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Representation of simple stationary sounds can be given either in the temporal form by display of
the waveform as function of time or in the spectral form by intensity and phase as function of fre-
quency. For complex nonstationary sounds, e.g. animal vocalisations and human speech, a combined
spectro-temporal representation is more directly associated with auditory perception. The well-known
sonogram or dynamic power spectrum has a fixed spectro-temporal resolution and neglects phase rela-
tions of different spectral and temporal sound components.

In this paper the complex spectro-temporal intensity density CoSTID) is presented as a coherent
spectro-temporal image of a sound, based on the analytic signal representation. The CoSTID allows
an arbitrary form of the spectro-temporal resolution and preserves phase relations of different sound
components. Since the CoSTID is a complex function of two variables, it leads naturally to the use of
colour images for the spectro-temporal representation of sound: the phonochrome. The phono-
chromes are shown for different technical and natural sounds. Applications of this technique for study
of phonation and audition and for biomedical signal processing are indicated.
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INTRODUCTION

Spectro-temporal images of sound have a long tradition: the notation of music notes
on a staff are used to display both spectral and temporal structure. The melody of a song,
animal or human, should be described in terms of both frequency and time; the same
holds for intonation in speech. Simple elements of sound can be described in either of the
two domains: in the temporal domain by display of the waveform as function of time,
and in the spectral domain by either real and imaginary part or by amplitude and phase as
function of frequency. Temporal and spectral representation of a signal are related one-
to-one by Fourier transformation: they are mathematically isomorphic. Perceptually,
however, the different representations may lead to quite different impressions. For com-
plex nonstationary sounds either temporal or spectral representation is insufficient. An
underlying reason may well be that auditory perception is based on both spectral and
temporal aspects of sound.
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In musical notation intensity is indicated in a separate form. The timbre is not indi-
cated at all, only the fundamental tone is shown; knowledge of the instrument should
suggest the timbre. The sonogram or dynamic spectrum does not have these short-
comings. The intensity of each spectral component is shown as it develops in the course
of time: both fundamental and higher spectral components, giving rise to pitch and tim-
bre, are presented. The sonogram has been widely used for the study of animal vocalisa-
tions [9,27] and human speech [11,20]. Various forms of analog, digital or hybrid spec-
tral analysers produce the combined spectro-temporal representations of sound [2,3].
An example is given in Fig. 1. A ‘B-call’ of a male grass frog [3,14] is shown. At the left-
hand side the vocalisation is shown on three different time scales; at the right-hand side
the dynamic spectrum is displayed in a quasi three-dimensional form and in a grey coding.

B-call Rana temporaria L.
a

1o

0 t(ms) -> 800

800

0 t(Hz) —> 2000

Fig. 1. Bcall of male grass frog (Rana temporaria L.). (a) The signal as function of time presented on
different time scales. (b) Dynamic spectrum or sonogram indicating distribution of amplitude as func-
tion of frequency (horizontal axis) and time (vertical axis). Both a three-dimensional display and a
grey coding of the sonogram are shown. (From Aertsen et al. [3].)
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Some of the sonographs have the advantage of real time operation; all, however, have
two fundamental drawbacks. The filters analysing the spectral content of the signal are
selected a priori with a given center frequency and a fixed spectral resolution. The spec-
tral resolution again induces a limitation of the temporal resolution; the product of these
two resolutions has a lower limit for any physical measuring device [13]. A second limi-
tation of a spectral analyser is the independence of the different filters. Each filter mea-
sures only the intensity of the spectral components within its own spectral sensitivity
region; as a consequence coherence of different spectro-temporal components will be lost.
Since phase relations of spectral components in different frequency regions are neglected
the spectral analyser may fail to show, for example, the difference of Gaussian and Pois-
son types of sounds.

An extension of the sonogram is given in the form of the coherent spectro-temporal
intensity density (CoSTID) representation of sound [17,18,21]. While the CoSTID, in
a strict sense, can no longer be constructed in real time, it has the advantage that no a
priori choice of the spectro-temporal sensitivity regions has to be made; these regions can
be chosen a posteriori. Moreover, the CoSTID does preserve spectro-temporal phase rela-
tions. In contrast with the real and positive valued sonogram it is a complex function of
frequency and time. As a consequence colour enters in a natural way for the representa-
tion of the CoSTID.

In this paper a general theory and some examples will be presented. The theory is
based on the analytic signal [13,24]. It will be shown that commonly used signal charac-
teristics can be expressed as nonlinear functionals of the analytic signal. An alternative
approach is based on a second-order description giving rise to the CoSTID. Signal charac-
teristics are again derived but now as linear functionals of the CoSTID. The CoSTID will
be visualized by two different types of chromatic images: one representing the signal
characteristics by the local colour contrast, the other giving these characteristics by global
aspects of the image.

