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Studies dealing with auditory information processing often present the dynamic spectrum of the sound
stimulus (sonogram) in addition to the stimulus waveform. The sonogram, presenting the spectral and
temporal properties of the sound in a combined way, reflects properties that are assumed relevant in
central information processing.

For 12 neurons recorded from the midbrain of the grass frog the sonogram of a Gaussian wide-band
noise stimulus was correlated with the output of the neuron to that noise. From this input—output
correlogram the spectro-temporal receptive field (STRF) was calculated. The STRF reflects those spectral
and temporal properties of the stimulus that influence the firing probability of the neuron.

A quantitative procedure was developed to calculate the neuron’s response as far as it could be derived
from the STRF. This procedure basically consisted of a convolution between STRF and the sonogram of
the stimulus followed by a summation over the various frequency bands. In this way it proved possible to
estimate to what extent the STRF characterised the neuron’s firing behaviour.

Heuristic approaches, in which the neuron was modelled to a parallel series of band-pass filters, a
summator and a static nonlinearity, representing a spike-generating mechanism, resulted in a considerable
improvement of the characterisation.

Key words: auditory information processing; cross-correlation; sonogram; spectro-temporal receptive
field; frog; torus semicircularis.

Introduction

The importance of complex sound signals for the investigation of the auditory
central nervous system has been emphasised by several authors [1,19,21,23,26]. These
complex sounds are preferably chosen from the natural environment of the animal,
the acoustic biotope [1], in which species-specific vocalisations play a substantial
role. When synthetic complex sounds are used, they are often inspired by the
frequency—time patterns found in the sonograms of these species-specific vocalisa-
tions. It is thereby implicitly assumed that the sonogram, a spectro-temporal
representation of sound, presents those frequency—time patterns that are relevant for
the animal. Thus, it was felt necessary to investigate the spectral and temporal
characteristics of auditory neurons in the central nervous system in a combined way.

0378-5955,/83 /303.00 © 1983 Elsevier Science Publishers B.V.
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By that we mean that instead of measuring separately the spectral characteristics
(e.g. the tuning curve) and temporal characteristics (e.g. the PSTH) of the neuron, we
obtain simultaneously these characteristics in one experiment. This procedure can be
based on stimulation with Gaussian wide-band noise [9] or on tonal stimuli with
random frequency and amplitude [10] and has been applied to neurons in the
auditory midbrain of the lightly anaesthetised grass frog. One-third of the neural
units therefrom responded in a sustained way to pseudo-random wide-band noise.
Noise is an example of an unstructured complex sound and as such seems ideally
suited to investigate unknown systems [15,20]. In the present paper we will investi-
gate how well a neuron can be characterised by determination of its spectro-tem-
poral response characteristics to noise. This will be done by calculating the probabil-
ity of response on basis of this spectro-temporal characterisation and comparing it to
the experimentally determined PSTH.

As in previous studies [9,10] we will use the concepts of stimulus ensemble (SE)
and pre-event stimulus ensemble (PESE) as defined in [1]. The series of action
potentials generated by the neuron is, for example, by using a Schmitt-trigger,
converted into a series of events. It is assumed that only the times of occurrence of
action potentials carry information. While the complete set of stimuli presented to
the neuron constitutes the SE, the subset that consists of stimulus elements that
precede an event forms the PESE. In this particular approach to the study of the
response characteristics of neurons, functionals of the stimulus are averaged over the
PESE. By this we mean that for the time segments preceding neural events an
average functional is calculated; a functional is defined as a function of a function.
The noise signal itself is a function of time x(7); the noise intensity, for instance, 1s
in turn a function of this x(¢) and therefore a functional. In the present paper we
consider the dynamic spectrum or sonogram as the functional of interest. The
differences between the average dynamic spectrum of the PESE and the average
dynamic spectrum of the SE are related to those spectro-temporal characteristics of
the stimulus that influence the firing probability of the neuron. When the stimulus
ensemble is Gaussian wide-band noise this difference is called the spectro-temporal
receptive field (STRF). In this paper is outlined a procedure to calculate the share in
the response of the neural unit that can be derived from its STRF. It is therefore an
investigation into how far the STRF characterises the neural unit.

The procedure to calculate that part of the PSTH of a neural unit that is
accounted for by its STRF basically consists of a convolution between the STRF
and the sonogram of the sound followed by a summation over the various frequency
bands. This can also be seen as moving a template representing the neuron’s
spectro-temporal properties over the sonogram of the sound and taking the degree of
correspondence as a measure for the firing probability of the neuron. The similarity
between the calculated STRF-based response probability and the measured PSTH
reflects the amount to which the unit is characterised by its STRF. This quantitative
procedure will only result in a complete characterisation if there exists a linear
relation between the sonogram of the sound stimulus and the response of the neural
unit. Threshold mechanisms and other non-linearities in the transduction between
sound and neural response as well as spontaneous activity of the neural unit will



169

cause the characterisation to be incomplete. In this study it will be made clear that a
model-based approach incorporating such nonlinearities improves the characterisa-
tion procedure.

Methods

Experimental data }

Adult grass frogs from Ireland were lightly anaesthetised (MS 222) and single-unit
activity was recorded from auditory neurons in the midbrain. All details about
preparation, stimulation, recording of single-unit activity and data acquisition were
described in a previous paper [9]. In that paper a population of units was described
that responded in a sustained way to pseudorandom wide-band noise. The quantita-
tive characterisation procedure described hereafter was applied to twelve of these
neurons from which sufficient data were available.

