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Single unit recordings have provided us with a basis for understanding
the auditory system, especially about how it behaves under stimulation
with simple sounds such as clicks and tones. The experimental as well
as the theoretical approach tosingle unitstudieshasbeendichotomous.

One approach, the more familiar, gives a representation of nervous
system activity in the form of peri-stimulus-time (PST) histograms,
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period histograms, iso-intensity rate curves and frequency tuning
curves. This approach observes the neural output of units in the
various nuclei in the auditory nervous system, and, faced with the
random way in which the neurons respond to sound, proceeds by
repeatedly presenting the same stimulus in order to obtain averaged
results. These are the various histogram procedures (Gerstein &
Kiang, 1960; Kiang et al. 1965).

We will call this approach the experimenter-centred approach; the
experimentally observed variable is the occurrence of action potentials
(spikes), commonly expressed as a firing rate. One may also use
criteria as just detectable changes in firing rate, e.g. in the construction
of frequency-tuning curves, and more recently also changes in
synchrony between the occurrence of the spikes and the stimulus.
The stimuli used in this approach are the familiar ones such as clicks,
tone- and noise-bursts or continuous tones of various frequencies.
The idea once again is to obtain estimates of firing probabilities or
changes therein by repeatedly presenting the same stimulus. Post-
stimulus time-histograms and period histograms are thus obtained by
averaging or, using a different expression, by correlation techniques.
One calculates the occurrence of spike activity as a function of time,
T, after the onset of stimulus presentation. The experimenter-centred
approach is therefore a method of forward correlation.

The second approach, pioneered by De Boer (1967, 1968), and
extended and elaborated by Johannesma (1972), Moller (1973),
Grashuis (1974), and van Gisbergen et al. (1975) may be called a
subject-centred approach. This way of thinking considers the occur-
rence of an action potential (event) as a sign or as an indication that
something particular happened with the stimulus preceeding that
action potential. Each action potential is considered as signalling a
stimulus that was of interest to the neuron and may be even to the
animal. For this type of approach the stimulus preferably is diverse
in nature, and the pioneering papers reported results based on
Gaussian wide-band noise as a stimulus. By correlating the events
with the stimulus in a given interval prior to the event one obtains
an estimate of the average stimulus that caused the spikes. This
correlation procedure where one looks at the average stimulus as a
function of time, 7, prior to the spike is therefore a method of
backward- or reverse-correlation (De Boer, 1968). The procedure
consists of averaging an ensemble of signals of a given length (e.g.
20 ms) that are immediately preceding a spike. This particular
ensemble is called the pre-event stimulus ensemble (PESE). One can
imagine that if, for instance, an auditory nerve fibre 1s tuned to a given
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sound frequency, say 1 kHz, only those segments out of the noise
stimulus that contain energy in the 1 kHz region will elicit action
potentials. Therefore the PESE will have more energy in the 1 kHz
region than the overall stimulus ensemble. This distinguishes nervous
activity evoked by a stimulus from that termed as spontaneous
activity: in this case the PESE will have the same properties as the
stimulus ensemble.

The subject-centred approach is generally based on the use of
Gaussian wide-band noise as a stimulus and is therefore also called
the white-noise approach (Marmarelis & Marmarelis, 1978). It is
basically one of the familiar identification methods used in the study
of linear systems but having the powerful option to be used in the
study of non-linear systems. The earlier studies used this noise
stimulus and obtained an estimate of the neurons impulse response,
thereby in fact considering the auditory system up to the auditory
nerve fibres or cochlear nucleus units as basically linear. Assuming
such a linear system, it was expected that Fourier transformation
results in a spectrum that in shape is comparable to the frequency-
tuning curves as they will result from the experimenter-centred
approach.

The introduction of the concept of the PESE (Johannesma, 1972)
allowed a much broader scope: without loss of generality the reverse
correlation method could be used for all statistically structured
stimulus ensembles. One of these consists of a sequence of tonepips
for which the amplitude as well as carrier frequency are randomly
selected out of 127 respectively 255 values (Aertsen & Johannesma,
1980) and in which the intervals can also be selected freely. Another
potentially important extension is to use an ensemble of natural
sounds, the acoustic biotope (Aertsen, Olders & Johannesma, 1981).

Segundo (1970) remarks: ‘a relation between two activities can be
approached prospectively and retrospectively. The viewpoint applied
to the forward or prospective way is that of the current experimental
strategy in which the investigator imposes certain conditions and then
observes their effects. The backward-, reverse-, or retro-spective
viewpoint reflects how a subject must proceed when using his sensory
input to identify some stimulus condition.’

The white-noise approach has been applied with potential success
in vision research and in the study of the vestibular system (cf.
Marmarelis & Marmarelis, 1978). Although its application in auditory
research was earlier than in the other fields mentioned, it stayed
relatively limited in its use. In fact all developments originated from
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Europe, in particular The Netherlands (De Boer, Johannesma) and
Sweden (Maeller), which may explain part of its restricted use. When
Johnson (1980) in a theoretical investigation to the use of the
white-noise approach in auditory research remarks that since the
auditory system is more non-linear, i.e. contains higher-order non-
linearities, than the visual or the vestibular system the white-noise
approach is in principle less suited because of computational problems
in evaluating the higher-order kernels, it is overlooked that the
alternative, more familiar forward methods are all based on linear
assumptions. There is in our opinion no reason to dismiss a method
on theoretical grounds because it is not ideal and instead to stay with
methods which may be far less ideal but have a longer history of
application. - \

We have the feeling that unfamiliarity with the method in general,
both from a conceptual point of view — one mustlearn the retrospective
approach and to use statistically structured stimuli —and from a
computational point of view, has limited its use. It is our aim
therefore to describe as lucid as possible the underlying principles.
This will lead us into the field of signal analysis and system theory
as well as to a comparison of results obtained for the auditory nervous
system by the two approaches: the forward approach and the reverse
approach. Especially we will investigate whether one gains infor-
mation by using the subject-centred approach that is not obtainable by
the more traditional experimenter-centred one. Are there conflicting
results and what does that teach us about the auditory system ? Should
one approach be favoured above the other or should one be inclined
to use the best of both worlds?

Application of the reverse-correlation method so far has been to
the auditory nerve in cat, rat, guinea pig and caiman, to the cochlear
nucleus complex in cat and rat, to the torus semicircularis (a
homologue of the inferior colliculus) in the grassfrog, and in the
medial geniculate body in the cat. We will review the results in detail
with respect to those from the more traditional approaches, elucidate
where results diverge or new features appear.

2. LINEARITY AND NON-LINEARITY IN THE AUDITORY
SYSTEM

The initial observations about non-linear action in the auditory
system came from psycho-acoustics. It appeared that usually there
are more frequencies present in the audible spectrum than in the
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sound stimulus, among these the well known ‘residue’ and the
quadratic and cubic difference tones (for a review: De Boer, 1976a).
The cubic difference tone is, as its name suggests, a third-order
distortion product of the form 2f,—f,, where f, is the lower frequency
and f, the higher-frequency tone in a two-tone complex. Distortion
products of this order can arise when a third-order non-linearity is

resent
P ’ F(a) = c,a+cya’+c;a®, (2.1)
that transforms the sound input x(¢)

y(t) = F{x(8)}. (2.2)

These cubic difference tones can be detected in the activity of
auditory nerve fibres (Goldstein & Kiang, 1968), in the response of
inner haircells (Sellick & Russell, 1979), in the evoked acoustical
emissions from the ear (Kemp & Chum, 1980), and it is likely that
they originate from a non-linearity inherent to the combination
basilar membrane and outer haircells. There is only marginal doubt
that the activity that gives rise to the perception of the cubic
difference tone will be found in the vibration pattern of the basilar
membrane in animal cochleas which are physiologically in excellent
condition (Sellick, Patuzzi & Johnstone, 1982).

Linearity in the auditory system seems to be confined to the action
of the middle ear, with the additional restriction that sound intensity
should be within the physiological range. When studying the auditory
nervous system one therefore studies a system with a non-linearity
of at least third order. All measures of auditory nervous system
activity therefore are special to the particular stimulus type and
stimulus level used. Current interest in the use of complex sounds
such as speech to study the auditory system (e.g. Young & Sachs,
1979) has made it abundantly clear that the nerve fibre responses
thereto cannot be predicted in an analytic way from the information
gained by the responses to simple stimuli as clicks or tonebursts. We
are therefore in dire need for a method that really identifies the
non-linear auditory system. Such a method is offered in principle by
the reverse-correlation approach, although at the expense of lengthy
computations. However, an essential assumption is that the system
is time-invariant, has finite memory, and has constant parameters.
Furthermore, the order of the system has to be finite.

A disturbing point common to the work on nervous systems is the
discrete output of the neuron: a random series of uni-directional
pulses. The solution to the identification problem is in this case
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potentially less accurate than in case the input as well as the output
signal are continuous (Johnson, 1980).

3. LINEAR SYSTEMS ANALYSIS WITH EXAMPLES FOR THE
MIDDLE EAR

A linear system can be characterized uniquely by its impulse response,
h(r), or equivalently by its transfer function A(w). Consequently two
techniques are in use which result in either one of these measures.
The first technique comprises exciting the system under study with
an impulse and observing the output of the system thereto. The other
technique requires stimulation with a pure tone of varying frequency
while keeping track of the output signal which is also a pure tone of
the same frequency; the amplitude ratio and phase difference with
respect to the input signal characterise the system. It is well known
that A(w) is the Fourier transform of A(r).

The uniqueness of the characterization results from the linearity
of the system:

Sy +x5) = f(x,) +f(x,) (3.1)
flex) = ef(x). (3-2)

Therefore it is irrelevant at what stimulus level we study the system,
or if we investigate it with a single frequency at a time or with a
stimulus containing all frequencies of interest such as the impulse or
noise. '

Because of the linearity the system, y(¢) to any stimulus x(¢) can
be predicted, provided we know its impulse response, A(7), by the
convolution integral ‘

: [0 0]

vy =" hnst—dr (3.3)
—Q00

Because of the causality, A(7) = o for 7 < o. Conversely if we know

the transfer function A(w), the spectrum of the response y(w) can be

computed from the spectrum of the stimulus by multiplication

() = h(w) #(w), (3-4)

in which y(w), fz_(w) and £(w) are the Fourier transforms of respectively
(1), h(t) and x(z). We note that a convolution in the time domain
transforms into a multiplication in the frequency domain.

'This small piece of theory forms the basis for the understanding
why such a variety of systems have been investigated as if they were
linear. Furthermore we can now understand why the use of tones,
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clicks or noise can result in the same basic information. We will
illustrate this with measurements on the middle ear system in
amphibians.

(@) The harmonic analysis or sweep frequency approach

This is the classical way to study input—-output relationships of any
system. For a constant sinusoid of varying frequency the amplitude
ratio and phaseshift between output sinewave and input sinewave are
determined. The results are usually presented in plots of gain and
phase versus frequency, also known as Bode plots. For the middle
ear this type of analysis has been made by, for example, recording
vibrations of the stapes foot-plate for sinusoidal sound stimulation of
the tympanic membrane. Recording these minute vibrations (~ o1
to 100 nm) requires laser interferometry, Mossbauer techniques or
capacitive probe techniques. An example is shown in Fig. 1, where
the vibration pattern of the tympanic membrane of the grassfrog as
recorded with laser—doppler interferometry is represented by a Bode
plot (De Vlaming et al., to be published).

(b) The structured multi-frequency stimulus approach

In this context, particularly, the impulse or click has been used. We
have already seen that Fourier transformation of the impulse response
results in the transfer function fz(a)). This Alw) is a complex valued
function consisting of modulus, |4(w)| and argument @(w) such that

h(w) = |h(w)| e ¥ @, (3-5)

Modulus and argument are identical to gain respectively phase in the
Bode plot. Because of the smallness of the vibrations the click
response for the tympanic membrane is obtained by averaging over a
large number of click presentations. An example again recorded by
laser—doppler interferometry is shown in Fig. 2. Since the middle ears
were identical to those shown in Fig. 1, the results should be fully
comparable.

(¢) The use of unstructured multi-frequency stimuli : the white-noise

approach

In this case wide-band noise or pseudo-random noise is used as input
signal. While noise originates from a physical fluctuation process such
as Brownian motion or other thermal agitation processes, pseudo-
random noise is usually generated digitally using a shift-register with
proper feedbacks and a subsequent low-pass filtering. This pseudo-
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Fig. 1. Frequency-response of the tympanic membrane of the grassfrog. Move-
ments of the tympanic membrane at discrete frequencies were recorded using a
laser—doppler velocity meter. The upper part of the figure shows the movement
amplitude for two {rog ears, the lower part of the figure the corresponding
phase-shifts. The response is low-pass of approximately third order.

random noise therefore is reproducible while real noise i1s not; the
reproducibility is an advantage when averaging is needed. The

auto-correlation function
T

R (1) = lim = | wx(t)x(t+7)de (3.6)
. T -0 T ]
for white noise 1s a Dirac §-function:
| R,(r) = P&(1),

where P 1s the power or variance of the noise. For wide-band or
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Fig. 2. Impulse response and transfer function of the tympanic membrane of the
grassfrog. The same recording technique and same ears as in Fig. 1. Stimulation
was with an acoustic click of slightly different level as the tonal stimulus in Fig. 1.
The overall behaviour is about the same; the phase-spectra are more equal in
this case than in the case for tonal stimulation. Marker duration at the insert is
1 ms.

band-limited white noise the auto-correlation resembles the waveform
of an acoustic click. A well-designed pseudo-random noise signal has
the same autocorrelation structure and power spectral density as
band-limited white noise but deviations in the higher order auto-
correlation functions may exist (Swerup, 1978; Eckhorn & Popel,
1979). This aspect of pseudo-random noise is particularly relevant in
the analysis of non-linear systems.
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Fig. 3. Cross-correlation method to determine the impulse response and transfer
function of the frog’s middle ear and mouth cavity. Stimulation was with 5 kHz
wide-band noise using a closed sound system; pressure was recorded in the mouth
cavity, which has an open connexion to the middle ear using a probe microphone.
By cross-correlating the recorded sound-pressure variations with the applied
wide-band noise the impulse response as shown was obtained. Fourier trans-
formation resulted in the amplitude spectrum (drawn line). For comparison the
transfer function as obtained from click stimulation is shown as a dashed line.
Amplitude scale is to an arbitrary reference.