THEORY
Analytic signal and signal characteristics

The coherent spectro-temporal intensity density (CoSTID) of a sound or a signal is
based on the notion of complementarity of time and frequency [13,24]. The mathe-
matical formulation makes use of the analytic signal &(¢) associated with a given signal
x(¢). It is defined as
ED=x@®)+ix(®) (M
where i =+/ — 1. The quadrature signal or Hilbert transform X(r) of x(¢) is given by

1% . x()

¥ 1) =— ds——— (2)
*O m i s t—s

where the integral has to be taken as the Cauchy principal value. The Hilbert transform
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can be considered as the convolution of a signal with the kernel (n¢)". Apart from a
minus sign, the quadrature of the quadrature signal is the original signal:

@) =—-x(@) 3)

The analytic signal &(¢) associated with the real signal x(¢) is a complex signal with
real and imaginary parts related by Hilbert transformation. For a harmonic oscillation
cos wt the quadrature signal is sin wt and the analytic signal equals exp iwt. The Fourier
transform £(w) of the analytic signal £(f) equals zero for negative frequencies; for positive
frequencies it has the same form as the spectrum of the real signal:

Hw)= [dre " 5(6) = 28(w) w>0 (4)
=0 w<0

The relations given in Eqns. 1—4 are illustrated in Fig. 2 for an amplitude-modulated har-
monic oscillation [3].

For an arbitrary sound or signal a number of characteristic parameters can be com-
puted in both the temporal and the spectral domains: intensity, amplitude, amplitude
modulation, phase and phase modulation or frequency. Since the analytic signal is com-
plex it can be represented in the form

E =A@ expib(t)=expla®) +ib()} 3)
and in the spectral domain
£(w) = A(w) exp — if(w) = exp {a(w) — iB(w)} ©)

The signal parameters g, b, o and § are nonlinear functionals of the analytic signal and its
Fourier transform. They are systematically represented in Table I.

Temporal phase modulation b(¢) is a precise definition of instantaneous frequency.
Relative spectral envelope modulation a'(w) corresponds with the slope of the logarith-
mic amplitude characteristic; spectral phase modulation §'(w) is the slope of the phase
characteristic as used in harmonic analysis of linear systems. Combination of Fig. 2 and
Table I allows the formulation of algorithms for unequivocal computation of the signal
characteristics.

For simple signals, the temporal parameters (g, b) and the spectral parameters (o, 8')
vary slowly as functions of time and frequency, respectively. An appropriate sampling of
these parameters supplies a satisfactory reduced description of the original signal x(¢).
However, for complex signals, the parameters may fluctuate as fast as the signal itself.
Smoothing of the parameters may give misleading results suggesting, for example, the
presence of 600 Hz while tones of 400 and 800 Hz were presented simultaneously.

The coherent spectro-temporal intensity density

The choice between temporal and spectral representation of a signal is difficult to
solve. Each domain has its own advantages and drawbacks; moreover, separate represen-
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Fig. 2. Signal and analytic signal in temporal and spectral representation. F, Fourier transformation;
H, Hilbert transformation; I, identity; Re, real part; U(w), unit step function at w = 0; C, complex
conjugation; sgn(w), U(w) — U(—w).

TABLEI

SIGNAL CHARACTERISTICS IN THE TEMPORAL AND SPECTRAL DOMAIN AND THEIR
RELATIONS WITH THE ANALYTICAL SIGNAL

Symbol Definition Description Definition Symbol

I(n) NGOG intensity E*(w) Ew) J(w)

A 1£(t) | envelope (W) A(w)

a(t) Re In £(1) logarithm envelope Re In £(w) a{w)

b ImIn £(f) phase Im In £*(w) B(w)
d d .

a(t) :i— Re In £(2) relative envelope modulation :i—— Re In £(w) o' (w)

t w

. d d R

b(t) :Im In £(8) phase modulation ~(—1-—Im In £*(w) B'(w)
t

w
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tation of the signal in the two domains impedes a unified impression. An integrated spec-
tro-temporal signal representation is desirable. As such the dynamic spectrum or sono-
gram supplies a rough approximation: finite and fixed resolution in time and frequency
and neglect of the coherent aspects of signal and sound. The CoSTID may supply a
synthesis of signal characteristics: present in temporal and spectral form. The CoSTID is
defined on the base of the analytic signal as

E (w, 1) = £ () e £() (7

where * denotes complex conjugation. This function has been introduced in signal theory
[21] under the name ‘complex energy density’. It has been proposed for application to
the auditory system [5,12,17,18].