The stimulus

The spectro-temporal characteristics of a neuron were determined under stimula-
tion with pseudorandom Gaussian wide-band noise. This noise was generated by
low-pass filtering (6 dB/octave) of a binary sequence with a length of 1048 575 steps
[8]. The cut-off frequency (—3 dB) of the filter was either 1500 or 5000 Hz. A
complete noise stimulus consisted of several sequences presented immediately after
each other.

The dynamic spectrum

The dynamic spectrum or sonogram represents the spectral content of a signal as
function of time. The spectral and temporal characteristics are presented in a
combined way. A possible way to construct the dynamic spectrum is to pass the
signal through a bank of bandpass filters and to measure the temporal intensities, i.e.
the square of the envelopes, of the outputs of these filters. In this study the dynamic
spectrum was measured by means of a real-time dynamic spectrum analyser (DSA)
[2]. Eighteen third-octave bandpass filters were used, having central frequencies
equidistant on a logarithmic scale between 100 and 5000 Hz. The intensity of the
output of each filter was sampled with intervals of 1.92 ms.

Theory

The theoretical basis for the characterisation of the neural response to an auditory
stimulus consists of two assumptions. First, the effective stimulus for auditory
neurons in the midbrain of the grass frog is given by the dynamic spectrum { P, (¢)}
of the sound. Second, the response of the neuron is described by the PSTH, p(¢).

We will derive a relation between { P, (¢)) and p(¢) for a given stimulus ensemble
and use this to predict responses to parts of that stimulus ensemble or different
stimulus ensembles. Use will be made of results from linear and nonlinear system
theory [15,20].
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The dynamic spectrum or spectro-temporal intensity of the acoustic stimulus is
given by (P, (1)} where the index k indicates central frequency f,. P,(¢) is therefore
the power of the stimulus at time ¢ around frequency f,. The spectro-temporal
intensity can be written as: :

P (1) =P, + (1) (1)

where P, , is the average spectro-temporal intensity of the SE, and 7, is the deviation
of the spectro-temporal intensity from the average level.
The PSTH can be written in the form:

p(1)=p,+pi(1) +e(r) )
where p, is the average firing rate of the neuron, p,(z) is the component of p(7) that
is linearly related to the STRF, and e(¢) is the remainder caused by nonlinear
components of the neural sensitivity.

Linear characterisation of the neural sensitivity

The linear component p,(¢) of the neural response p(¢) is that part which depends
in a linear way on the variation of the spectro-temporal intensity of the stimulus. As
a consequence it can be written as:

P()=X [ h(a)(1=0)do ()

which states that the linear part of the response is found by a linear weighting of the
difference in spectro-temporal intensity of the PESE and that of the SE. In other
words, the intensity of the signal around a given frequency f, is convolved with the
sensitivity of the neuron in that frequency region, 4,(0), and the contributions of the
different frequency regions are then summed to give the linear contribution of the
PSTH. Egn. 3 may be considered as the definition of p,(¢) on the condition that the
STRF {h,(0)} is known. '

h,(0) can be determined on the basis of stimulus response correlation. We define
the autocorrelation function of the spectral intensity at frequency f, by

o0
Ru(r)= [ L(t— 1)L (0)ds, (4)
the cross-correlation of spectral intensities at differing frequencies f, and f, by

Ri(r)=[" L(=m)L(n)ar, (5)

the cross-correlation of I, (¢) and p,(¢) by

[e.o]
Rip(r)= [ L(t=7)pi(1)ds, (6)
and the cross-correlation of 7, (¢) and the response p(t) by
R, ()= [ L(r=7)p(r)dr (7)

These correlation functions form the basis for the determination of the STRF
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{h(0)). Multiplication of both sides of Eqn. 3 with I «(f — 7), integration over ¢ and
interchange of summation and integration leads to

Rip(r)= X [~ hi(o) Ry(7 = 0)do ®)

This equation relates the two correlation functions R, »,(7) and R, (7). A consider-
able simplification of Eqn. 8 is possible if the temporal intensities in different
frequency bands are uncorrelated: R,,(7)= 0 for k = /.

In Appendix 1 it is shown that for Gaussian white noise as acoustic stimulus the
intensities in non-overlapping different 1/3-octave bands as used in the dynamic
spectrum analyser are uncorrelated.

Although two neighbouring bandpass filters showed overlapping amplitude char-
acteristics from their —3 dB points on, actual calculation of the cross covariance
function of the temporal intensities of two neighbouring frequency bands showed
that they were uncorrelated within the error resulting from the finite lengths of the
eight records used and the systematic error due to the use of pseudorandom noise.
Therefore, Eqn. 8 reduces to

Rip(r)= [ hi(0) Rus(r=0)do ©)

which means that R »,(7) is obtained by a convolution of the unknown 4 (o) with
Ry (7). It follows therefore that the STRF {4, (0)) can be computed by a decon-
volution of R, »,(7) with R, (7). This, however, implies knowledge of the linear part
p1(t) of the PSTH.

This type of problem can be solved in a simple way if we impose another
condition on the decomposition in Eqn. 2: the three components Po> P(t) and (1)
should be uncorrelated with respect to the stimulus ensemble used (compare the
Wiener-type approach [15]). This effectively implies that a truncated version of Eqgn.
2 can be used to calculate the system’s response to the stimulus ensemble, and if
possible it can be extended to include higher order terms without affecting the
contributions already described by the truncated model.

In Appendix 2 it is shown for a stimulus ensemble with uncorrelated intensities in
different frequency bands (cf. Eqn. A1.1) that this condition leads to the relation

Rkp("') = Rkpl(T) (10)
Combining Eqns. 9 and 10 therefore leads to
Riy(r)= [ hi(0)Ry(7=0)do (11)

and h;(o) can be computed from the experimentally measurable R,,(7) and
R (7). This procedure is carried out in the frequency domain after Fourier
transformation (see Fig. 1).