By determining the auto-correlation function of the input signal

T
RM@)=1m1%j x(t) x(t +7) dt (3.7)
T— 0
and the cross-correlation function of output and input signal
[ (T
R, (1) = lim T x(t) y(t+71)dt (3.8)
T—-cw 0

one is able to compute either the systems impulse response or its
transfer function. From (3.8) we derive for x(¢) i1s white noise and
using equation (3.3) that

R, (1) = h(7), (3.9)
i.e. the cross-correlation function is equal to the impulse response.

The Fourier transforms of the various correlation functions are the
power spectral densities R (w), R, () and the cross-spectral density
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}?xy(a)). The following relation holds and covers also the case of non-
white noise:

7 _ ézy(w)
) = sz(w) .

The method is illustrated in Fig. 3 together with a result for the frogs
middle ear.

(3.10)

4. LINEAR SYSTEMS ANALYSIS APPLIED TO THE AUDITORY
NERVE FIBRE RESPONSES

So far we have dealt with continuous input signals and continuous
output signals. Because our interest moves toward neural phenomena,
i.e. situations-where the output signal can be considered as a point
process, we must evaluate whether the linear systems analysis tech-
niques can still be used.

Before starting the analysis in a formal way, first of all a survey will
be given of the various experimental procedures, mostly based on
assumptions of linearity, that are in use for the auditory system.

(@) Sweep-frequency methods

In these procedures the neural firing rate is plotted as a function of
stimulus frequency for pure tones or long tone bursts as stimuli.
These curves are determined for a large range of stimulus intensities
and are called iso-intensity contours (e.g. Rose et al. 1971). In
addition, the phase differences between stimulus and response are
evaluated from period histograms (e.g. Anderson et al. 1971). Both
measures taken together are formally related to Bode plots. An
example is shown in Fig. 4. One observes that the shape of the
iso-intensity contours changes as a function of stimulus level, so does
the phase. This is indicative for a non-linearity in the system.

While iso-intensity contours are constant input level curves, the
so-called frequency-tuning curves (e.g. Kiang et al. 1965) depend on
a constant output criterion such as an increase of, for example, 20 9%,
over the spontaneous firing rate. In a linear system one could convert
iso-intensity contours into tuning curves. Typical tuning curves for
auditory nerve fibres are shown in Fig. 5, together with their
rate-intensity functions.

(b) Methods based upon click stimulation

By calculating a PST histogram for the firings produced by repeated
click stimulation one observes, especially for low characteristic
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response areas (upper half) and slope of the cumulative phase indicates that the
fibre’s behaviour is non-linear. (From Anderson et al. 1971.)
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Fig. 5. Rate-intensity functions and frequency tuning curves for three types of cat
auditory nerve fibres: low, medium and high spontaneous rate. LLow spontaneous
rate fibres appear to have elevated threshold, but otherwise show the same tuning
as the other two categories. (From Liberman, 1978.)

frequencies, that the firings on average appear to be spaced at
intervals equal to the period of the characteristic frequency (CF).
Stimulating with clicks of opposite polarity (rarefraction v. conden-
sation clicks) one notices that the firings are now at a different position
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Fig. 6. The construction of a compound PST histogram to click stimulation. The
PST histogram obtained for rarefaction clicks and the inverted PST histogram
for condensation clicks are put in time registration with each other to give the
compound PST histogram. As defined in the text, the appropriate way would be
to subtract the PST histogram to condensatton clicks from that obtained with
rarefraction clicks. (From Pfeiffer & Kim, 1972.)

but that the peaks are still spaced by CF~! ms. This is illustrated in
Fig. 6.

Denoting the PST histogram to rarefaction clicks with 7,(¢) and
that to condensation clicks by n_(#) one may define the compound

PS'T histogram (Goblick & Pfeiffer, 1969) by

ny(t) = n () —n_(2). (4.1)

A series of compound PST histograms is shown for fibres of different
CF in Fig. 7.

(¢) A model for the peripheral auditory nervous system

At this point we introduce a model representing current thinking
about the auditory periphery (excluding the linear middle ear). It
consists of a non-linear filter situated in the basilar membrane that
receives energy from an active mechanism (probably the outer
haircells); this is followed by a synaptic mechanism that is responsible
for auditory adaptation (e.g. Eggermont, 1973, 1975; Smith, 1979;
Harris & Dallos, 1979) and finally a pulse-generating mechanism, the



Reverse correlation methods in auditory research 355

AN 44

Unit
19 ~mhh'k-~whw 11 3 6
CF 140 Hz 800 1300
~ 400
10 25 9 14
160 410 850 2000

22 —~»7}L,‘F~,f~ 28-——1L7*1Aﬂa~—— 5
515 940

360

21 32 12 ~1%~¥v—~v—-—
) 700 1150
370 |
—12-3 ms—

Fig. 7. A collection of compound PST histograms for cat auditory nerve fibres
with characteristic frequencies ranging from 150 to 2000 Hz. (From Pfeiffer &
Kim, 1972.)

T

neuron, with a resetting mechanism. This model is visualized in
Fig. 8. For our purposes we simplify this model to one that is known
as a sandwich model or band-pass non-linearity model. In this type of
model the algebraic non-linearity is sandwiched between a bandpass
filter representing the tuning properties of the basilar membrane and
a low-pass filter representing the synaptic action (e.g. Pfeiffer, 1970;
Johannesma, 1971; De Boer, 19765).

It can be shown (Johannesma, 19%71) that when A(7) is the impulse
response of the bandpass filter and k(o) is the impulse response of
the lowpass filter, that for an input signal x(z)

ny(t) = Jt:o k(o) ~[‘:oh(T) x(t—71—o)drdo. (4.2)

This indicates that n,(z) is linearly related to x(z); if x(¢) is a click then
ny(t) is the impulse response of the cascaded linear filter and the
low-pass filter. The compound PST histogram therefore does not
betray the algebraic non-linearity.

It appears that a logical extension of the methods for the analysis
of linear systems to the auditory nervous system is the reverse
correlation method using white noise as input signal. For a linear
system this method should also yield the impulse response of the
neuron. This method has been first applied by De Boer (1967). An
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Fig. 8. Model for the peripheral auditory system. The upper part of the figure
indicates the current viewpoint: the inner ear consists of a non-linear active filter
composed from basilar membrane and hair cells, a synapse incorporating the
adaptation properties, and a spike generating element: the nerve fibre. For the
purpose of the systems analysis this is modelled into a cascade of simple
subsystems as shown in the lower part of the Figure. The non-linear active filter
is split up into a sandwich system: a non-linear element sandwiched between two
linear filters. The band-pass filter represents the low-intensity tuning of the
basilar membrane, the low-pass filter the synaptic action. The spike generating
element is modelled as an exponential pulse generator. For comparison with
experimental procedures an averager is added.

understanding of this procedure is crucial to the remainder of the
paper, thus we will deal therewith in an alternately heuristic and
analytic way in the next section.

5. REVERSE CORRELATION AND ITS APPLICATION TO
AUDITORY NERVE FIBRES

Consider a system consisting of a linear filter and an algebraic
non-linear element (e.g. an exponential pulse generator) following it.
The input signal is again x(z) and the output of the non-linear element
is a series of action potential pulses 2(t) = X¥_, §(t—t,). The input—
output correlation function is then equal to

s
R (1) = 7‘_[ x(t) z(t+71)dt

N 1

TN

N
2 x(tn ~—'7'))

n=1

(5.1)

indicating that R_,(7) equals the average value of the signal that
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precedes the spikes times the neurons average firing rate. Recalling
that the compound PST histogram n, (¢) equals

ny(t) = f:o (T)x(t—7)dr (5.2)

in which () = LOO k(o) h(r— o) dor  (5.3)

can be considered as the impulse compound PST histogram, then,
because of (3.9), for white noise as a stimulus

1 (T
10 = 3| O mletn)de (5.4

which means that the impulse response of the system can also be
found by cross-correlating the compound PST histogram to a
white-noise stimulus with the white noise (Johannesma, 1971;
Moller, 1977). It can be shown that |

U7) = 2R, (7). (5.5)

Therefore, the following quantities are identical:

(1) the compound PST histogram for click stimulation multiplied
by o's, '

(2) the input—output correlation function for a white-noise input,

(3) the average signal preceding a spike for white noise input times
the average neural firing rate during stimulation.

In the general model shown in Fig. 8 the occurrence of action
potentials 2(¢) depends on a signal y(¢) which can be considered the
generator potential of the auditory neuron. In case the pulse generator
gives rise to action potentials at a rate proportional to the generator
potential it can be shown (Johannesma, 1980) that

sz(T) = R, (7). (5.6)

When a pulse generétor is modelled as a linear integrator followed
by a threshold set at level b for positive-going crossings then it can
be shown (De Boer, 1973) that for x(¢) is Gaussian

R, (1) = bR, (1) —a(~) R, (7). (5.7)
mT

This suggests that there i1s a correction proportional to the time
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derivative of R, (7), the latter being the actual cross-correlation for
the BPNL network. For normalization purposes one takes

. IR% (r)dr
(04 —]-'—R'i—?;‘(;)—d;- (58)

This expression (5.7) has been used to test models of the auditory
system for their applicability (De Jongh, 1978); it appeared that fixed
threshold models are unlikely for the auditory nerve.

A schematic prerequisite for the reverse correlation procedure is
shown in Fig. 9. Just as for the compound impulse response, it can
be shown that the reverse correlation procedure is insensitive to the
non-linearity as long as it is algebraic.

When reverse correlation is performed on-line, high neural firing
rates may cause spikes following each other within the time window
of the averager to be discarded. This could lead to inaccurate estimates
of R,,(7), Wilson & Evans (1975) argued that the method could lead
to impulse responses that show either less damping (‘reversed
tape-recorder method’) or more damping (‘delayed noise method’)
than the theoretically calculated impulse responses. Provided rather
trivial precautions are made, no such problems can occur.

We may therefore state that the first-order correlation between
input signal and output signal, regardless of whether the output is
discrete or continuous (De Boer & Kuijper, 1968), represents the
linear relation between input and output. There exist two ways to
obtain the input—output correlation. If the stimulus is repetitive (e.g.
short-duration pseudo-noise sequences, Moller, 1977) one may first
form the compound PST histogram and then calculate the cross-
correlation, cf. equation (5.4). This is illustrated in Fig. 10. If the
stimulus is non-repetitive, as in the case of real noise or very long
pseudo-noise sequences, one calculates the average signal before the
spike (equation (5.1) and Fig. 9). Note that 7, by definition, runs from
right to left (cf. Fig. 9). The first method has the advantage of on-line
calculation of the compound PST histogram followed by a short
off-line correlation procedure; a drawback can be the inherently
poorer statistics of the short pseudo-noise sequences. This, however,
seems not to affect the results for the first-order cross-correlation but
affects the higher-order cross-correlations (cf. section 17).

The Fourier transform of the reverse correlation function and of
the click-and-noise compound PS'T histogram (Fig. 11) will be equal
to the tuning curve provided that the system behaves linearly. This
aspect has been explored, especially by De Boer for the cats auditory
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z(t) =% 6(t—¢,) t, = moment of occurrence of action potential
n=1 N = number of events

PESE x, = x,(r) =x(t,-7): n = l,_ N

Fig. 9. The operational definition of the pre-event stimulus ensemble, PESE
(From Aertsen et al. 1980.)
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Fig. 10. Schematic illustration of the data processing to obtain cross-correlation
functions in case short pseudo-random noise sequences are used. A compound
histogram is formed from which the autospectrum, in case the stimulus is
sufficiently white, directly gives the modulus of transfer function. From the
cross-correlation the cross-spectrum can be obtained by Fourier transformation.
This results in amplitude as well as phase information. (From Maeller, 1977).

nerve (De Boer, 1967, 1968, 1969, 1973; De Boer and De Jongh,
1978) and also by Evans (1977), and by Harrison & Evans (1982) for
the guinea pig.

De Boer (1969) observed some discrepancy in this comparison: the
actual tuning curve was slightly narrower and somewhat steeper than
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Fig. 11. Filtering characteristics of cochlear nucleus units in the cat as determined
by reverse correlation ( ) and compared to frequency-response areas (... ... ).
(From Grashuis, 1974.)

the results for the stimulation with noise. This was attributed to the
difference in stimulation: highly frequency-specific stimuli to obtain

" the tuning curve and a broadband stimulus to obtain the reverse

correlation function. _
For the modelshown in Fig. 8, where ¢ represents the non-linearity,
and in case the neural pulse generator is a linear one, it is found that

ny(t) = f k(0)¢{f h(1t)x(t—o—7) d'r} do. (5.9)
0 0
If we express the non-linearity as

P(u) = u+y(u), (5.10)

where ¥ (u) = y(—u), then the Fourier transform of the reverse
correlation function ny(t) for x(¢), being Gaussian white noise with

power P, is fiy(@) = PE(w) h(w). (5.11)

Obtaining the tuning curve requires that x(¢) = 4 cos wt and it can
be shown that if

| () = u+ |yl
one obtains for the tuning curve
T(w) = 34%k(0) |A(w). (5.12)

By comparing the Fourier transform of the reverse correlation
function 7,(w) with the tuning curve T(w) we observe that only if @
is small compared to the cut-off frequency of the low-pass filter, &(w),
both estimates turn out to be about equal. If w i1s much larger than
that cut-off frequency then no reverse correlation is obtained; this
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Fig. 12. Response area as determined with tonal stimuli and compared to the filter
characteristic derived from reverse correlation (drawn line) for a unit from the
VCN in the cat. Although the characteristic frequency of the unit is only slightly
above 4 kHz, the reverse correlation function seems only to represent the low-pass
filter (cf. Fig. 8). (From Grashuis, 1974.)

is equivalent to saying that the phase lock of the nerve fibre’s
discharges has disappeared. An example of such a case is shown in
Fig. 12. It must be remarked that basically the Fourier transform of
the reverse correlation function should not be compared to tuning
curves but to iso-intensity contours (Maeller, 1977, 1978). De Boer
observed less or no effect upon the reverse correlation function when
the noise intensity was changed, this was in fact confirmed by Evans
(1977) also for the cats auditory nerve. In contrast, Meller (1977,
1978) found for the rat’s auditory nerve a quite dramatic change in the
shape of the reverse correlation function as a result of a 40 dB change
in the noise level as shown in Fig. 13. Comparing the cross-spectra
(equation 3.10) Maller (1978) found that they widened considerably
for higher noise levels, the low-intensity noise results were quite well
comparable to a frequency-tuning curve (Fig. 14). A finding
concurrent with the widening of the cross-spectra for higher noise
levels is a change in best frequency (BF) toward lower frequencies.t

1 We use characteristic frequency (CF) for the frequency at which the neuron has the
lowest threshold, and best frequency (BF) for the frequency at which the firing rate is
highest in case of super-threshold stimulation.
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Fig. 13. Strong intensity dependence of reverse correlation functions for an
auditory nerve fibre in the rat. (From Maeller, 1977.)