The expression given by Eqn. 7 supplies a definition of the CoSTID which can be un-
derstood in an intuitive way: the product of analytic signal £(¢) and its complex conju-
gated spectrum § *(w) with a demodulation factor exp —iwt. The CoSTID is related to the
lagged product function IT of the analytic signal &

(-7, =E"(t —7) () ®)
by Fourier transformation with respect to the time difference 7
E(w,t)=fd1 e YT — 7, 1) )

Substitution of Eqn. 8 into Eqn. 9 leads directly to the definition of = given in Eqn. 7.
The CoSTID is also simply related to two other second-order signal characteristics:
bispectrum and ambiguity function. Fourier transformation of Z(w, ¢) with respect to ¢
produces the bispectrum I. Fourier transformation of =(w, #) with respect to ¢ and
inverse Fourier transformation with respect to w gives the ambiguity function A. For a
signal consisting of a mixture of an emitted and a reflected signal the ambiguity function
may show the temporal and spectral difference of these two signals, indicating in this
way distance and velocity of the reflecting object. The ambiguity function has been used

——p Fourier-transformation: t -V
—— Inverse Fourler-transt.; V-t

----p Fourier-transtormation: T-W
----p Inverse Fourier-transt.: (I)~T

Fig. 3. Diagram of second-order functionals and their relations by Fourier transformation.



129

in radar and sonar [22,26]. In biology it has been applied to the study of echolocation in
bats [4,6,8]. A schematic summary of the relations of these second-order signal func-
tionals is given in Fig. 3.

Properties of the CoSTID

Arguments for the introduction of the CoSTID are the elegant and fundamental math-
ematical properties as well as the intuitive perceptual value when presented in the form of
two-dimensional colour displays. These images, the phonochromes, are shown under
Results; mathematical aspects are presented below.

Property I: The CoSTID gives a complete representation of the signal apart from a phase
factor

From the definition in Eqn. 7 follows directly that the CoSTIDs of the signals £; and
&, are equal:

Zo(w, ) =E(w, 1)

if and only if the analytic signals are related by

B =%,

which is correct if and only if the real signals are related in the form

x2(t) = cos ¢+ x,(t) +sin ¢ X, (r)

where ¢ may assume an arbitrary value, The quadrature signal X() differs n/2 in phase
with the original signal x(¢#). Temporal and spectral envelopes of x;, X,, x, and X, are

identical. While absolute phase of the signal is not retained in the CoSTID, phase relations
between different spectro-temporal components are incorporated in the CoSTID.

Property II: Spectral and temporal characteristics of the signal can be derived from the
CoSTID by appropriate differentiation
Substitution of Eqns. 5 and 6 in the definition of the CoSTID given in Eqn. 7 leads to

= (w, 1) =expla(?) + &(w) +i{H () + f(w) — wi}] (10)

This equation indicates that the CoSTID is directly related to the signal characteristics
given in Table I. Differentiation of the logarithm of Eqn. 10 with respect to frequency w
and time ¢ leads to the set of relations

3 ' o .
a@t)=Re—In E (w, 1) a'(w)=Re—InE=Z(w, 1)
ot ow an

0
li(t)=Im£—;1nE(w,t)+w B'(w)=lm-£1n2(w,t)+t
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In a compact form this can be written as

{a+ib, o' +ip'} = {3—,-@—} {In E (w, #) + iwt} (12)
ot dw

which leads to the conclusion that spectral and temporal signal characteristics are in a
direct way related to the spectro-temporal gradient of the logarithm of the CoSTID.

Property III: Spectral and temporal characteristics of the signal can be derived from the
CoSTID by appropriate integration
Direct integration of Eqn. 7 over frequency or time gives for the intensity density

1(t)=51;fdw'5(w,t) J(w)= [dr = (w,1) (13)

while the total intensity of the signal is
1 1 —
fdt[(t)=gfdwj(w)=Zfdwfdt:(w, ) (14)

The CoSTID is considered as the complex distribution of signal intensity in the (w, )
plane since /(¢) is the real and positive valued distribution of intensity with respect to
time and J(w) the distribution of intensity with respect to frequency. In this way /(¢)
and J(w) are the marginal distributions associated with = (cw, t). Further signal charac-
teristics are given by the real and imaginary parts of the average value of frequency or
time over the CoSTID [1]:

oot éfdwwz(w,t) o Imfdtrz(w,t)
a(t)=1Im =Im————
@) J(w) (1)
; _R%fdwwi(w,t) - fdttz(w,t)
(t)=Re 10 B'(w)= emj(w)
In a compact form this reads
S A N R =t =
{a-ib,a —zﬁ}—{l(t) 2ﬂfdw w,J(w)fdtt E (w, 1) (16)

where 517, J dw w and [ dt ¢t are integral operators applied on = (w, ?).