It should be realised that even when the auditory system does not adapt its
properties to the characteristics of the stimulus ensemble the {4 «(0)} depend on the
choice of the stimulus ensemble. The STRF represents the best linear relation
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between spectro-temporal intensity of the noise stimulus and the neural response. In
reality the relation between the spectro-temporal sensitivity (STS) and the neural
response will be nonlinear and the STS may differ from stimulus ensemble to
stimulus ensemble. This paper and a companion paper will consider two important
points regarding the STRF. The first concerns the quality of the STRF, and will be
investigated in this paper: how well does the STRF characterise the PSTH? The
second point concerns the validity of the STRF determined with a noise stimulus to
predict the response to a different stimulus ensemble, i.e. species-specific vocalisa-
tions, and is investigated in the companion paper.

Calculation of the STRF-based response

In order to verify the quality of the STRF, {h,(0)} derived from Eqn. 11 we will
use this STRF for the calculation of the response of the neuron to selected parts of
the SE. The assumptions made in the Theory section limit the applicability to a
stimulus ensemble for which the intensities in different spectral regions are uncorre-
lated. The test stimulus both for determining the STRF and for the response
calculation is Gaussian white noise.

By calculating p,(z) with Eqn. 3 and substituting into Eqn. 2 the response of the
neuron as far as it is determined by p, and the STREF, i.e. the STRF-based response is
obtained:

p(t)=p,+pi(1) (12)
A linear characterisation calculated in this way is shown in Fig. 5b. As can be seen
there is some similarity between the experimentally measured PSTH and the
theoretical characterisation. At least one systematic deviation is noted: while the
PSTH is always non-negative, as it should be by definition, the characterisation
sometimes assumes negative values. This is caused by the neglect of the spike
generating mechanism (cf. Fig. 2) and the nature of the neural activity. A heuristic
approach is followed to take this into account: a rectification stage is added in
cascade to the linear prediction (Fig. 3).

Two choices have been made for the rectifier:

1. A one-sided linear rectifier giving zero output for negative input values, which

Fig. 1. Tllustration of the calculation of the spectro-temporal receptive field (STRF) for 5 frequency
bands. The average dynamic spectrum of the pre-event stimulus ensemble is shown in a. In b the average
dynamic spectrum of the stimulus ensemble has been subtracted to give R, ,(7). The amplitude of the
Fourier transform of b is shown in f. This Fourier transform is multiplied by the window shown in g. This
window is 1 for |w| < 2, a squared cosine cos®{(7(w — 2)/28) for £ <|w|< 22 and zero otherwise, in
which £ = 0.1302 w, Hz where w, is the central frequency of the bandpass filter used. The result of this
windowing is shown in h. R, (7) is shown in ¢, which is multiplied with a window shown in d. This
window is 1 for |¢| < T, cos)X7(t — T)/2T) for T <|t| < 2T and zero otherwise, in which 7 = 3.072/«, s.
The result is shown in e. This is Fourier transformed, the amplitude of which is shown in i. Then the
Fourier transform, shown in h, is divided by i, the result of which is shown in j. The inverse Fourier
transform is then shown in k: the STRF. This is in its turn windowed 1. The window was 1 for regions in
which the STRF differed from zero, while the tails of the window consisted of the same squared cosines as
in d. The final result, shown in m, is used to calculate the STRF-based response.
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gives a modified characterisation

p(t)=ap(t)  forp(z)>0 (13)
=0 for p(t) <0

firing
probability

generator
potential e—a—>le—b—>

Fig. 2. Example of a static nonlinearity of a spike-generating mechanism. In the interval a a strong
rectifying effect is present, whereas in b the relation between the probability of an action potential and the
generator potential is about linear.

where p(¢) is the linear prediction given by Eqn. 12. The constant q, is chosen such
that the average level of the prediction p,(¢) is again equal to p,.

2. A one-sided quadratic rectifier giving zero output for negative input and
quadratic output for positive input, which gives the modified characterisation

pD=a, 72 (0)  forp(1)>0 »
=0 forp(t) <0

the constant a, is again chosen to assure that the average of p,(2) 1s p,.

These procedures lead to characterisations which on one hand are not completely
consistent with the general theoretical approach presented, but on the other hand do
eliminate some a priori impossible aspects from the linear characterisation. Its
practical value should be estimated from the experimental data; its theoretical

Lw-1, —s 1.0 Y —yMO—u [—>pt—{¥ }—ptt)

Ii-1(t) 15-1 | fi-‘l(t)

! e(t)
|

ﬁlll

Fig. 3. Functional model of an auditory neuron consisting of a parallel set of linear filters with impulse
responses f,(¢), the outputs of which are summated and passed through a static nonlinearity. It must be
noted that ¢(7) does not represent a ‘noisy’ component but a functional of input (P, (£)— P, ).
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evaluation is outside the limits of this paper. Results of these procedures are shown
in Fig. 5c and 5d for the linear and quadratic one-sided rectifier respectively.

Quality of the response characterisation

In order to evaluate the quality of the calculated response as compared to the
measured response of the neuron two measures can be chosen. One may take the
deviation of the calculated data from the experimental ones or one may take their
similarity. The deviation is given by the relative mean square error defined as

[} ]

0(
8 =—< (15)
(74

Q

where ¢ is the mean square error

n 2
ol ={p(t) = p(1)) (16)
where the bar denotes ‘taking the time average’, and opz
measured PSTH:

is the variance of the

—_—s :
ol =(p(t)—p) (17)
The similarity is given by the correlation coefficient [18]
RO VIO ,
Ppp = 0 .Gn (18)
fawd

where op2 is the variance in the PSTH and oﬁz is the variance in the calculated
response curve.