Harrison & Evans (1982) compared tuning curves in normal and
pathological guinea-pig cochleas with the cross-spectrum or transfer
function derived from the reverse correlation technique. When
using reverse correlation functions obtained under noise stimulation
near threshold they obtained a good correspondence between Q, 45
values in the normal as well as in the pathological cochlea. However,
they observed quite a strong change in the reverse correlation
functions for increasing noise levels. The impulse response became
much more damped as in the rat data shown by Magller.
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Fig. 14. Transfer functions for single auditory nerve fibres in the rat as derived
from reverse correlation functions compared to a frequency-tuning curve obtained
with tones (thick line). The thin line shows results for a 15 dB above threshold
noise stimulus. (From Maeller, 1978.)

Auditory nerve fibres with CF’s above 4 kHz do not show multiple
peaks in click PST histograms (Kiang et al. 1965), and procedures
resulting in period histograms (Rose et al. 1967) indicate the same.
One may therefore expect (see also equation 5.11) that the loss of
phaselock will abolish the formation of useful reverse correlation
functions in these cases. This has been found indeed ; the highest CF
fibre for which a reverse correlation procedure gave good results was
reported by De Boer & De Jongh (1978) at 455 kHz for the cat.

Fengler (1980), who studied reverse correlograms for primary
auditory nerve fibres in the caiman, found clear results in the
frequency range of 195—1680 Hz at an inner ear temperature (and
body temperature) of 27 °C. He observed a clear effect of raising the
noise level for which the reverse correlograms were obtained. This
consisted in a larger damping, a downward shift of BF and some
decrease in latency. In three neurons he was able to study the effect
of a rise in body temperature: it was observed that the BF increased
and that the damping increased. The increase in BF amounted to
3-8 9, per °C.



364 J.]J.EGGERMONT AND OTHERS

—40
8 :1
I T . i
2 6014 .. 3
o 9
et ..
2 =
—80 . . .. + . . . . - .
0-20 0-80 3-20

Frequency (kHz)

Fig. 15. Comparison of the response area as obtained with tonal stimuli compared
to filter characteristics as derived from reverse correlation. Interestingly, the filter
characteristic seems to be more simple than the complex, non-monotonic
response area in which suppression effects can also be seen. (From Grashuis,

1974.)

6. REVERSE CORRELATION FOR HIGHER AUDITORY CENTRES

Neurons in the cochlear nucleus complex and in higher auditory
centres are inherently more complex in their response characteristics
than auditory nerve fibres. One may wonder what relation there is
in these cases between an estimate of the linear behaviour regarding
the tuning on basis of broadband stimulation (clicks and noise) and
on basis of simple tonal stimuli. Johannesma et al. (1973) and Van
Gisbergen et al. (1975 a) compared cochlear nucleus responses to tone
and noise stimuli. Reverse correlation functions could be obtained
from neurons with low CF, which in addition had a primary-like
temporal pattern and only showed an activation response to tones.
Van Gisbergen (1974) and Grashuis (1974) showed that the highest
CF for which a reverse correlation could be obtained was close to
s kHz for a unit from the VCN. In one noteworthy example
(Grashuis, 1974), however, it was found that although the neurons
CF was only slightly above 4 kHz, the reverse correlation function
indicated a BF of 27 kHz. This was probably caused by the action
of the low-pass filter (cf. Figure 12). Dorsal cochlear nucleus units
did yield a reverse correlation but the highest CF in that case was
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Fig. 16. Cross-correlation functions obtained from units in the cochlear nucleus
with different temporal patterns of response to CF tone bursts. No obvious
relation seems to exist between the cross-correlation function and the temporal
pattern of response to tone bursts. The response areas (right-hand column) are
shown for comparison. N denotes the number of pre-spike stimuli which have been
averaged. (From Van Gisbergen, 1974.) ’

below 2 kHz. It was generally found that the reverse correlation
function strongly reflected the frequency selectivity of the neuron as
revealed by its response area (or frequency tuning curve) to pure
tones. When, however, inhibitory effects could be seen in the
response area (Fig. 15) for spontaneously active neurons the reverse
correlation did not show these effects and comparison of tuning curve
and Fourier transformed reverse correlation function seems no longer
possible.

A great variety of temporal response patterns is found in the
cochlear nucleus complex. One may distinguish the primary-like
pattern, the chopper, build-up and complex patterns. Van Gisbergen
et al. (1975a, b) could, however, not demonstrate any relation
between the reverse correlation function and the PST histogram to
tonebursts. It was concluded that the reverse correlation function
solely reflects the frequency selectivity of the neuron (Fig. 16).
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Fig. 17. Comparison of latency from the cross-correlation function and the
N, -latency to one-third-octave filtered clicks (A~A). (From Moller, 1977.)

A further parameter of interest is the response latency. When we
consider the waveform of the reverse correlation function it is noted
that there is apparently a delay before the oscillation starts to built
up. This can be interpreted as a pure time delay composed mainly
of acoustic delay, travelling wave delay, synaptic delay(s) and con-
duction time along the auditory nerve fibre (Van Gisbergen, 1975a;
De Boer, 1976 b; Moller, 1977). It appears that this pure time delay
plotted against CF decreases toward high CF, probably mainly due
to a decrease in travelling wave delay (Fig. 17). Moller (1975) and Van
Gisbergen (1975b) have directly compared latency for cochlear
nucleus neurons to tonebursts and noise stimuli. This resulted in
large discrepancies, especially for units in the DCN, which showed
activation as well as suppression in the response area or had complex
temporal patterns. This discrepancy was attributed to temporal
integration. On the other hand, units which showed activation-only
to tone bursts had comparable latencies to both types of stimulation.
Recently Van Heusden & Smoorenburg (1983) compared frequency
selectivity as measured with tones, clicks and noise stimuli for AVCN
units before and after inducing acoustic trauma. A 30 min exposure
to 105 dB SPL pink noise resulted in average threshold shifts of

ek
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3o dB. Responseareasand turning curves were measured forsinusoids,
compound PST histograms were computed for click stimuli and
reverse correlation functions were obtained for noise. A comparison
was made between the weighted average group delay to sinusoidal
stimuli and the centre of gravity of the reverse correlation function
or the compound PST-histogram. A high correlation was found and
it was concluded that ‘the cochlear latency data suggest that the
cochlear filter behaves like a linear filter’. About the relationship
between the three measures of frequency selectivity the authors
remark that ‘from a stimulus point of view, measurements of
response areas are closer to measurements with click or noise stimuli
since all frequency components of click and noise stimuli are at equal
level’. A problem, however, is that response areas are independent
of the amount of phase locking. Therefore Van Heusden and
Smoorenburg suggest to compare the response spectra of clicks and
noise with response areas weighted according to the amount of
phaselock at the contributing frequencies. In eight units a direct
comparison could be made for the pre- and post-exposure frequency
selectivity. It appeared that noise exposure had no effect on the O, 45
derived from the reverse correlation function while the Q,, 45 for the
frequency tuning curve obtained with sinusoids invariably showed a
decrease (up to 40 9%,). This was explained by assuming that the noise
had a linearizing effect on the pattern of discharges; a similar
phenomenon was found for click stimuli.

Frequency selectivity is mainly a reflexion of a stationary state of
the neuron, while latency apart from this also involves dynamic
properties. Stimulation with continuous wide band noise will bring
the neuron quite rapidly in such a stationary state. De Boer &
De Jongh (1978) estimate that this takes only a few milliseconds for
the cat’s auditory nerve. To study the dynamical aspects of neurons
one should therefore prevent the formation of a stationary situation.
Noise modulation of carrier tones is one of the methods employed
which can also be investigated using correlation techniques.

7. ENVELOPE CORRELATION: THE DYNAMICAL PROPERTIES
OF NEURONS

Instead of correlating the compound PST-histogram for a short
sequence of pseudo-noise with that noise to obtain a measure for the
frequency selectivity of the neuron (cf. Fig. 10) one now correlates
a compound PST-histogram with the pseudo-noise modulator of a
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tone at the CF. The resulting transfer function (after Fourier
transformation) now describes the dynamic properties of the system
at mean stimulus level at a particular frequency. This modulation
transfer function may be compared to sine-modulation transfer
functions (Mseller, 1973) and it appears that they result in the same
gain function.

These gain functions or their corresponding impulse responses or
step-responses (Moller, 1976a) as obtained for the rat cochlear
nucleus could be classified into two types. In the first the step-response
decreased only very slowly with time and the impulse response
therefore was highly damped with a corresponding low-pass charac-
teristic for the transfer function. This was interpreted as to represent
a low degree of adaptation. The second type appeared to show a large
degree of adaptation and had a damped oscillation in the impulse
response with a corresponding bandpass transfer function peaking
between 100 and 200 Hz. It was found that units could show a low
degree of adaptation at, for example, 20 dB SPL and avery high degree
of adaptation at 6o dB SPL, i.e. the modulation impulse response
changes from highly damped to strong oscillatory with increasing
carrier intensity. When instead of the CF-tone carrier a noise
modulated tone frequency in the inhibitory region was selected, while
the CF-tone was still present, the modulation impulse response was,
except from a 180° phase change, nearly the same. This indicates that
adaptation for inhibition and excitation follows largely the same time
course (Moller, 1976 a): the form of the modulation impulse response
does not depend on the carrier frequency, only the sign and size are
carrier-frequency-dependent.

This last finding points to a certain independence between the filter
properties l(w) and dynamic amplitude coding characteristics of
auditory neurons and cochlear nucleus units: selectivity v. sensitivity.

In the case of a tonal stimulus, carrier frequency ®, which
is harmonically amplitude-modulated, modulator frequency v, we
may write for the neuron’s response y:

yi(o,v) = g; (0,v) A[A(w) ()] @), (7.1)

where A is an operator, determining the instantaneous amplitude of
the A-filtered input signal (comparable to an ‘envelope detector’), g
is a modulation-transfer function for carrier frequency w and modu-
lation frequency v. % is the spectral sensitivity of the neuron.

The index I has been used to indicate the possibility that g, and



.&'-
Reverse correlation methods in auditory research 369

thus y, depend on the mean intensity level I of the stimulus. In case
x(t) is a wideband signal, equation (7.1) can be generalized

yi(w,v) = g/ (0, v) A[hZ] (0, v), (7.2)

where A(w,v) indicates the spectrum of the amplitude modulator
(v-axis) of the w-component in the A-filtered signal input. This
wide-band generalization bears a relation to the concept of the
dynamic spectrum, to be discussed more thoroughly in Section 9. The
term 3y(w, v) denotes the contribution of the particular (w, v)
combination to the final response function y(¢) of the neuron. The
latter can be obtained by integrating over the various frequencies w
to yield the spectrum P(v) of the neural response y(t).

Following (7.2) one may obtain information regarding the dynamics
of g(w, v) by studying the neuron’s firing rate as a function of the
dynamic amplitude behaviour of the stimulus x at various carrier

-~ frequencies w. As Moller (1976a) showed, the dependence of the

modulation transfer function g,;(w, v) on the carrier frequency (related
to the tuning) is only very small. Van Gisbergen et al. (1975b) came
to the same conclusions for cochlear nucleus neurons in the cat.

Therefore in good approximation we may write

gr(w,v) = a(w) g;(v). (7.3)

Experimental results show that, especially for auditory nerve fibres
and type I cochlear neurons (Meller, 1976a) g,(v) is a low-pass
function. For a certain class of cochlear nucleus neurons, g(v, I) is
peaked around a frequency v between 100 and 200 Hz. Bibikov &
Gorodetskaya (1981) found peaks around 40 Hz for neurons in the
torus semicircularis of the grassfrog, i.e. close to the natural
repetition frequency in male grassfrog vocalizations. The present,
somewhat heuristic, discussion on the separability of frequency
selectivity and temporal sensitivity will be discussed in a more
quantitative and formalized context in Section 14.

