w) e E(D) (6)

This function has been proposed by Rihaczek (1968).

Johannesma et al. (1981) introduced it as a coherent spectro-temporal image of
sound. Altes (1980) discussed it in relation to echolocation. Hermes et al. (1981)
applied it to the spectro-temporal sensitivity of neurons. The relation of CoSTID to
other second order functionals is discussed in Aertsen et al. (1983).

The CoSTID cannot be regarded as a physical entity but should be interpreted as
a formal structure defined on a signal which by application of appropriate operators
produces physical entities.

The phonochrome is a representational structure of a signal based on the CoSTID
and intended for visual perception. Its realisation is formed through a representation
of a complex function of two variables by a chromatic image. For an extensive dis-
cussion and presentation of phonochromes of different signals see Johannesma et al.
(1981).
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3 Identification and Localization

For identification and localization of an acoustic source of which only the air pressure
variations can be observed, two receivers are needed. Not directly considering bio-
logical realisation or technical implementation it is possible to evaluate the CoSTID
for this purpose. If the microphones receive signals x; (t) and x, (t) then their dif-
ference will be mainly in the phase of the signals. Now two signals are formed:

X+ =%(X1 *X,) (7

and for each the associated CoSTID =, :

— _ 1] — -

Lizj{:’ll tEn t(E, +321)}. (8)
Now take even and odd part

e o e Lo

Le='=++':’—=§(’:11+‘:‘22)3 (92)

o _ = o= _ 1 —

= =-’4+‘~”~——§(—"~12 +E51) . (9b)

Then Z° is based only on the autoCoSTID’s
and =° is based only on the crossCoSTID’s.

As a consequence Z° is weakly and =° strongly dependent on the phase relations of

x; and x, and as a consequence on the position of the source.

For active localization and identification an analogous way of reasoning may be
applied. However now x, is the emitted signal and x, is the reflected signal. Compar-
ison of =,, with =,, may lead to identification while evaluation of =,, and =,; may
supply the clues for localization.

In this context the function of EE- and El-neurons in the central auditory nervous
system should be considered.
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