These two measures are not independent; for the linear characterisation proce-
dure leading to Eqn. 12 there exists a simple relation [18]:

prs=1=8} (19)

If the neural unit behaves as a linear system and no stochastic fluctuations in the
measured PSTH are present then the characterisation will be perfect. In that
situation §, =0 and p,;=1. If the neural unit behaves as a nonlinear system
and/or stochastic fluctuations are present, then §, > 0 and p,5 < L.

The linear prediction procedure can be extended to nonlinear prediction in two
ways. The general approach would be the measurement and use of higher order
correlation functions as in the Volterra—-Wiener characterisation of nonlinear sys-
tems [15]. If applied correctly this leads to a decrease in the error d,. and an increase
in the similarity p,;. A more specific and model-oriented approach can be based on
the incorporation of information available for the system under consideration. The
use of a modified characterisation procedure as given by Eqns. 13 and 14 is an
example of such approach. We expect in these situations a decrease of §,, and an
increase of p, .

To evaluate the quality of the characterisation we will use p, ;. The results for 12
units are given in Table I. The similarity for the linear prediction is given by P,z In
the second column, the modified result with the one sided linear rectifier by Ppp, I
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TABLEI
SIMILARITIES BETWEEN MEASURED PSTH AND STRF-BASED RESPONSE

N, number of presentations of the noise sequence; n;, number of smoothings to the STRF-based
response; n,, number of smoothings to the PSTH; uns., unsmoothed; smo., smoothed.

Unit Ppp Prp Prs, Pprp~ N )
uns. smo.  uns. smo.  uns. smo.  uns. smo.
133-4 0.70 0.77 0.75 0.81 0.68 0.71 0.54 0.71 32 1 2
161-4 0.44 0.53 0.54 0.64 0.58 0.66 0.85 0.94 64 1 2
161-5 0.44 0.52 0.53 0.62 0.60 0.66 0.42 0.77 16 0 4
166-9 0.57 0.70 0.67 0.81 0.79 0.88 0.90 0.93 32 1 2
167-4 0.20 0.22 0.26 0.28 0.24 0.26 0.50 0.66 16 0 2
167-6 0.36 0.42 0.45 0.50 0.57 0.64 0.92 0.95 64 1 2
168-1 0.64 0.58 0.69 0.62 0.70 0.60 0.08 0.21 32 1 2
169-3 0.49 0.56 0.57 0.62 0.61 0.64 0.20 0.46 32 0 4
171-2 0.36 0.37 0.45 0.45 0.55 0.52 0.56 0.83 16 0 2
174-1 0.30 0.30 0.37 0.36 0.51 0.49 0.51 0.75 16 0 2
175-2 0.28 0.35 0.35 0.42 0.50 0.65 0.78 0.93 32 1 2
177-2 0.39 0.45 0.48 0.55 0.66 0.72 0.87 0.90 32 1 2

the third column and for the one-sided quadratic rectifier by O, in the fourth
column.

The system characterisation as applied here is valid for deterministic systems. The
nervous system, however, is inherently stochastic. Part of this stochastic component
is eliminated by the averaging procedure to obtain the PSTH, p(r). Part of the
variability, however, remains and leads to a decrease of similarity between the
STRF-based response and the experimental data. In order to estimate the variability
in the PSTH we measured it twice, leading to the estimates p’(t) and p’'(¢), and
correlated the first PSTH p’(¢) with the repeat determination p”(¢).

The quantitative results for p, . are given in the fifth column of Table I. It
appears from the table that p,; is uncorrelated with p,. ...

Smoothing

When comparing the autocovariance function of p(¢) with the autocovariance
function of p(¢) we observe a much sharper peak at 7=0 for the experimental
PSTH, p(¢) as shown in Fig. 4a, b. This indicates that the action potentials are more
accurately timed than can be derived from the STRF-based response p(#). In other
words, the various p(t) contain comparatively more high frequencies than the
corresponding p(¢). The averaging procedures to obtain the STRF as well as the
bandwidth of the filters in the dynamic spectrum analyser obviously destroy the fine
timing relations between stimulus and response. In order to get the spectral contents
of p(t) and p(¢) more in line, p(¢) was smoothed two or four times by applying a
Hanning window in the frequency domain [15]. When this procedure removed too
much of the high frequencies in p(¢), p(¢) was Hanning filtered once (cf. Fig. 4c, d).
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The effect on the real data can be seen in Figs. 6 and 7. The effect on the various
correlation coefficients is shown in Table I on the right-hand side of each column.
Furthermore, since the p(z) were obtained from at most 64 presentations (see

a C
\vA sV v ave SAVavinv=av;
-60 %] 61 (MS)
b d

R N I |

———

Fig. 4. Autocovariance functions of the unsmoothed and smoothed versions of the STRF-based response
and the PSTHs of unit 161-4. a and b show the autocovariance functions of the unsmoothed STRF-based
response and the PSTH, respectively. ¢ shows the autocovariance function of the STRF-based response
after it was Hanning-filtered once. d shows the autocovariance function of the twice Hanning-filtered
PSTH.

sixth column in Table I) and generally less (32 or 16 presentations) the smoothed
p(t) may appear to be a better estimate of the neuron’s firing probability especially
since the firing rate is rather low. The number of smoothings applied to p(¢) and
p(1) is given in the last column of Table I.

Results

Reproducibility of experimental results

The reproducibility of an STRF was tested for six neural units by presenting the
same noise twice and comparing the STRF-based responses for both presentations.
Even when the calculation of the STRF was based on only some hundreds of
pre-event stimuli, the STRF-based responses were almost identical with correlation
coefficients between the two being 0.986 or more.