8. REVERSE CORRELATION AND PHASE LOCK

The auditory system is highly non-linear, i.e. characterization of the
system will depend on stimulus level as well as on the type of
stimulus. Therefore the three different ways we described in Section 3
for characterizing a linear system will now differ when applied to
the higher parts of the auditory system. We have seen that under the
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Fig. 18. The effect of phase-lock upon the reverse correlation function. Shown
are results from two neurons from the VCN in the cat with nearly the same
characteristic frequency: about 3 kHz. One of the units, left column, shows a clear
reverse correlation, the other represented in the middle column shows no sign
of a reverse correlation. For comparison the third column shows the results for
spontaneous activity. In the second row the average temporal intensity of the noise
preceding the spikes is shown, both units show a peak superimposed upon the
average noise level (cf. the third column) at about 3 resp. 5 ms before the spike.
In the lower row the average spectral intensity of the noise preceding the spike
is shown: again both neurons show a clear peak around 3 kHz superimposed on
the noise spectrum. The lack of phaselock may abolish the reverse correlation
function but response properties can still be obtained using intensity averaging
(N denotes the number of spikes). (From Johannesma and Aertsen, in
preparation.)

assumption of an algebraic, i.e. static non-linearity, the impulse
response of the linear part of the system is obtained when using the
reverse correlation technique. Linear systems are the first approxi-
mation to non-linear systems, an approximation which in many cases
1s satisfactory. One of the obvious situations in which the reverse
correlation as well as the compound PST-histogram method fails is
for characteristic frequencies above 4 kHz, where the phase lock
disappears.

For mammals this phase lock strongly diminishes (at the level of
the auditory nerve) above 3 kHz and is virtually absent above 5 kHz
(Rose et al. 1967). In reptiles studied at a temperature of 28 °C Klinke
& Pause (1980) and Fengler (1980) found reverse correlation functions
up to 1700 Hz. For amphibians Narins (1983) found phase lock to
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disappear around goo—1000 Hz at 22-24 °C in the auditory nerve.
Hermes et al. (1981) observed reverse correlation in the torus
semicircularis of the grassfrog studied at 15 °C only below 350 Hz.
Temperature is therefore an important parameter in setting the upper
limit of phase lock. Synaptic mechanisms with their high temperature
dependence may play an important role here. Higher up in the central
nervous system additional limiting factors may show up by the
cascading of synapses (to be considered as low-pass filters) by leaky
integrator properties of neurons (e.g. built-up neurons in the dorsal
cochlear nucleus (Van Gisbergen et al. 1975a, b) or through neural
interaction.

An alternative method to reveal the power-spectrum of the filter
characteristics of the neuron for wide-band stimulation is by com-
puting for each part of the signal preceding a spike (the pre-event
stimulus ensemble, PESE) the power spectrum and subsequently
averaging these power spectra. A difference between the average
PESE power spectrum and the power spectrum of the wide-band
stimulus ensemble (SE) indicates a stimulus response relation. Fig. 18
shows two examples from neurons in the ventral cochlear nucleus
of the cat (Johannesma & Aertsen, to be published). One unit shows
a reverse correlation function for which also the average temporal
intensity and the average spectral intensity of the PESE are shown.
The right-hand column shows the overall stimulus ensemble using
random triggers. The middle column shows results for a unit where
no reverse correlation could be obtained, but the average temporal
intensity as well as the average spectral intensity differ from those for
random triggers. This method therefore can give both the latency (on
basis of the temporal intensity) and the best frequency (on basis of
the spectral intensity).

It may happen, however, that there is an appreciable amount of
post-activation suppression. This will cause the average PESE power
spectrum to contain less energy in a certain frequency range than the
SE in the time window of the suppression. In another window more
close to the time of occurrence of the event, we would find on average
more energy. Averaging over a large time-window, then, may result
in no apparent difference between the power spectra of the PESE and
the SE (Hermes et al. 1981). A sign of this phenomenon is also present
in the left-hand column of Fig. 18.
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Fig. 19. Spectro-temporal receptive field of a unit from the torus semicircularis
in the grassfrog determined for a gaussian wide-band stimulus ensemble by
averaging the pre-event dynamic spectra and subtraction of the a priori expected
stimulus spectrogram. Positive regions are displayed darker than background,
negative regions are lighter than background. (From Hermes et al. 1981.)

9. THE DYNAMIC SPECTRUM AND DYNAMIC SPECTRUM
ANALYSER

Traditionally sound was studied either as a function of time or as a
function of frequency. The first method requires sharply defined
instants of time, the second method infinitely long tones of rigorously
defined frequency. In everyday life neither sharply defined sounds
nor infinitely long tones are abundant, and sound such as speech insist
on a description in terms of both frequency and time. This has led
to the invention of the ‘ Sound Spectrograph’ (Potter, Kopp & Green,
1947) which produced visible speech. This is a short-time spectro-
temporal picture of sound. It hasbeen widely used in (neuro-)ethology
for representation of bird songs and frog vocalizations.

When adopting the subject-centred method of investigation to the
auditory system, spikes loose their explicit meaning, they only
indicate that some sound caused the neuron to respond. The properties
of those sounds therefore tell something about the neuron and
deserve further study.

This approach, combined with the spectrogram analysis of sound
among others, deals with the earlier-described pitfalls of post-
activation suppression: the construction of the dynamic spectrum or
short-time power spectrum of the stimuli preceding the action
potentials (Aertsen & Johannesma, 1980). In this case the spectrum
is computed as a function of time before the spikes and as such
represents suppression and activation separately, thereby resulting in
a more complete picture of the relevant stimulus properties. This
dynamic spectrum of the PESE can be seen as the sonogram that the
neuron selects from the wide-band stimulus. A drawback of a
dynamic spectrum approach is the a prior: setting of the various filter
bandwidths. Commonly used for auditory research is a bandwidth of
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one third of an octave. Still the dynamic power spectrum of the PESE
reveals the basic advantage of this type of second-order reverse
correlation: it provides us with an estimate of both the neurons
spectral properties (frequency tuning) and temporal properties
(latency, periodicity, short-term adaptation) in one analysis.
Extending the concept of first-order reverse correlation functions
or equivalently the average values of the pre-event stimulus ensemble
as given by [ N
R(1) =% Z x,(7) (9.1
n=1

to the second moment function or time dependent autocorrelation

function of the PESE
N

- I
R0, 7) =5 X x,(0) x,(7) (9-2)
Nn-l
and defining the dynamic power spectrum P(w, 7) of the stimulus we
may calculate the average pre-event dynamic power spectrum

N
P, 1) =% I Pyo,), (9-3)
n=1

where the subscript n refers to the nth pre-event stimulus x,(7);
R (o, 7) and P (v, 7) are related by Fourier transformation (Aertsen
et al. 1981). An example of the average pre-event dynamic power
spectrum for gaussian noise as a stimulus is given for a neuron from
the torus semicircularis in the grassfrog in Fig. 19. A grey coding is
used, dark denotes more than average power and light areas indicate
less than average power. This is interpreted as dark areas corre-
sponding to activation, i.e. frequencies within these regions activate
the neuron, and light areas as suppression effects. In this case it may
be interpreted as post-activation suppression (Hermes et al. 1981).
The entire constellation of activation and suppression areas has
tentatively been called ‘Spectro-temporal receptive field’ (Aertsen,
Johannesma & Hermes, 1980). When we want to study the average
properties of sound preceding an action potential the crucial point
will be how accurate the sound can be measured. Sonograms are
usually made by passing the sound through abank of one-third-octave
filters or fixed bandwidth filters and representing the intensity of the
filter output (e.g. Aertsen & Johannesma, 1980). Taking the filter
bandwidth as Aw then the time resolution of the method will be
bounded by Gabor’s (1946) inequality

Aw.At > 1. (9.4)
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For the dynamic spectrum analyser with one-third-octave bandwidth
Aertsen and Johannesma calculated the uncertainty product to be 078
for each of the filters used. Thus if auditory neurons were better
analysers in terms of the uncertainty product, i.e. had a Aw.A¢
more close to half, this spectral analyser would result in tuning
curves that appear too broad and/or had temporal uncertainties (e.g.
in latency) that are slightly exaggerated. In general, however, neurons
in the central auditory system of the frog showed receptive field sizes
(Aw . At) of more than 5, in that case justifying the use of such a type
of spectrum analyser.

A more serious drawback of a physical, proportional band-width
system is that the filter delay depends on centre frequency. The group
delay y, is then inversely proportional to its centre frequency ;. This
leads to a distorted picture especially when short time-windows (of
the order of 100 ms) and low centre-frequency filters are used.

A method is available, however, to construct a mathematical ex-
pression which contains all information about the sound and from
which the output of any spectrum analyser — regardless of the band-
width of the filters — can be calculated. This has been termed the
complex energy density (Rihaczek, 1968) or coherent spectro-
temporal intensity density (CoSTID) by Johannesma (1972) and
Johannesma et al. (1981). It is a complex valued function on the
combined frequency— time domain.

10. THE COHERENT SPECTRO-TEMPORAL INTENSITY
DENSITY FUNCTION

Any periodic signal can be expressed as a Fourier series, a sum of

cosine and sine terms

o0
x(t) = a,+ X (a, cos nwt+b, sin nwt) (10.1)
n=1

or alternatively by a complex time series
w s
£t) = X (a,—iby,) ", (10.2)
n=0

which can be formed by adding to the real signal x(¢) an imaginary
signal 7 %(¢), where %(¢) is the signal in quadrature to x(t):

x(t) =lfoo s& (10.3)

Tl o t—§
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where ]c‘foo is the Cauchy principal value integral. x(¢) and %(t) are
a pair of Hilbert transforms and £(¢) is called the analytic signal:

E(t) = () +i%(0). (10.4)

For example if x(¢) = a cos wt+b sin wt then §(t) = (a—1b) e™?. The
spectrum g(w) of £(t) equals zero for negative frequencies and equals
twice X(w) for positive frequencies.

If we now form the complex function

E (0, 1) = £¥(w) e ™t (1) (10.5)

in which g*(w) is the complex conjugate of the Fourier transformed
£(t), we have obtained what we introduced above as the CoSTID.
From this complex valued function of w and t one may calculate
dynamic spectra with arbitrary spectral or temporal resolution
(Johannesma & Aertsen, 1982).

Being a function of both frequency and time the CoSTID seems
intuitively suited to our view of sound properties that are relevant to
auditory neurons. Direct integration over frequency or time of
equation (10.5) gives the temporal respectively the spectral intensity
density

I(t) = ZL”J = (0, t) do (10.7)

and J(w) = JE (w, t) dt, (10.8)

which we have encountered alread in Fig. 18. Representation of the
CoSTID may be done by separately showing the real and imaginary
part or integrating this in one picture by using colour: the phono-
chrome (Johannesma et al. 1981).

11. THE SPECTRO-TEMPORAL RECEPTIVE FIELD OF
AUDITORY NEURONS

Consider an auditory neuron, e.g. in the cochlear nucleus complex
of the cat or the torus semicircularis of the grassfrog for which spikes
are recorded during continuous gaussian wide-band noise stimula-
tion. During the experiment the spikes are used (after an appropriate
delay) to trigger a dynamic spectrum analyser which then processes
the noise signals preceding the spikes over an interval of some length,
say 81 ms. After about 3000 averages we may obtain a picture that
consists of three regions (cf. Fig. 19): a more or less uniform

13 QRB 16
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Unit 1614
6545 averages

30 - 10 30 10
«<——  Time before spike (ms)

Fig. 20. Spectro-temporal receptive field for the same unit as in Fig. 19 as
determined with the CoSTID technique. The real part shows a large similarity
to the result obtained with the dynamic spectrum analyser. Note the linear
frequency scale for the CoSTID as compared to the log-scale for the dynamic
spectrum, note also the different time scale. (From Hermes et al. 1981.)

background, a dark region around 10 ms before the spike and a light
region extending to about 3o ms before the spike representing
respectively activation and post-activation suppression.

We may also process the spikes and the noise off-line and now form
over a time window running from 10 to 30 ms preceding a spike the
complex product Z (w, t) for each individual pre-event stimulus and
averaging them. The result is represented in Fig. 20. Take into
account that the average CoSTID is represented on a linear frequency
scale and the average pre-event sonogram on a logarithmic frequency
scale and observe that there is a close correspondence between the
real part of the average E (w, t) and the sonogram. Those parts of both
representations that differ from the average level in a significant way
constitute the spectro-temporal receptive field (Hermes et al. 1981).
This STRF indicates the average characteristics of a second-order
functional of the stimulus that ‘causes’ the spikes. We will survey
various types of STRF as observed for neurons in the cochlear
nucleus of the cat (Aertsen et al., unpublished results) and tones
semicircularis of the grassfrog (Hermes et al. 1981; Eggermont,
Epping & Aertsen 1983¢, d).
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(a) The cochlear nucleus complex of the cat

In Fig. 21 we show for the two neurons from Fig. 18 the CoSTID
both as real plus imaginary part as well as norm and phase represen-
tation. On the left-hand side a STRF is given for a neuron that
showed also a clear reverse correlation (cf. Fig. 18) and had a best
frequency of about 3 kHz and a latency of around 4 ms. In the middle
column the STRF is given for a unit that showed no reverse
correlation (cf. Fig. 18) although the BF was only slightly larger than
for the other unit. Both units were from the ventral cochlear nucleus.
The right-hand side represents the CoSTID for random triggers, this
is an estimate of the background activity in the representation for the
auditory units. The upper row shows the raw data, the lower row
shows the corrected CoSTIDs, i.e. the spectro-temporal receptive
fields. For unit 52—6—2 (left column) we observe suppression bands
on both sides of and partly preceding the activation area in the
representation of the real part. This spectro-temporal suppression
area causes the depression in the average temporal intensity already
signalled in connexion to Fig. 18. Unit 64—5—4 shows activation only
(Johannesma & Aertsen, in preparation).

(b) The torus semicircularis of the grassfrog

Neurons in this area, a homologue of the inferior colliculus, show
more complex STRF patterns than those in the cat’s cochlear
nucleus. Besides differences in temperature which affect the degree
of phaselock (cf. section 8) there are also considerable differences in
the inner ear between cats and frogs. The frog’s inner ear consists
of two separate receptor conglomerates, the amphibian papilla and
the basilar papilla(Capranica, 1976). Inthe grassfrog, Rana temporaria
L., the basilar papilla is tuned to a single frequency band around
1250—1700 Hz, thus units with BF from 1 to 2 kHz will originate from
connexions with the basilar papilla. The amphibian papilla is a
tonotopically organized structure roughly dividable in two regions.
One gives rise to units with BF between 400 and 8oo Hz, the other
to BF’s below 400 Hz. T'wo-tone suppression effects (Capranica &
Moffat, 1980) are found for excitatory frequencies < 400 Hz and
inhibitory frequencies in the 400-800 Hz region.

In Fig. 22 we represent four STRF’s which exemplify, from top
to bottom, activation only, activation followed by post-activation
suppression, activation with lateral suppression and post-activation
suppression, double tuning: two activation areas of which the lower

[3-2
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one 1s accompanied by a suppression area. The upper two units are
from the basilar papilla, the lower two units are from the amphibian
papilla. Note that both the time window and the frequency range are
different. ’

From this short survey it may become clear that, using the
CoSTID approach with gaussian wide-band noise as a stimulus, one
is able to derive for one complex-stimulus presentation both BF and
Aw as well as latency and At¢. In addition, the presence of lateral-
and/or post-activation suppression, the presence of multiple tuning,
the occurrence of inhibition and a measure for the information
carrying capacity of the neuron (from the product Aw . At) is obtained.
This overwhelmingly powerful characterization, however, can only
be obtained off-line and at the expense of lengthy calculations. By
sacrificing some sophistication this might be done in real time using
a dynamic spectrum analyser (Aertsen & Johannesma, 1980) and thus
obtain a guideline for efficient experimenting. In addition it must be
noted that higher up in the CNS the number of units that responds
in a stationary way to continuous wide band noise becomes smaller,
so that this characterization cannot be applied uniformly. This,
however, can be overcome by applying dynamic stimuli, combined
with an appropriately adapted application of the CoSTID-analysis.

12. REVERSE CORRELATION FUNCTION AND SPECTRO-
TEMPORAL RECEPTIVE FIELD

After having shown the advantages of the STREF in characterizing the
neural properties under stationary stimulus conditions it will be
helpful to convert the reverse correlation function into an analogous
representation. For this purpose we consider the reverse correlation
function as the signal x(z) and calculate the analytic signal as
illustrated in Fig. 23. We may then form temporal intensity £*(¢) £(2),
the spectral intensity £*(w) £(w) and the CoSTID.

Fig. 21. Spectro-temporal receptive field representations for two neurons from
the VCN in the cat. Shown are the same neurons as in Fig. 18. The upper part
of the figure shows the average pre-event CoST1Ds, both in the real-imaginary
part representation and in the norm and phase representation. Note that darker
areas represent regions with more than average intensity density and lighter areas
regions with less than average intensity density. The unit in the middle column
shows a ‘simple’ receptive field, while the unit in the left column shows an
indication of suppressive side-bands surrounding the excitation area. The right
column shows the result for spontaneous activity correlated with the noise. The
lower part of the figure shows the same results when the expected values obtained
for random activity are subtracted. (From Johannesma & Aertsen, in
preparation.)
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Fig. 22. Spectro-temporal receptive fields for four neurons from the torus
semicircularis in the grassfrog as obtained from gaussian wide-band noise
stimulation. The left-hand column shows the real part and the right-hand column
the imaginary part of the complex valued CoSTIDs. For the neurons represented
in the upper two rows a 5 kHz low-pass noise was used as stimulus and the time
base runs from 10—30 ms before the spike. The neurons represented in the lower
two rows were stimulated with a 1-s kHz low-pass noise and the time base runs
from 15 to 49 ms. In part (@) one observes a single excitation area (dark region);
in part (b) an excitation area preceded by a suppression area (light region); in part
(¢) suppression is partially at the same time before the spike as activation (lateral
suppression) and extends after the activation (post-activation suppression); in
part (d) one observes two activation areas (double tuning) of which the lower one
is accompanied bv post-activation suppression.
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Fig. 23. Construction of the spectro-temporal receptive field on basis of the
reverse correlation function for the VCN in the cat. From the reverse correlation

- function x(¢) the analytic signal £(¢) is constructed and its Fourier transformation
£(w) is determined. The temporal intensity £*(z) £(¢), spectral intensity £*(w) £(w)
and CoSTID £*(w) e~** £(t) are calculated and shown. There is a best frequency
of 3-2 kHz and a latency of 2'2 ms. From the CoSTID the impression arises of
a lateral suppression for frequencies below the best frequency.

However, this CoSTID is based on an averaged signal: the reverse
correlation function. The STRF is based on averaging CoSTIDs of
elements of the pre-event stimulus ensemble. The difference between
the two representations is a measure for the amount of phase-lock.
Since the amount of phase-lock is predominantly determined by the
frequency, the most straightforward measure will be based on £(w).
If we indicate averaging by { > the amount of phase-lock ¢(w) can be

characterized by %
oy = @)y
(E*w) &)

E@)H*E@) _ Jy(w)
(EHw) i)y  J(@)’
with J,(w) being the spctral intensity of the average pre-event

stimulus (or reverse correlation function) and {J(w)) is the average
spectral intensity of the PESE.

(12.1)

This can be written as

| c(w) = (12.2)
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Since both J,(») and {J(w)) are non-negative, c(w) = o; together
with the triangular inequality this leads to o < ¢(w) < 1 for any w.
Note that ¢(w) 1s still a function of frequency and in fact is a combined
measure of spectral sensitivity and phase-locking.

This relation has been explored for neurons in the cochlear nucleus
complex of the cat (Aertsen et al., unpublished results). For 18
neurons responding in a sustained way to stationary noise, six were
found to respond in a primary like way. Of these primary-like
neurons, five showed a first-order reverse correlation function and for
all five units ¢(w) was close to 1. The 12 non-primary like neurons
showed in six cases a reverse correlation function but the ¢(w) was
in all those cases much smaller than 1. The loss or absence of
phase-lockis the most simple explanation to account for the differences
between the STRF and the CoSTID of the reverse correlation
function. However, the spectro-temporal receptive field in fact is an
average of a second-order functional of the stimulus, thus differences
with the CoSTID of the reverse correlation function can also arise
as a result of a pronounced second (or higher even-) order
non-linearity.

13. CORRELATION FUNCTIONS FOR TONAL STIMULUS
ENSEMBLES

Most readers will be familiar with the forward correlation procedures
currently in use for the analysis of neural spike activity to stimulation
with tonepips, tonebursts or continuous tones. When tonepips and
tonebursts are used the tone-frequency is usually kept fixed and the
stimuli are repeatedly presented. The event-density of the neural
response is estimated by correlating the toneburst onset with the
occurrence of spikes: the PST-histogram. When continuous tones are
used the occurrence of spikes is correlated with the onset of the tone
period: period histograms (e.g. Arthur, 1976). These procedures can
be repeated for other frequencies and in this way the receptive field
of the auditory neuron can be mapped sequentially (e.g. Gerstein,
Butler & Erulkar, 1968; Van Gisbergen et al. 1975a; Webster &
Aitkin, 1975). Random-frequency random-intensity tones have been
employed in automated paradigms for obtaining single-fibre tuning
curves (e.g. Evans, 1974) together with an indication of the firing rate
of the nerve fibre within the response area.

A reverse correlation procedure relies to a large extent on this
randomized stimulus presentation. By using a stimulus ensemble
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consisting of tonepips with randomly selected frequency values but
constant amplitude one may obtain a statistically structured stimulus
ensemble having a flat spectrum. Optionally also the amplitude values
may be randomly selected. For instance, a tonal sequence consisting
of 16 ms duration tonepips selected from 255 frequency values and
127 amplitude values presented without silent intervals then requires
a duration of 518 s (e.g. Aertsen & Johannesma, 1980). When silent
intervals are included such sequences become prohibitively long and
the amplitude variation must be reduced (e.g. Hermes et al. 1982).

Cross-correlation between spikes and the stimulus ensemble again
will result in an averaged pre-event stimulus ensemble as discussed
before for noise as a stimulus. Because a tonal stimulus ensemble
consists of narrow-band stimuli we may parametrize each tonepip
into its instantaneous frequency and its time envelope. Reverse
correlation then is equivalent to averaging this time envelope for each
frequency band. When, for example, 255 frequency values are
grouped into 32 frequency bands this becomes practical. The resulting
picture represents the average stimulus intensity (square of the
tonepip envelope) as a function of tone frequency and as a function
of time before the action potential and is called the average IFT
(Aertsen et al. 1980). For random triggers, or spontaneous activity,
the average IFT is flat and more or less noisy, depending on the
number of averages carried out. For auditory neural units where the
spikes are caused by certain features of the stimulus, the average IFT
represents the spectro-temporal sensitivity (ST'S) of the neuron. This
average IFT will differ from that obtained in case of spontaneous
activity for those frequency bands for which the neuron is sensitive
and at those times before the occurrence of the action potentials that
reflect both the response latency and the integration time of the
neuron. Thhe STS is closely related to the STRF and can be converted
into it by certain stimulus normalization procedures (cf. Section 15).
The STS in itself is an important neural response characteristic
(Hermes et al. 1982; Johannesma & Eggermont, 1983) and an
example is shown in Fig. 24.

When the amplitude of the tonepips is fixed, the resulting three-
dimenstonal picture may be considered as a family of contours related
to the iso-intensity contours (cf. Section 4). The relation becomes
more straightforward when the IFT representation is integrated over
time to give an intensity—frequency contour. In case the system
behaves in a linear way these IF contours should be of the same shape
as the tuning curves. For the auditory system this will generally not
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Fig. 24. Intensity—frequency-time (IFT) representation for a neuron from the
torus semicircularis of the grassfrog. Shown on the left is the average intensity
over the pre-event stimulus ensemble as a function of the tonepip frequency and
time before the event. On the right-hand side the average intensity is shown over
the entire stimulus ensemble for random triggers. On the left one observes a best
frequency of around 500 Hz and a latency around 20 ms. (From Aertsen et al.
1980.)

be the case and a comparison of the results of the IFT analysis with
the more familiar tuning curve analysis will show remarkable
qualitative differences, as we will see shortly.

Determination of the S'T'S has to obey the restriction of ‘station-
arity’ of the spike trains evoked by the stimulus-ensemble. In the
particular case of 1 toneburst s~ one cannot speak about stationarity
in the ordinary sense. We will require, however, that a subsequent
presentation of the whole stimulus sequence, which may last several
minutes, produces the same number of spikes (within statistical
limits). Usually (e.g. Eggermont et al. 1981) a complete stimulus
ensemble consists of several sequences of tones and in most cases the
responses to the first sequence have to be left out of the analysis
because of a gradually decreasing firing rate. Aertsen et al. (1980)
remark that ‘application of the analysis to segments of these recordings
suggest an increased spectro-temporal selectivity in the adapted stage
as compared to the initial stage’. This suggests that the ST'S sharpens
up in the stationary stage as compared to the transient stage of the
neuronal activity. This was found to occur quite generally: non-
adapting neurons in the torus semicircularis in general showed
sharper receptive fields (in both frequency and time) combined with
shorter (10—35 ms) latencies than the slowly adapting neurons with
latencies of 4070 ms or more. The existence of a subpopulation of
more complex neurons in the torus semicircularis might therefore be
indicated.
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Fig. 25. Survey of different IFT types for neurons in the torus semicircularis of
the grassfrog. (@) Excitation for a frequency region of 1-2'5 kHz (basilar papilla)
with a latency depending strongly on the frequency. (b) Double tuning with one
region (1—2 kHz) arising from the basilar papillaand the other region (250900 Hz)
with input from the amphibian papilla. (¢) Broad tuning with a latency that
depends on the frequency of stimulation. (d) Inhibition (125-250 Hz) caused by
the tonal stimulus ensemble in this spontaneously active neuron; the latency is
around so ms.

The use of tonal stimuli to determine the ST'S of units from the
torus semicircularis will be illustrated by a few examples shown in
Fig. 25. For non-spontaneously active units only excitation can be
demonstrated, we distinguish single tuning (@) from a unit deriving
its input from the basilar papilla, double tuning (4) with input from
the basilar papilla as well as the amphibian papilla, and broad tuning
(c) over awide frequency range with a pronounced latency dependence
on frequency. In-case units are spontaneously active (d) one may
demonstrate suppression; in this case frequencies below 250 Hz
inhibited the unit with a latency of around 50 ms.

Hermes et al. (1982) found for 83 units in the torus semi-circularis
of the lightly anaesthetized grassfrog that 69 units were simply tuned
and 14 had double or broad tuning. In the same auditory nucleus
of the same species, Walkowiak (1980) only found in 3 9% of the cases
a double tuning. Fuzeserry & Feng (1982) confirmed this for 130 units
in the torus semi-circularis from Rana pipiens: they found double
tuning in 49, of the neurons investigated. Part of this discrepancy
lies in the comparison of two vastly different methods: the results
from Hermes et al. (1982) have to be compared with high level
(~ 89 dB SPL) iso-intensity curves or with a high-response-rate
tuning curve. It appeared from the data reported by Fuzeserry and
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Feng that some units with simple V-shaped tuning curves turned out
to be bimodal for high rate criteria. The genuine double-tuning
curves all had an inhibitory region in between. Whether the tuning
curve or the ST'S represents the true frequency selectivity depends
on the question one asks. For the inter-species communication a
high-intensity measure might be more suited than a threshold
criterion; the latter, however, is the more commonly used.

I14. IS THE SPECTRO-TEMPORAL SENSITIVITY SEPARABLE?

The S'TS of auditory neurons as determined with tone sequences can
be described by the IFT method, i.e. as I(f, 7) where I is the average
signal intensity as a function of frequency and time before the event.
One may wonder if this two-dimensional description is necessary or
simply puts an unnecessary demand on available computer power and
time. The question may be asked whether two separate descriptions
such as the tuning curve and a PST-histogram at CF or to clicks
would not be sufficient. This centres around the problem of separ-
ability: the independence of spectral and temporal properties of
I( f, 7). Basically this was recognized already in 1968 by Gersteinetal.,

- where they state, in a study on toneburst stimulation of the cat

cochlear nucleus, that ‘the firing of a unit can be approximately a
function of frequency alone multiplied by a function of time alone,
or in more compllcated cases it can be a function of both frequency
and time’.