The reproducibility of the actual PSTHs could, however, be very low. The
correlation coefficient between the PSTH obtained in the stimulus presentation
resulting in the STRF and a second PSTH to an identical stimulus could be as low
as 0.08 and as high as 0.92 (no smoothing was applied) and from 0.21 to 0.95 when
smoothing was applied as shown in Table I fifth column.



178

The quantitative characterisation

The results of the quantitative characterisations are shown in Table I. The second
column shows the similarity between actual response and STRF-based response,
with and without smoothing, for the linear procedure. For nine units the similarity
was less than 0.5 (unsmoothed data), for three units better than 0.5. The best
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Fig. 5. Quantitative characterisation of unit 133-4. The STRF, shown in a, was calculated from 1288
pre-event stimuli while during the presentation of the stimulus 2087 events occurred. So, because of the
dead time of the dynamic spectrum analyser 799 (38%) pre-event stimuli were omitted from the analysis.
In b, c and d segments of the STRF-based responses (thin plot) and the PSTH (thick staircase plot) are
shown without applying smoothing under no assumption of a static nonlinearity (b), under the assump-
tion of a linear half-wave rectifier (¢), and under the assumption of a quadratic halfwave rectifier (d). In e,
f and g the same STRF-based responses and PSTHs are shown after applying smoothing. (Note the
different scalings.)



179

characterisation was obtained for unit 133-4, the results of which are shown in Fig.
5b. This neuron was most sensitive for frequencies in the 1250 Hz band, and showed
a clear postactivation suppression expressed as a negative region in the STRF that
precedes the positive one [9]. This unit was somewhat better characterised by its
STRF under the assumption of a linear half-wave rectifier (Fig. 5¢) as can be seen
from the third column in Table 1.

All units, except unit 133-4 (Fig. 5d) and 167-4, were best characterised under the
assumption of a quadratic halfwave rectifier (see Table I, fourth column). For
example unit 166-9 could then be characterised with a similarity of 0.79. The STRF,
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Fig. 6. Quantitative characterisation of unit 166-9. The STRF (a) was calculated from 1645 pre-event
stimuli out of 2823 available events. Therefore 42% of the spikes did not contribute to the analysis.
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the STRF-based responses and the PSTHs of this unit are shown in Fig. 6. The unit
was most sensitive for frequencies in the 1250 Hz band and hardly showed any
postactivation suppression.

Better characterisations were for most units obtained when the smoothing proce-
dure was applied. The results are found on the right-hand sides of column 2, 3 and 4
in Table I. In the linear procedure unit 133-4 was again the best characterised unit
(Fig. Se). For most of the units the one-sided quadratic rectifier assumption resulted
in the best characterisation. Unit 166-9 could then be characterised with a similarity
of 0.89.

The results for unit 161-4 are shown in Fig. 7. This neuron was maximally
sensitive in the 630 Hz band. Clear postactivation suppression can be observed. The
unit was best characterised under the assumption of a quadratic halfwave rectifier.
Part of the traces show high activity in the STRF-based responses while the PSTH is
zero (see arrows). All significant major peaks in the PSTH are, however, also present
in the STRF-based response. The data shown are the smoothed versions.

The results of unit 175-2 are shown in Fig. 8. This unit was maximally sensitive in
the 630 Hz band. Hardly any postactivation suppression was seen. The best
characterisation was obtained under the assumption of a quadratic halfwave recti-
fier. This unit fired only at three instances in the segments shown. Inspection of the
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Fig. 7. Quantitative characterisation of unit 161-4. The STRF (a) was calculated from 3582 pre-event
stimuli, 2963 (45%) were omitted from the analysis. Only the results after applying smoothing are shown.
The arrows indicate where the STRF-based response is high, whereas the PSTH is zero.
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Fig. 8. Quantitative characterisation of unit 175-2. The STRF (a) was calculated from 860 pre-event
stimuli, 54 (6%) were omitted from the analysis. Only the results after applying smoothing are shown.

STRF-based responses showed that these are the instances where the calculated
response was highest. These instances were very reproducible in the PSTH as shown
by ap,,.=0.93.

The results for unit 169-3 are shown in Fig. 9. The best frequency of this unit fell
in the 250 Hz band. A region of activation is preceded by a region of suppression
that also extended upwards in the higher frequency bands and in time equal to the
presence of the activation region. This lateral suppression [9] may appear unclear
from the figure but becomes evident when the inherent delay of the bandpass filters
is taken into account [2]. Furthermore, this unit had a first-order cross-correlogram
(reverse correlation function [5]) that differed significantly from zero, indicating that
this unit responded in phase-lock to the noise signal. The correlogram was shown in
Fig. 8 of [9]. To compensate for this phaselock the STRF-based responses as well as
the PSTHs for inverted and non-inverted noise were averaged. For.the smoothed
PSTH the similarity with the STRF- based response was O 57 under the assumption

of the linear halfwave rectifier.
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Fig. 9. Quantitative characterisation of unit 169-3. The STRF (a) was calculated from 270 pre-event
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Fig. 10. Quantitative characterisation of unit 167-4. The STRF (a) was calculated from 245 pre-event
stimuli, 95 (28%) were omitted from the analysis. Only the results without applying smoothing are shown.
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The worst characterisation was obtained for unit 167-4 (Fig. 10). Its similarity
between STRF-based response and PSTH did not exceed 0.24. Its best frequency fell
in the 500 Hz band; some postactivation suppression can be observed. Close
inspection of the PSTHs revealed that this unit unlike the other ones often fired
twice. To show this most clearly the unsmoothed results are shown. The first spike
always came at an instance that the STRF-based response was high. Many parts
show high calculated responses also at moments that the PSTH is zero. It must be
remarked that, due to the dead time of the dynamic spectrum analyser, the second
firings were not taken into account in the calculation of the STRF (see Discussion).