If we could interpret I(f, 7), after proper normalization, as a joint
probability density function for finding specific (f, 7)-pairs in the

stimulus preceding the event, and having marginal density functions
defined by

L(f) = °° I(f, 1) dr (14.1)
and
Iy (1) = . I(f,7)df (14.2)

then the concept of independence of f and 7 would imply

I(f,7) = I,(f) . I(7). (14.3)

Conversely, if equation (14.3) holds, then the independence of the
random variables follows and separability is thus established. One
may interpet this as the absence of a spectro-temporal structure in
the pre-event stimulus ensemble.
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Fig. 26. Separability of the IFT. In the left-hand part an IFT is shown for a torus
semicircularis neuron that is activated by basilar papilla input. The vertical
column on the right indicates this frequency region and is obtained by integration
over time. The horizontal bar below the IFT represents integration over
frequency and gives the latency distribution. On the right-hand part of the figure
the IFT is reconstructed under the assumption of separability by multiplication
of the frequency spectrum (spectral intensity) and the latency distribution
(temporal intensity). Since the right-hand part of the figure does not resemble
the left-hand part, the assumption of separability is violated. (From Eggermont
et al. 1981.)

Eggermont et al. (1981) have investigated separability by studying
the validity of equation (14.3) (cf. Fernald & Gerstein, 1972). This
is 1llustrated in Fig. 26, where on the left hand I(f, 7) is represented
for neuron 163—4 from the torus semicircularis, together with both
marginal densities. Assuming independence one may now construct
a joint function

| T(f, 7) = L(f). L,(7) (14.4)

The similarity between I(£, 7) and I(f, 7) is a measure for separability.
A necessary and sufficient condition for separability is that I(f, 7)
equals I(f, 7). In Fig. 26 I(f, 7) is shown on the left-hand side and
I(#, 7) on the right-hand side; it can be concluded that this I(f, 7) is
inseparable. This was tested for 83 neurons from the torus semi-
circularis of the lightly anaesthetized grassfrog and related to recording
site and spike waveform. It appeared that I(f, 7) in non-adapting
neurons and in the incoming fibre population were separable. The
23 9% of the neurons that appeared to have inseparable parts were
located dominantly in the caudoventral parts of the torus semi-
circularis. This region shows multiradiated cells capable of integrating
input from a large number of units. This indicates that a spectro-
temporal characterization is not only mandatory in about a quarter
of the neurons in the torus semicircularis but, by means of the
separability concept, also offers a new way to understand information
processing in the central nervous system.
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I5. THE USE OF REVERSE CORRELATION WITH NATURAL
STIMULI

Natural stimuli can be used to study the spectro-temporal sensitivity
of auditory neurons much in the same way as noise or tonal stimuli.
When using the reverse correlation approach with noise and tonal
stimuli we stressed the statistical structure of the stimulus ensemble
as well as the whiteness of the spectrum. An ensemble of natural
stimuli, the acoustic biotope (Aertsen & Johannesma, 1980; Smolders,
Aertsen & Johannesma, 1979) including vocalizations of many species,
however, has considerable internal structure and in general will not
have a flat spectrum. Therefore correction procedures must be
applied to obtain an unbiased ST'S.

Specific reasons for the use of natural stimuli in neurophysiological
research are based on the notion that these stimuli are meaningful to
the animal under investigation (at least if it is not anaesthetized) and
that, for example, auditory system of lower vertebrates has evolved
specifically to process these stimuli (e.g. Capranica, 1976). Further-
more, natural stimuli may be used to test if there is any gain in
understanding the nervous system using these natural stimuli as
compared to the use of tonebursts or noise. This issue has been
addressed quite globally by Smolders et al. (1979), who compared
responses to natural and tonal stimuli from single units in the cat
cochlear nucleus and medical geniculate body. While the responses
of most cochlear nucleus units to natural stimuli could be understood
on basis of the ST'S as determined with tonebursts, this was no longer
possible for the M GB.

Aertsen et al. (1981) addressed themselves to analyse methodically
the responses from single neurons in the torus semicircularis of the
grassfrog to a long (=~ 8 min) ensemble of natural stimuli. The
reverse correlation approach was used: the average pre-event stimulus
spectrogram was determined using a dynamic spectrum analyser.
Because of the non-whiteness of the stimulus spectrum an equalization
procedure was carried out to obtain a less-biased estimate of the ST'S.
For the units studied the authors concluded that ‘it appeared that
the results of natural stimulation of the stationary units, on the whole,
agree[d] quite well with the tonal findings for these units. For the
adapting neurons the acoustic biotope, in general, appeared to be
relatively more effective in eliciting spikes than the tonal sequences,
probably due to its more complex character.’

A spectro-temporal sensitivity determined on basis of natural
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stimuli may remotely show some similarity to that obtained with tonal
stimuliornoise (Johannesma & Eggermont, 1983). Whileunstructured
stimulus ensembles allow for a straightforward stimulus correction
and are then readily interpreted, the results obtained with highly
structured natural stimuli (including species-specific vocalizations)
do not allow much of a conclusion. It must be remarked that the
reverse correlation method using this type of natural stimulus
ensemble is not suited to find out if neurons are highly specialized,
e.g. respond only to very specific parts of vocalizations such as found
in the CNS of birds (Leppelsack & Vogt, 1976). Due to the intricate
time structure of vocalizations the average pre-event spectrogram
made for such neurons in case of stimulation with a natural stimulus
ensemble will nearly always contain most if not all of the complete
vocalization to which features they respond. A possible way, in
principle, to overcome this problem would be to generate artifically
a ‘ pseudo-natural’ stimulus ensemble, containing sufficient statistical
variations and/or distortions of the natural sounds to create a rich
pool of possible stimulus configurations that is wider than the
neurons selective properties. What the reverse correlation type of
approach using the present natural stimulus ensemble yields is a
general technique to investigate the important concept of stimulus
invariance of the ST'S or STRF as determined. for noise, tones and
natural stimuli (cf. Section 17).

16. FUNCTIONAL DESCRIPTION OF NON-LINEAR SYSTEMS

The auditory system behaves in a highly non-linear way, i.e. the
characterization of the system depends on stimulus intensity as well
as on the type of stimulus. We have seen that, under the assumption
that the auditory periphery can be modelled as a static non-linearity
sandwiched between two linear filters (cf. Fig. 8), reverse correlation
will result in the impulse response of the cascaded linear filters
(equation 5.3). However, this impulse response does not describe the
behaviour of the overall system. What we need is an extension of the
methods to characterize linear systems that we have dealt with. Such
a method can be offered by the functional representation of
deterministic, constant parameter, finite-memory non-linear systems.
Generally, in case of a non-linear system the output y(¢) is related in
a functional way to the input x(¢):

y(t) = (Sx) (2). (16.1)
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x(1) Linear Second degree y(t)
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hy (14, 72)

Fig. 27. A Volterra representation of a cascaded second-order non-linear
system is in the form of two parallel filters, A,(7) and hy(7,, 7,).

Under certain smoothness conditions S can be represented by a
functional expansion of homogeneous polynomials:

Sx) = % K,(), (16.2)

n=0

which is in fact a Taylor-like functional power series. This is known
as the Volterra series expansion (Barrett, 1963),

o0

¥ )= X (V,%) (@), (16.3)

m=0
in which

n
(V,x)(t) = Jd'rl .. .fd'rn VT oo o3 Tp) H1 x(t—1;) (16.4)

=
is the nth-order Volterra functional describing completely the contri-
bution of the nth-order system non-linearity to the output y(¢). For
example, for a system comprising a linear part and a quadratic part
one has to find the first- and second-order Volterra kernels v,(7,) and
v,(71, Ty) to describe the system completely. A simple example would
be formed by a linear filter followed by a second-degree rectifier. The
Volterra series expansion then transforms this system in a linear part
parallel to a quadratic-order part, the outputs of which are then added
(Fig. 27). If the system is to a large extent unknown, as the auditory
system still is, experimental ways to determine the Volterra kernels
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v,(T4, ..., T,) are not available. It is possible, however, to rearrange
the Volterra functionals into a new series.

W) = T (W) (@), (16.5)

where the W, formed by a linear combination of V,, V,_,, V,_,,
etc., are called Wiener functionals. The Wiener functionals have
the advantage that they are mutually orthogonal with respect to a
Gaussian white noise input. Unlike the V,,, the ¥, depend on the
noise characteristics, e.g. the spectrum and the power level P. The
form of W, is the same as the nth Hermite polynomial He,(x) (cf.
Johnson, 1980):

He,(x) = x"—(Z)ng"‘z +1°3 <Z) (5)2 x"t— ..., (16.6)

from which it can be seen that all odd-order Wiener functionals
will contain a linear term, or in other words contribute to the first-
order Volterrafunctional. Therefore the first-order Wiener functional
does not, in general, describe the linear part of the system. When
the system is not higher than second order the first- and second-
order Volterra- and Wiener kernels are identical. Wiener kernels
w,(1,, -.., T,) have the great advantage that they can be obtained
independently from each other out of input—output cross-correlation
(Lee & Schetzen, 1965). For a third-order system the first three
Wiener kernels are estimated as

T
&) = 3| dexte—) 300, (167
Wy(T1, Ty) = LTJT dt x(t—7,) x(2 —7,) ¥(2), 16.8)

I T
Bry o) = 7| A=) x(t=T) A=) D). (16.9)

They can be computed relatively easy and describe the system
completely. Volterra kernels can be computed from the Wiener
kernels according to

© S(n+2v)/ P\
n(rss o) = X (=0 EEEN)

X Jdal. . .fdaywnﬂy('rl, e s Ty 01,04, <., 0,,0,) (16.10)

(cf. Aertsen & Johannesma, 1981).
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The Volterra kernels for the third-order system therefore are

0,(7) = w(1)—3 PJdcr wy(7, 0, 0), (16.11)
Vo(T1, T2) = wy(Ty, 75), (16.12)
V3(T1, Ty, T3) = Wy(T, Ty, T3), (16.13)

and describe the contributions of respectively the linear part, the
quadratic part and the third-order non-linearity to the systems
output. In this particular case the second- and third-order Wiener
kernels completely describe the second- and third-order non-linearity,
but the first-order Wiener kernel does not completely determine v,(7).

From the definition of w,(7) we conclude that the first-order Wiener
kernel is equal to the reverse correlation function (cf. equation 5.1).
In Section 5 it was shown that for auditory-nerve fibres in rat and
guinea pig and to a lesser degree in cat the reverse correlation is
intensity-dependent. This can now easily be understood from equation
(16.11). Since v,(7) is a system characteristic and therefore does not
depend on stimulus level, w,(7) will depend on the noise power level
because of the factor P before the term containing w,(7, o, o).

The auditory periphery shows its non-linearity among others in the
production of cubic difference tones such as z2f; —f,, which are quite
strong. This suggests that v4(7,, 7,, 73) and therefore w,; will be quite
large. It is therefore somewhat surprising that although 2f, —f, is
quite strong in cat auditory nerve fibres (Goldstein & Kiang, 1968)
the reverse correlation function is much less intensity-dependent
(De Boer, 1969) than for rodents (Megller, 1977; Harrison & Evans,
1982). A few intensity studies for cochlear nucleus units in the cat
did not point to a pronounced intensity dependence of the reverse
correlation function either (Grashuis, 1974).

The spectro-temporal receptive field as we have seen in Section 11
is, by virtue of two arguments, w and 7, a second-order system
characteristic. Since it is determined by a second-order cross-
correlation it is formally identical to a single Fourier transform of
w,(7,, T,); besides that the STREF is based upon the analytic signal
£(t) and the Wiener kernels on the real signal x(z). The STRF only
describes the second-order non-linearity of the system completely if
the order of the system is not higher than three plus optional higher
odd-order non-linearities.

prrd



Reverse correlation methods in auditory research 393

17. STIMULUS EFFECTS ON THE SPECTRO-TEMPORAL
RECEPTIVE FIELD

Stimuli may differ in their temporal and spectral structure. For
constant-parameter linear systems one is able to define unique
functions which characterize the system completely: the impulse
response or its Fourier transform the transfer function. Combination
of these two representations may result in a spectro-temporal charac-
terization (cf. Section 12). This characterization will be the same
whether clicks, noise or tonal stimuli are used or any other type of
stimulus having a sufficiently wide spectrum. Given the impulse
response one is able to predict the response of the constant parameter
linear system to, for example, a frog vocalization.

Neural units can be characterized by their spectro-temporal recep-
tive field as determined for noise stimulation or by their spectro-
temporal sensitivity when using a tonal stimulus ensemble or an
ensemble of natural stimuli. A stimulus invariant STRF would
require that the STS after proper normalization procedures could be
transformed into this STRF. In that case the neuron behaves the
same whether stimulated with noise, tones or natural stimuli, and
knowing the STRF would allow one to predict accurately the
response to, for example, frog vocalizations provided that the higher-
order system kernels are of minor importance. Since neural units can
be found that do not respond in a stationary way to noise, or even cease
firing when continuous noise is presented, but obviously respond very
well to tones or vocalizations (e.g. Johannesma & Eggermont, 1983)
one knows a priori that stimulus invariance of the STRF does not hold
for all units.

Attempts to characterize auditory nerve fibre responses to complex
stimuli on the basis of a linear approximation derived from tuning
properties (e.g. Evans & Wilson, 1973; Goldstein, Baer & Kiang,
1971; Kiang & Moxon, 1974) or their reverse correlation function
(Moeller, 1977; De Boer, & De Jongh, 1978) have not been very
successful. Although Kiang & Moxon (1972) have shown that the
responses of cat auditory nerve fibres to human speech sounds can
be grossly predicted from the tuning curves and the characteristics
of the stimulus, it has not been possible to infer analytically the form
of the responses to speech sounds from the responses to simple
stimuli (Johnson, 1980).

Sachs & Young (1980) have investigated the coding of vowels as
a function of intensity for auditory nerve fibres in the cat in terms
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of average rate and cochlear place (i.e. characteristic frequency)
versus synchrony across the neural population. They concluded that
‘although a representation of speech in terms of rate and place does
not seem to be as robust as the temporal representation, we have
previously considered the compelling reasons to retain arepresentation
which includes place as one parameter. In light of these arguments
we should re-emphasize that the average temporal representation (for
different fibres) is a combination of both place and temporal
information’.

A spectro-temporal characterization of auditory nerve fibres and
neural units in other auditory nuclei might therefore be a better basis
for this prediction than the linear one. Successful prediction requires
that the spectro-temporal characteristic and other (higher-) order
system characteristics are stimulus invariants. The important problem
of stimulus invariance of the spectro-temporal receptive field and its
determination from the ST'S has been addressed by Aertsen &
Johannesma, 19814, b) and more heuristically by Johannesma &
Eggermont (1983). The alternative approach is to find out whether
response prediction is possible for neurons (e.g. in the torus semi-
circularis in the grassfrog) on basis of the STRF as determined for
noise (Eggermont, Aertsen & Johannesma, 1983 q, b).

We will first discuss stimulus invariance of the STRF, test for the
completeness of the characterization on basis of the STRF, and
thereafter consider the many problemsthatariseinresponse prediction
procedures.

(a) Stimulus invariance of the STRF

The STRF has been defined as the ‘sensitivity of auditory neurons
with respect to the spectro-temporal intensity density of acoustic
stimuli’ (Aertsen et al. 1980). The term has also been used as the
difference between the average second-order functional of the pre-
event stimulus ensemble and the average second-order functional of
the stimulus ensemble (Hermes et al. 1981). When the average
second-order functional of the SE is not subtracted the outcome has
been termed S'T'S, especially in use for tonal stimulus ensembles
(Hermes et al. 1982) with the IFT approach (cf. Section 13) or as

“an equivalent to the average pre-event spectrogram (Aertsen &

Johannesma, 1981 b). This manifold of meanings attributed to second-
order system characteristics is not very elucidating but it reflects the
interaction between experimental procedures and theoretical retro-
spection when realizing that each specific second-order correlation
method seemed to illuminate other properties.
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It would be helpful to reserve the name STRF for a stimulus
invariant system characteristic. In the previous section we have
shown that the second-order Volterra kernel is such a stimulus
invariant characteristic. One could therefore postulate the single
Fourier transform '1’)2(0), 7) of the second-order Volterra kernel
vy(T;, T5) as the STREF (Aertsen & Johannesma, 1981 a). The system to
which this applies then has to be time-invariant and to have finite
memory, while its firing probability is a smooth function of the input.
We can therefore define an STRF provided that the requirements
for convergence of the Volterra expansion are fulfilled. Defining an
STREF, however, is a completely different subject than measuring it.
The estimation of 9,(w, 7) in general requires that all even-order
Wiener kernels can be estimated (in case of stimulation with gaussian
white noise) thus, implicitly assuming the system to be of finite
order. For the auditory system a reasonable limitation of the systems
non-linearity would be considering it as of third degree. In that case
¥5(w, T) equals the single Fourier transform of w,(r,, 7,) and agrees
with the definition of the STRF as used by Hermes et al. (1981). Thus
in that case the STRF will be stimulus invariant and can be measured
using gaussian noise.

A similar procedure can be used in case statistically structured tonal
ensembles are used. However, the normalized spectro-temporal
sensitivity measured in this way (Aertsen & Johannesma, 1981 b) may
differ from the STRF as determined for noise stimulation. The tonal
stimulus ensembles as described in Section 13 can never result in a
complete functional description of non-linear systems since only one
tonepip at a time is present. Thus any complex interaction between
simultaneously present frequencies (as in noise) such as two-tone
interaction or lateral suppression will remain undetected. Therefore
statistically structured double and multiple tone combinations could
be introduced, ultimately resulting in a sum-of-sinusoid method as
used in vision research (Victor & Knight, 1979; Spekreijse & Reits,
1982). Also, for more complex stimulus ensembles, like the acoustic
biotope, a formal way to arrive at a stimulus invariant STRF was
attempted. Heuristically, the method runs as follows (Aertsen &
Johannesma, 1981 b): first of all the difference spectrogram is deter-
mined by subtracting the average dynamic spectrogram of the overall
stimulus ensemble from the average dynamic spectrogram of the
pre-event stimulus ensemble. Secondly, for each individual channel
of the dynamic spectrum analyser an equalization procedure is
carried out to account for the overall spectral differences between the
stimulus ensemble and gaussian white noise. Thirdly, a correction for
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the inherent temporal structure of the natural sounds is performed
by dividing in the frequency domain the equalized difference spectro-
gram by the appropriately shifted spectrum of the natural sound
ensemble. Using this procedure, normalized tonal spectro-temporal
sensitivities could be compared with the normalized STS as deter-
mined with natural sounds for neural units from the midbrain of the
grassfrog. The results pointed to considerable differences in both
estimates of the STRF of the neural unit. Several factors could
account for these differences: the low complexity of the tonal
ensemble as compared to the natural sound ensemble, the different
degree of adaptation of the auditory system in both cases, and the
assumption that there are no higher-order even non-linearities than
order two. Nevertheless, the procedures outlined above might lead
to tentative ideas about stimulus invariance of the second-order
neural characteristic, the STRF.

If a stimulus invariant characteristic can be obtained, as might be
the case for short latency units in the torus semicircularis of the
grassfrog (Johannesma & Eggermont, 1983), the next item to be
investigated centres around the question: is the neural characteriza-
tion complete ?

The question of completeness is also interesting when the STRF
is not stimulus invariant, i.e. it is interesting when staying within the
class of stimuli it was determined with. Obviously the ‘prediction’
in that case has to remain within that class.

(b) Completeness of the STRF

Since for neurons in the torus semicircularis of the grassfrog the
first-order neural characteristic (the reverse correlation function or
first-order Wiener kernel) can only be obtained for best frequencies
below 350 Hz and even then is quite noisy, the only practically useful
characteristic is the STRF. We will examine in how far the STRF
characterizes the neural properties.

For twelve neurons Eggermont et al. (1983 a) investigated whether
the STRF as determined for wide-band noise as a stimulus can be
used to calculate the response probability to a given segment of the
noise in comparison to an experimentally determined PST-histogram.
The calculated response will be called the STRF-based response.
The procedure basically consists of a convolution of the STRF of a
neuron with the dynamic spectrum of the segment of noise. Thus,
the degree of matching between the dynamic spectrum and the STRF
determines the firing probability for the neuron.
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For easiness of computation both the STRF and the dynamic
spectrum were determined with the dynamic spectrum analyser (cf.
Section g). If the power in the one-third-octave band around
frequency f, is denoted by P,(¢) and the average level by P,,, the
measured PST-histogram by p(¢) and the STRF of the neuron by
{hi(t)}, then the STRF of the neuron is determined by

ﬁk (w)

hy(w) = o) (k=1,....K), (17.1)

where Ry p(w) = [}(w) p(w), (17.2)
ﬁkk(w) = f}'c"(w) ik(w): (17.3)

Ry(w)=o (k+1) (17.4)

and ~ [(w) = Py(@)— Pyo- (17.5)

Assume that p(t) can be decomposed in three mutually orthogonal
components
P D(1) = po+Du(2) +6(D), (17.6)

where p, is the average firing rate to the segment of noise, p,(2) is the
component in the PST histogram that is linearly related to {A,(¢)},
and ¢(¢) is any activity due to higher-order neural characteristics.
In order to test if {h;(?)} is a complete characteristic, i.e. all
higher-order characteristics are zero, the STRF-based response

5(t) = po+p1(2) (17.7)

is calculated with p,(¢) following from

K
pi(©) = X =) (o), (17.8)

where f,;(w) relates to the segment of noise for which the PST
histogram is obtained but defined according to equation (17.5).

For twelve neurons p(t) was compared to p(z) and the similarity
expressed by the correlation coefficient. The correlation coefficient
was generally not very high (0-2—0'7) and stayed below o'5 in nine
neurons. This indicates that a linear characterization on basis of a
second-order neural characteristic is insufficient. An example of a
comparison between p(z) and p(¢) is shown in Fig. 28 (a).

By assuming in cascade with the present model either a linear or
a quadratic rectifier with its threshold at zero intensity level, the
results could be improved slightly: correlation coefhcients were
between o-z5 and o8, but only in one neuron below o5 (Fig. 289, ¢).
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Fig. 28. For a unit from the torus semicircularis of the grassfrog the PST
histogram to a 430 ms segment of pseudorandom noise is shown (thick staircase
line) together with a linear reconstruction on basis of the STRF (a), with
additional assumption of a linear rectifier stage (b) or a quadratic rectifier (¢) shown
as this continuous lines. The best correlation (p? = o0°56) is obtained fer the linear
rectifier (from Eggermont et al. 1983).

This indicates that non-linear contributions (higher than second
order) are quite important and besides that implies that the STRF
is an incomplete characteristic in the majority of cases.

(¢) Predictability on basis of the STRF

In the original sense (Erulker, Nelson & Bryan, 1968), predictability
was based on the notion that ‘the response of a single neuron to brief,
spectrally and temporally simple, stimulimight be adequate to account
for responses to stimuli in which complexity was increased along one
or a few dimensions’. We may explore if the STRF of a neuron, after
having obtained evidence about stimulus invariance as well as
completeness, can be used to predict the neurons response to, for
example, species specific vocalizations. Eggermont et al. (19835)
found that this in general is not the case. Again the application of a
neural characteristic obtained in a stationary response situation to
inherent non-stationary stimuli requires that a measure of the
dynamic properties of the neuron has to be taken into account. Since
it may be assumed that in first order the dynamics of the neuron (cf.
Section 7) are independent of the spectro-temporal properties one
could try tomultiply the predicted response with aninverse-adaptation
function. Vice versa one may obtain information about the neural
dynamics from a comparison of the PS'T histogram to a vocalization
with its STRF-based, predicted, response. An example of a prediction
is shown in Fig. 29. _

The findings of Eggermont et al. (1983b) only to a small extent
corroborate Symmes (1981) remark that ‘predictions of other sorts,
such as from random noise responses to wide band vocalization
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J Fig. 29. Prediction of the response to natural sounds on basis of the STRF as
obtained for noise. A linear prediction is carried out. In (a) the average pre-event
sonogram for the noise stimulus is shown in three one-third-octave wide-frequency
bands, this forms an estimate of the STRF. () The PST histogram and prediction
are shown to a male vocalization (cf. the sonogram); while the prediction increases
with increasing sound level in the vocalization the actual PST histogram is
constant. (¢) Predictions are shown to three female vocalizations (sonograms
shown) and in (d) a prediction to another male vocalization is shown. Observe
that the instants of firing are reasonably well predicted but that the amount of
firing does not bear a relation to the amount predicted. (From Eggermont et al.
1983b.)
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Fig. 30. Schematic representation of properties of the spectro-temporal receptive
field of a single neuron. To different stimulus ensembles SE; and SE, different
spike trains 2z,(¢) and 2,(f) are observed. From this basis two estimates of the
spectro-temporal receptive field STRF, and STRF, are obtained. Both can be
tested on separability and completeness (capability to estimate the original firing
pattern). A comparison between both STRF’s allows conclusions about stimulus
invariance, and the use of STRF, to predict spike activity 24t) (i +j) gives
further information about neuronal properties such as selectivity.

responses lack a clear logical foundation’. The logical foundation of
response prediction is certainly present; all one has to be sure of is
stimulus invariance and completeness of the neural characteristic
besides full knowledge of the adaptation properties of the neuron.

The presently outlined method can be seen as an extension to the
so-called tuning-curve predictability (e.g. Goldstein et al. 1971;
Symmes, 1981). Predictability, implying invarianceand completeness,
is related to selectivity. Symmes (1981) notes that ‘selective cells are
cells which respond to a limited range of complex acoustic signals and
have a level tolerant specificity’. This of course implies that their
responses cannot be predicted and their spectro-temporal receptive
fields will not be stimulus-invariant. An overview of the various
measures on the STRF is presented in Fig. 30. Briefly it indicates
that separability and completeness of the STRF only require the
application of one stimulus ensemble. Invariance and predictability
relate the responses to one stimulus ensemble to those of a completely
different stimulus ensemble. Selectivity implies that responses can be
obtained to only a few stimuli, for these neurons invariance and
predictability are excluded.
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(d) Stimulus reconstruction by a population of neurons

The prediction procedure outlined above forms a test for the
invariance and completeness of the neural characteristic. Given a set
of neurons with predictable response properties one may try to
estimate how well these neurons as a functional group represent the
actual stimulus. In other words, can one reconstruct from the
response patterns of the neurons the stimulus that evoked them?
Thereby it is tested whether there is a simple, complete coding of the
stimulus properties on a given neural level. This problem has been
addressed by Johannesma (1981) and Gielen & Johannesma (to be
published). They simulated a population of 200 neurons from the
auditory nerve of the cat with characteristic frequencies spaced
equidistantly on a log scale from 200 Hz to 5 kHz using a neuron
model. The first-order neural characteristics, or reverse correlation
function, were obtained for gaussian wide-band noise as a stimulus.
Then a test stimulus was presented and for each spike elicited the
neuron’s reverse correlation function was substituted. This was done
for each neuron and after summation over all neurons an estimate of
the presented stimulus, a sensory interpretation of the neural activity,
was obtained. This reconstructed stimulus was then compared to the
original test stimuli presented: a click, a tonepip, a sinewave and a
cat vocalization (Fig. 31).