Discussion

The spectro-temporal receptive field (STRF)

In the present study we have investigated auditory neurons in the midbrain of the
lightly anaesthetised grass frog using Gaussian wide-band noise. This stimulus is a
good approximation of Gaussian white noise as long as the bandwidth of the noise is
considerably larger than the frequency band to which the auditory neurons are
sensitive. For the characterisation procedure we used the dynamic spectrum of the
noise as input to the neurons. This has several advantages in this case since the
dynamic spectrum represents spectro-temporal characteristics of the sound signal
that are believed to play an important role in central auditory information process-
ing [1,19,21,23,26]. When Gaussian wide-band noise is used as stimulus, the average
pre-event dynamic spectrum, or the STRF derived from it, presents a lucid picture of
the spectro-temporal differences between the PESE and the SE. The interpretation
of the STRF is much more straightforward than the interpretation of the second-order
Wiener kernel to which it is related [3]. Properties like spectral sensitivity, latency,
post-activation suppression and lateral suppression are clearly exhibited in the
STREF [9].

The determination of the STRF on basis of the dynamic spectrum allows an
implementation in hardware, the dynamic spectrum analyser [2], thereby reducing
the necessary computer power and at the same time allowing a real-time availability
of the neuron’s spectro-temporal sensitivity during the experiment. A disadvantage
of considering the dynamic spectrum as input to the neuron will emerge when the
neurons respond to properties of the stimulus that are lost in the dynamic spectrum.
This is inherently connected to the present approach which essentially is a ‘model-
based’ one, in contrast to the more general Wiener-type methods which also take the
results from first-order cross-correlation [5,17] into account. On the other hand,
model assumptions generally lead to more specific and more efficient identification
techniques.

The actual procedure to determine the STRF (cf. [9]) is similar to the equation
presented by Schetzen [20] in which the estimation of the first-order Wiener kernel is
corrected for a non-white input that has, however, still to be Gaussian. The
estimation of the STRF does neither require the input to be white nor Gaussian.
Moreover, when the input lacks certain frequencies these will also be absent in the
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input—output correlogram. This shows that the deconvolution required to estimate
the STRF can theoretically be carried out for any stationary stimulus with uncorre-
lated frequency bands, whatever the amplitude distribution or spectral content of its
dynamic spectrum. For all these stimuli the STRF produces the optimal characteri-
sation in mean-square-error sense when a time-invariant system with finite memory
is described according to Eqns. 2 and 3. It must be emphasized, however, that the
characterisation is only optimal for the input with which the STRF is determined.

So, the characterisation procedure does not require the input to be white or
Gaussian. However, the interpretation of an STRF in terms of activation and
suppression regions [9] does require that the presence of these regions reflects
neuronal characteristics and not possible correlations within the dynamic spectrum
of the stimulus. For this reason Gaussian wide-band noise was used as stimulus.

Sources of error in the characterisation procedure

The calculation of the STRF is subject to several errors. First, because of the
dead-time of the DSA a sometimes considerable number of elements of the PESE
was omitted in the construction of the STRF. These stimulus elements were followed
by spikes that were less than 107.52 ms preceded by other spikes. These omitted
elements of the PESE may constitute a subset of the PESE with spectro-temporal
properties that are different from those of the PESE [25]. Comparison of the average
pre-event dynamic spectrum obtained with the DSA and the average pre-event
complex spectro-temporal intensity density [9], where the complete PESE was taken
into account, however, showed no indication of major errors. In both cases the
distribution of suppression and activation regions in the STRF were similar. When a
unit structurally fires twice at some instances, as unit 167-4, the stimuli preceding
these second firings will not be represented in the STRF. This may explain why in
the STRF-based response the second firings (cf. Fig. 10) are not present.

Second, the estimations of (P, .} and {R,, (7)) are subject to some errors. The
estimation of {P,,} was accurate compared with that of {R,,(7)). The biggest
component in this latter error originates in the finite record length of the segments
with which {R,, (7)) was estimated.

A third error was introduced in the deconvolution of {R, ,(7)} by {R,,(7)). This
procedure was performed in the frequency domain (cf. Fig. 1). {R, (7)) was first
windowed in the time domain in order to reduce the variance of its Fourier
transform. Then, the Fourier transform of {R, (7))} was divided by the Fourier
transform of this windowed (R,,(7)). Despite this windowing procedure high
frequencies in { R, ,(7)} had subsequently to be eliminated because otherwise several
numerical errors produced severe oscillations in the STRF. Nevertheless, some
oscillatory phenomena remained. This explains, for example, the small negative parts
in the STRF at about 8 ms before the spike in Fig. 7a.

A fourth error was introduced by the use of pseudo-random binary-noise se-
quences. { R, ,(7)} is a fourth-order characteristic of noise (cf. Eqn. 4) and it is not
known if the pseudorandom sequences used in this study were satisfactory ap-
proximations .of perfectly random signals with ideal fourth-order properties (cf.
[6,22]). It appeared that fluctuations far outside the proper STRF were reproducible
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and did not diminish when more than about 1000 pre-event stimuli were analysed.
These fluctuations are most likely due to statistical relations between the various
frequency bands of the noise stimulus. Their maximum amplitudes could amount to
20% of the highest peak in the STRF. When they were outside the STRF they could
be removed by use of windowing. Inside this window they will lead to a systematic
error.