Qualitatively good results were obtained, but one wonders at what
level in the auditory system this simple coding method breaks down,
i.e. at what level the stimulus invariance of the neural characteristic
disappears. Incidentally, the reconstruction method requires phase-
lock and in this respect resembles the synchrony coding for speech
sounds as proposed by Sachs & Young (1980). The method can be
generalized to the construction of a so-called etho-acoustical space of
an animal by forming the combination of the neuro-acoustic spaces
associated with individual neurons (Johannesma & Aertsen, 1982).
This combination is thereby determined by the coherent activity
pattern of an interacting population of auditory neurons.

18. ESTIMATING THE FORM OF THE NON-LINEARITY:
POLYNOMIAL CORRELATION

The Wiener—Volterra approach for the identification of non-linear
systems requires the estimation of a large number of system kernels
if the non-linearity is not simply of low order as we assumed. In
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Fig. 31. Example of presented stimulus x(¢) and reconstructed stimulus £(¢) based
on the neural activity pattern of a set of 200 independent model neurons. Results
are shown for an impulse, a frequency modulated tone at 211-236 Hz, an
amplitude modulated tone (tonepip) at 500 Hz and part of the vocalization of a
cat. (From Johannesma, 1981.)

practice it is easy to calculate the first- and second-order Wiener
kernels, it will be possible to calculate the third-order Wiener kernel,
but unmanageable to calculate higher ones. When, as in the case of
the auditory system, there is at least a third-order term, an approxi-
mation of the neural characteristics on basis of the first- and
second-order Wiener kernels does not necessarily give better results
than taking only the first-order kernel (Johnson, 1980). In addition
one may ask whether the Wiener—Volterra approach for a highly
adaptive systemisableat all toreveal the character of the non-linearity.
The drawback of model-free, very general, methods for system
identification is clear: any prior information about the system (cf.
Section 2) has to be identified again.

Model-based approaches, of course, are limited to that particular
model. If the assumption turns out to be basically wrong, then any
conclusion based thereupon can only be correct by accident. Although
the basilar membrane hair-cell system works as an active non-linear
filter (e.g. Sellick et al. 1982) it can often be approximated rather well
by a sandwiched model consisting of two linear filters with an
algebraic non-linearity in between (cf. Fig. 8). Such a model is also
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called a BPNL network and was originally devised to account for the
originally assumed broad basilar membrane tuning followed by a
much sharper second filter (Pfeiffer, 1970; De Boer, 1976b). It is also
possible to interpret it as a sharp cochlear filter followed by a
non-linearity and a low-pass (synaptic) filter (cf. Section 5). It has
been shown (De Boer, 1976b; Johannesma, 1971, 1972) that for such
amodel the (first-order) input—output cross-correlation function does
not reveal the presence of the non-linearity in its shape, but only in
its size, due to the algebraic nature thereof.

As shown in Section 5, the input—output cross-correlation is
proportional to the convolution of the impulse response of both linear
filters (when using gaussian wide-band noise as a stimulus) and does
not show the properties of the individual filters either.

If we consider the input to the BPNL network (Fig. 8) to be
gaussian noise, x(t), then the output of the first filter, u(2), is also
gaussian noise. The non-linearity gives an output v(t) = ¢{u(t)}. Since
u(t) is gaussian, v(t) can be written as an expansion in polynomials
that are orthogonal with respect to a gaussian signal. These poly-
nomials are the Hermite polynomials He,(x) based on a weighting
functione™%"/2, correspondingtoagaussian probabilitydensity function
with u, = o and 0% = 1 (cf. Section 16):

He,(x) exp(——x;) = (-—-I)"::n exp(—%z), (18.1)

where x(t) is assumed normally distributed. The first five polynomials

read Hey (x) = 1, He,(x) = x, Hey(x) = x®—1,
Hey(x) = x3—3x, He,(x) = x*—6x%+3. (18.2)

The orthogonality relation is a particular one since the inner product
now involves a weighting function:

2

He,(x) He,(x) exp <—3C-2—) dx =713, (18.3)

The output v(¢) of the non-linearity can therefore be written as a
linear combination of these Hermite polynomials in such a way that
any new polynomial added reduces the mean square error in the
approximation of the non-linearity (De Boer, 1979; Lammers &
De Boer, 1979):

e8]

o(t) = 3 “MHe, ) (18.4)

n=0 7"

with «’ = [u(t)—#] /o, is standard normally distributed.
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A special property of Hermite polynomials which are orthogonal
to two gaussian stimulus ensembles y,(¢) and y,(¢) which both are
standard normally distributed is that (Billings & Fakhouri, 1978)

E[He,(x1) Hep(X2)] = n! 0y o1, (18.5)

where p,, is the correlation coefficient between y,(¢) and y,(t). Using
this property to calculate the cross-correlation between v(¢f) and

Hen(x), Riten) o(r) = Elo(2) He, (x(t = 1)1, (18.6)

results by substitution of equation (18.4) in

a
RHe,,(:c) v(T) = anp:?u’(T) = U_:R;:Lu(T) (18-7)
u
A Pon)
Note that on = E[ T | = K,. (18.8)

To obtain the desired cross-correlation function Ry, (4),(T) we
convolute K, R?, (1) with the impulse response of the second linear

filter k(7): Rye,z o(7) = K, R (1) % k(7). (18.9)

If x(t) is gaussian noise, then R,,(7) is proportional to A(7), the
impulse response of the first linear filter (cf. Section 3). Since the
non-linearity is determined by the various K, we theoretically should
evaluate all cross-correlations Ry, (4 ,(7). Fortunately one needs
only to determine two cross-correlations that are different from zero
(De Boer, 1979), e.g.

RHe,(x) 7)) = K, h(1) * k(1) (18.10)
and  Rege,@) y(7) = Ko h¥(7) % k(7). (18.11)

Note that these are first-order cross-correlations: the first one is the
classical reverse correlation (equations 5.3 and 5.5) and the second
one compares to intensity correlation. In case there is no first-order
correlation function one needs to calculate a higher-order term.

In Fig. 32 we show four cross-correlations Ry () .(T) (n =1, 2,
3, 4) calculated on basis of the spike trains of two cochlear nucleus
units and one for random triggers. The selected units are the same
ones as in Figs. 18 and 21. One of the units did not show a reverse
correlation function, both show clearly discernible higher-order
polynomial correlation functions (Aertsen et al., to be published).
These polynomial correlation functions can be seen as proportional
to the diagonal functions of the corresponding Wiener kernels.
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Fig. 32. Polynomial correlation for two neurons from the VCN in the cat. Shown
are correlations of the spike train with polynomial functions of the pre-event
stimulus. In (a) correlation is with x(t), the signal itself resulting in the reverse
correlation function in case there is phase-lock. In () correlation is with x*(¢) —1,
resulting in a type of temporal intensity (cf. Fig. 18 for the same neurons). (c)
Correlation with x3(f) — 3x(¢), which is quite clear for the unit in the left-hand
column, which also has a reverse correlation function, but very close to background
fluctations for the other neuron. In (d) the result of correlating with x%(¢£) — 6x%(t) + 3
is shown; this again is clearly present in both neurons. Note that the various
polynomials are orthogonal, therefore very little leakage of lower-order corre-
lations is expected to the higher-order ones provided that the statistical properties
of the noise are adequate. In the right-hand column control results for spontaneous
activity of one of the units are shown.

Billings & Falhouri (1978) have devised a method to determine A(7)
and k(7) from any two known cross-correlations Ry, (4 ,(7) and
Rye (2 4(7)- Recall that for a proportional pulse generator (cf.
equation 5.0) RI—Ie,.(x) y(T) = RHe,,(x) (7). (18.12)
A small problem arises when the low-pass filter k(7) completely
overlaps the band-pass filter A(7) as is the case for auditory neurons
with low characteristic frequency. In that case h(7) * k(7) is approxi-
mately equal to A(7). Then the non-linearity that is estimated need
not be the static non-linearity of the basilar membrane hair-cell
system but actually that of the pulse-generating neuron. Itis therefore
more plausible to study those neurons that have high CF and
therefore either incomplete phase-lock or no phase-lock at all. In the
latter case one expects

Ryze (2) y(T) = Rueyz) y(T) = Rueyqq(a) o(T) = 0, (18.13)

as can be seen in the case for the non-phase-lock neuron shown in
Fig. 32 (note the scale). The results based on this method are still
preliminary but suggest that the method might work. The basic
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problem is that of approximating an inherently non-linear filter by
a sandwich model and lies in the assumption that this accounts for
most if not all of the manifestations of the non-linearity. As such it
presents a good example of both the advantages and the disadvantages
of a model-based approach as indicated earlier.

19Q. FUTURE OUTLOOK AND CONCLUSIONS

In the previous pages we have reviewed the results obtained with the
various reverse correlation techniques and have shown that for a
highly non-linear system as the auditory system, so far not a single
measurement specifies the system completely. Reverse correlation
methods are part of Wiener-like identification techniques and as such
aim to describe the system completely on the basis of a single gaussian
white-noise stimulus application by the (finite) set of kernels computed
therefrom. So far only first- and second-order Wiener kernels (or
equivalently the CoSTID) have been determined and on this basis
alone successful predictions of the response to different inputs proved
far from reached. This, however, seems inherent to Wiener kernels
determined by the cross-correlation methods and the functional
expansion thus obtained does not necessarily converge for any given
input function (Poggio, 1981). Therefore the test for completeness
(Section 17b) proved to be far better than the prediction to species-
specific vocalizations (Section 17¢). In principle, one expects reason-
able predictions for stimuli that resemble the gaussian white-noise
stimulus for which the kernels are determined.

While prediction on the basis of the CoSTID alone, in the case of
nearly zero or zero-reverse correlation functions, seems to work
reasonably if applied to noise stimuli, in the case where there is a
clear reverse correlation function the prediction on the basis thereof
is only slightly less than when the second-order Wiener kernel is taken
into account (Wickesberg et al., in preparation). Computational
problems so far seem to exclude routine calculation of higher-order
kernels; thus predictions will remain largely incomplete. Some
advantage in that respect may be obtained from the polynomial
correlation in which only the main diagonal terms of the various
Wiener kernals are computed. In principle the method results in
estimating the shape of the non-linearity by evaluation of the various
K, terms (equation 18.8).

One of the simplifications that are underlying most of the inter-
pretations is that the peripheral auditory system can be approximated
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by a sandwich system (cf. Fig. 8). This is possible only if the system
is analytic or smooth enough to represent it by a Volterra-like form
and when the system can be described with a discrete time-parameter
(Palm, 1978). If the system can be characterized by a Volterra
representation then the Wiener expansion is also valid.

Wiener-like methods depend on the mean value and power of the
gaussian noise-input signal. Identification of the auditory system
therefore will generally require kernel estimates for its various
-adaptation states. Wiener kernels determined for a given noise level
and corresponding adaptation state are therefore of little value in
predicting responses to other stimuli (e.g. vocalizations) which cause
the system parameters to be different.

A method is needed to describe the time evolution of the CoSTID
or Wiener kernels for a given noise level as a function of time after
noise onset. Experiments using 4 s noise followed by 8s silence
applied to the grassfrog auditory system are currently in progress, and
algorithms to compute the STRF as a function of time after noise
onset are in development in our laboratory.

A further problem that we encountered is that the cross-correlation
methods did not seem to reveal the non-linearity. In principle the
bispectrum (the double Fourier transform of the second-order
Wiener kernel) should reveal the contribution of frequencies w, and
w, which are simultaneously present in the input signal (i.e. the noise)
to the w; + w, and w, — w, components in the output signal. Wickesberg
et al. (in preparation), however, did not observe clear manifestations
of the difference tone w; —w, in the bispectrum. We must, however,
keep in mind that distortion products as w,—w,; and 20w, —w, have
been described for double-tone stimulation and it 1s not completely
clear if they will arise also for wide-band stimulation. First of all, for
double tone stimulation, the tone frequencies are so selected that
neither of them excites the neural unit but the difference tones do.
In case of wide-band noise stimulation there will always be quite some
activity at the CF of the neural unit, and the unit might well be near
saturation for noise levels for which one expects a sufficient level for
the combination tones. In this case the unit cannot respond any more
to the much weaker distortion products One can also say that a
wide-band noise stimulus linearizes. A way out of this problem might
be to use high-pass noise that indirectly, or only very weakly, excites
the neural unit. However, single auditory nerve-fibre data by Evans
& Elberling (1982), who used high-pass noise masking, do not
substantiate this idea.

14 QRB 16
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Having indicated the obvious limitations of the white-noise ap-
proach (cf. Johnson, 1980), the extension of the reverse correlation
technique to other stimulus ensembles, such as random tones or
natural sounds, allows a comparison of spectro-temporal sensitivities
of auditory neurons for a wide class of stimulus conditions. The
concepts of invariance of the spectro-temporal sensitivity and pre-
dictability will be useful for revealing specific neural properties.
Invariance assumes that a given kernel, or equivalently the STRF,
is the same whatever stimulus i1s applied. Predictability combines
invariance and completeness of the neural characterization. Predict-
ability excludes selectivity and may be one of the crucial properties
to test in the search for feature-extracting or feature-detecting
neurons. Highly selective neurons will show a level tolerance in their
response properties, therefore the demonstration of predictability at
one stimulus level will generally be sufficient to exclude this
selectivity.

In conclusion, the various reverse correlation methods give the
same linearized description of the auditory nervous system as con-
ventional methods using clicks and tones do. In addition, the reverse
correlation technique offers methods to test how far the neuron is or
can be characterized. The problem of phase-lock can be circumvented
by the use of a second-order polynomial correlation or by the IFT
or dynamic spectrum methods. It appears that auditory neurons
behave quite differently under wide-band noise stimulation than for
tonal stimulation, which is a consequence of their non-linear
properties. Therefore reverse correlation methods for noise, tones as
well as natural sounds at the moment offer the widest possible
characterization for a given neuron. The method is, however, to be
combined with all prior knowledge about the system. Only model-
based approaches will reveal the basic biophysical mechanisms and
circuitry of the auditory system.
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