The peristimulus time histogram (PSTH)

The PSTH was considered to represent the output of the neuron because it is an
experimental estimate of the instantaneous firing rate or event density of the neuron.
By the stochastic nature of the event generation process, the PSTHs remain subject
to sometimes large statistical fluctuations. The correlation coefficient of the two
PSTHs to an identical stimulus could be as low as 0.08 and was never higher than
0.92. This means that, in terms of a signal plus noise model, between 92% and 8% of
the variance of the PSTHs were due to noise on them. These errors can theoretically
be reduced by presenting the stimulus many more times. When under a certain
condition the correlation coefficient is 0.5, the stimulus period has to be presented
81 times more often to obtain a correlation coefficient of 0.9, if at least the noise is
uncorrelated with the signal. This, however, would require a stimulus duration of
hours, which is generally much longer than the experimental lifetime of a neuron.
Another solution can be found in using much shorter noise sequences. But because
these short sequences have worse statistical properties (e.g. of R, , (7)) they do not
allow a satisfactory interpretation in terms of activation and suppression of the
STRF which is estimated on basis thereof. It must be emphasized that the amount of
reproducibility of the PSTH did not seem to influence the similarity between the
STRF-based response and the measured PSTH (cf. Fig. 4).

The reproducibility of a PSTH is often improved by additional smoothing.
Marmarelis and McCann [14] used a smoothing window with a bandwidth that was
derived from the cross-correlogram of the two PSTHs to the same stimulus. French
and Holden [7] used a window that eliminated the frequency content of the PSTH as
far as it was higher than the bandwidth of the stimulus. In the smoothing procedure
that was employed in the present study every action potential that contributes to the
PSTH is treated equally. So only the timing properties of the neuron are influenced
to some extent. The amount to which this influences the various similarity measures
can be obtained from Table I.

The static nonlinearity

When one inspects the PSTHs of the neurons in response to a sequence of noise,
one observes in many cases lengthy intervals where the PSTH is zero. This means
that the firing probability of the neuron will be very low in these parts. In some units
(see e.g. unit 175-2 in Fig. 8) it even appeared that the firing probability only
obtained realistic values during some very small parts of the stimulus presentation.
This suggests a kind of threshold mechanism, a strong static nonlinearity. For this
reason we have tried to improve the characterisation of the neurons by two a priori
assumed relatively simple nonlinearities. The choice of these nonlinearities was
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based on the assumption that they approximated a threshold mechanism in the spike
generator of the neuron. The threshold was put at p,(¢) = p,(1)=0 (Eqns. 13 and
14). This choice is in fact arbitrary. In some units better results could be obtained by
assuming a higher threshold. An example is presented in Fig. 8, where comparison of
p(1) and p(z) revealed that the unit simply fired at the three instances where p(7)
was above a certain level. By raising the threshold up to just below these three peaks
the correlation coefficient increased from 0.35 to 0.80 under the assumption of a
linear halfwave rectifier. This shows that this method may reveal the character of the
spike-generating mechanism of the neuron (or from more peripheral neurons affer-
ent to the neuron recorded from). When the system consists of a linear part followed
by a non-even static nonlinearity, the first-order Wiener kernel equals the impulse
response of the linear part except for a constant factor. This means that the output
of the linear part can be calculated except for a constant factor. The character of the
nonlinearity can then simply be found by plotting this calculated output of the linear
part against the actual output of the system. This requires, however, that the input of
the system is Gaussian noise. This was obviously not fulfilled in this study because
the dynamic spectrum of Gaussian noise was taken as the input to the system. The
incorporation of static nonlinearities in this study is justified by the practical
argument of the often considerable improvements that were obtained for the
characterisation. It provides a further step towards a model-based identification
technique to characterise auditory neuron response functions. This type of approach
seems unavoidable in order to gain a basic understanding of the transduction
process; at the same time it may circumvent some of the difficulties associated with
the more general approach [12].

Dynamic nonlinearities

Despite all these manipulations the neurons could only be characterised on the
basis of their STRFs to a limited extent. A significant fraction of the unexplained
part of the response of the unit will be due to the errors described above. Another
part will probably be due to dynamic nonlinearities in the neuron. A realistic
example of such nonlinearities may be found in interactions between different parts
of the STRF. When the STRF, for example, exhibits postactivation suppression in a
certain frequency band, the average pre-event dynamic spectrum shows that the unit
on the average fired when the temporal intensity of this band is first low and then
high. This interpretation applies only to the average. One can then imagine two
possibilities. First that a low intensity raises the firing probability of the neuron for
some time independent of what comes later, while a high intensity raises the firing
probability independent of what happened before. On the other hand, one can
imagine that the unit fires only after a high-intensity part of the stimulus in strict
combination with a preceding low-intensity part. The averaging procedure does not
distinguish between these two possibilities and higher order analyses are necessary to
reveal them. It is rather likely that mechanisms like these are present. In most units
high parts in the PSTH corresponded to high parts in the STRF-based response.
High activity in the STRF-based response was, however, regularly observed where
the PSTH was low or zero. When postactivation suppression is present, a possible
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explanation might be that this high activity in the STRF-based responses is due to
either a low or a high intensity in the frequency band to which the unit is sensitive
without the necessary succession of a low and a high intensity being realised. Similar
arguments might be put forward for different parts of an activation region, for
example. This indicates that higher order analyses may considerably improve the
characterisations of the units. This is also suggested by the results of Bibikov and
Gorodetskaya [4] who observed nonlinear phenomena for neurons in the torus
semicircularis of the frog in response to amplitude modulation of tones, whereas
Mgller [16] describes a basically linear response in the cochlear nucleus of the rat.
Finally, the rare occurrence of a high-activity part in the PSTH when the STRF-based
response was low indicates that responses to harmonics of the stimulus only play a
role as far as they affect a rectification of the response.

The quantitative characterisations

The results show that the response of the neurons to stimulation with Gaussian
wide-band noise can to some extent be derived from its STRF. All information used
to obtain these characterisations was derived from a comparison of the average
dynamic spectrum of the PESE and the statistical properties of the dynamic
spectrum of the stimulus. This means that to the extent to which the unit is
characterised, the response of the neuron is based on properties of the stimulus that
are present in its dynamic spectrum. It was argued that better characterisations
might possibly be obtained when more suitable static nonlinearities are tested and
when higher-order contributions are taken into account. This would indicate that the
response of these units to noise then could to a considerable part be derived from the
dynamic spectrum of the stimulus.

From the point of view of nonlinear-system identification the characterisation can
be much more straightforward if the conventional first- and second-order Wiener
kernels are calculated. It would, however, have taken much more computation time
to get the present characterisations. In addition, the interpretation of these kernels is
difficult, and therefore it would be hard to relate the obtained results to properties of
the investigated neurons. The STRF, in contrast, presents an intuitively lucid picture
of various response properties that are assumed relevant for auditory information
processing. In this study it was deliberately attempted by the model approach to
relate the results to physiological phenomena as generator potentials, thresholds and
postactivation suppression (short time adaptation). Only when this is done can the
characterisation be more than a series of figures and may describe part of the
transducer mechanism.

Appendix 1: Statistical characteristics of the stimulus ensemble as measured by the
dynamic spectrum analyser

For the derivation of the spectro-temporal receptive field we need the following
statistical characteristics of the dynamic spectrum of the stimulus: expected value
{P,.) (cf. Eqn. 1) and autocorrelation function (R, (7)) (cf. Eqn. 4). Furthermore,
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we require that the temporal intensities of different frequency bands are uncorre-
lated (cf. Eqn. 5).

{Py.) was obtained by averaging the dynamic spectrum of noise signals preceding
a few thousand random events. This was calculated for noise with a cut-off
frequency of 1500 Hz as well as for noise with a cut-off frequency of 5000 Hz. As
the overall intensities of these two different kinds of noise were equal, their
intensities in a third-octave band differ by 5.2 dB, the 1500 Hz noise having the
higher intensity. In the estimations of { P, .} this was found indeed.

(R, (7)) was estimated by averaging the autocorrelation functions of the dy-
namic spectra {/,(t)} of eight different segments of the noise stimulus. These
spectrograms were sampled with 224 points separated by 1.92 ms. It can be shown
that for Gaussian noise the autocorrelation function of a 1/3-octave band of noise
with a cut-off frequency of 1500 Hz will be 11.1 times (10.5 dB) the autocorrelation
function of the same 1/3-octave band of noise with a cut-off frequency of 5000 Hz
and the same overall intensity. For the 1/3-octave band with central frequencies, f,,
from 160 to 1250 Hz this appeared to be realised within 9%.

Although two neighbouring bandpass filters in the DSA showed overlapping
amplitude characteristics from their —3 dB points on, actual calculation of the
cross-correlation function R, ,(7) of the temporal intensities of two neighbouring
frequency bands of Gaussian noise showed that these were uncorrelated within the
error resulting from the finite lengths of the eight records used and the systematic
error due to the use of pseudo-random noise:

R,,(r)=0, k=1 (A1.1)

Appendix 2: Orthogonal decomposition of the PSTH

To facilitate the actual determination of the STRF, {4,(¢)), from experimentally
measurable correlation functions we demand that the expansion in Eqn. 2 be such
that the three components p,, p,(¢) and €(¢) are mutually orthogonal with respect to
the stimulus ensemble involved, i.e. they should be uncorrelated:

R,.,(r)=0 for all = (A2.1)
R,.(r)=0 for all 7 (A2.2)
R, (7)=0 for all (A 2.3)

This approach is similar to the Gram-Schmidt orthogonalisation procedure used
in the Wiener-type methods (see e.g. [15,20]).

We start by noting that the conditions A 2.1 and A 2.2 are not really new, they
follow in a straightforward manner from the definition of p., the average firing rate,
which leads to expected values for p,(¢) and €(¢) that are zero given the statistics of
the stimulus ensemble used. To ensure the validity of Eqn. A 2.3 we demand that

R, (7)=0 for all k and € (A24)
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1.e. the remainder €(¢) should be uncorrelated to the stimulus intensity in the various
frequency bands. By substitution we will find out if this condition leads to a
consistent set of relations, especially with regard to the expression which the STRF,
{h (7))}, will have to fulfil. Substitution of p,(¢) (see Eqn. 3) into

RPIG(T)='/_°°°op1(t—’r)£(t)dt (A 2.5)

and combination with A 2.4 leads to the desired orthogonality of p,(¢) and €(z) as
expressed in (A 2.3).
The input-output correlation R, »(7) can be written (cf. Eqn. 2) as

Ri(7)=R,,.(7)+R,, (1) + R, (7) (A 2.6)

Because of the definitions of p, and I, it is obvious that R, ,. equals zero.
Substitution of (A 2.4) then leads to

Rkp(’T)=Rkpl(’T) (A2.7)

By assuming a stimulus ensemble with uncorrelated intensities in different frequency
bands we can use Eqn. 9 to yield

Rkp('r)=/_°ooohk(o)Rkk('r—o)da (A238)

which expresses the STRF, {4, (o)), in terms of measurable quantities: the STRF
equals the stimulus response correlation ‘corrected’ for the spectral composition of
the stimulus ensemble.

By analogous reasoning it can be shown that the converse procedure, i.e.
imposing Eqn. A 2.8 as a condition, leads to the decomposition of p(¢) as in Eqn. 2
that is orthogonal to the stimulus ensemble.
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