Comparison of Eqns. 12 and 16 indicates that the signal characteristics as given in Ta-
ble I can be derived both from the local structure of the CoSTID by differentiation and
from the global structure by integration. Some of the redundancy of this spectro-tempo-
ral representation of signals becomes apparent here.
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Equations for the higher order derivatives of the signal characteristics

(Edt-)m {a(t) - ib()} and (Ed(;)n {a(w) — iB(cw)}

can be given in terms of the moments of the CoSTID with respect to frequency or time:
1

— [dw " E(w,t and dt " Z(w, t)

-/ (w2,1) f

If cumulants are chosen instead of moments then the nth order derivative of the signal
parameter is related to the nth order cumulant of the CoSTID.

Property IV: The imaginary part of the CoSTID is determined completely by the real
part; the converse is not necessarily true

Re = (w, )= Im E(w,?)

The proof of this relation can be given in the following way. Making use of Eqn. 13
the temporal intensity /(¢) and therefore also the logarithm of the temporal envelope
a(t) can be found from the real part of the CoSTID by integration over the frequency w.
In an analogous way Eqn. 15 does supply the instantaneous frequency (), again making
use of the real part of the CoSTID. Returning now to Eqn. 5 it becomes clear that, apart
from a phase factor e’®, the analytic signal can be derived from the real part of the
CoSTID. Since the phase does not contribute to the CoSTID (cf. Property I) it follows
that the CoSTID as a whole is determined by its real part. As a consequence the
imaginary part of the CoSTID can be derived unequivocally from the real part. It should
be realised that this property does not hold for a sum or an average value of CoSTIDs;
in this case real and imaginary parts may contain independent information.

Property V: Sonograms with different forms of spectro-temporal resolution can be
derived from the CoSTID
The sonogram of x(¢) can be considered as a set of K functions

yk(t)=|:fdsfk(s)x(t—s)}2+|:fds]~‘k(s)x(t—s)J2 k=1,...K (17)

where fi(s) is the impulse response of filter £ [3]. Normally f; is a narrow band-pass fil-
ter with center frequency wy and y4(¢) is then the intensity of the signal in the frequency
region around w; during a time interval preceding ¢. The spectro-temporal resolution of
the sonogram is determined by the choice of the set of filters f;. For any real-time spec-
tral analyser the product of spectral resolution Acw and temporal resolution Ar has a
lower limit [13]:

Aw - At >3 (18)
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In the process of filtering and squaring, which is inherent in any form of sonogram,
information is destroyed. As a consequence sonograms with different choice of filters fj,
cannot be transformed into one another.

The sonogram as defined in Eqn. 17 can also be expressed in terms of CoSTID of sig-
nal and filter:

yk(r)=fdsélﬂ—fdw B, 5)E (w1 — 5) k=1,.K (19)
where

Dp(w, ) = i (@) €77 9 (5) (20)
and

$1(5) = fe(s) + iy (s) 1)

The use of inverse Fourier transformation leads directly from Eqn. 19 back to Eqn. 17.
From Eqn. 19 it follows that the sonogram is a linear functional of the CoSTID: multi-
plication in the spectral and convolution in the temporal domain of CoSTIDs of signal
and filter. Since an arbitrary sonogram can be derived from the CoSTID, this function
forms a generating function or underlying structure for the sonogram. As such the
CoSTID is not physically realisable, but arbitrary, realisable spectro-temporal representa-
tions can be derived from it. As a consequence no a priori choice has to be made concern-
ing temporal versus spectral resolution. Conservation of coherence is the basic explana-
tion for this generality.

Property VI: For a mixture of signals the CoSTID incorporates interference products of
the elementary signals
Given a signal consisting of a sum of elementary signal components

80 = 260 (22)
H
the CoSTID of this signal then becomes
= (w, 1) = 20 Ew, 1) (23)
ij
where
Eij(w, )= £°(w) 7T £(0) (24)

The contribution Z;; originates from the signal £; and does not contain the phase of §;.
The contribution X;;(i #/) is created by the combination of ; and £; and is dependent on
the phase difference of these two elementary signals. In the sonogram the contribution
based on E;(i # /) is not present as long as &; and £; are located in nonoverlapping spec-
tro-temporal regions. In the phonochrome representation given under Results the contri-
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bution Z; leads to ‘ghost images’ as can be seen clearly in Fig. 6e, f. Smoothing of the
contributions =;; in a manner given by Eqn. 19 does completely eliminate =;; for i #/ but
not fori=j.

If the total signal £(¢) is an element of an ensemble of comparable signals, e.g. frog
vocalisations of a certain type, then the average CoSTID for this ensemble of signals may
be determined. The phase relations of different signal components influence the appear-
ance of the average CoSTID. If the signal £(¢) is incoherent, i.e., the phase relations
among the £(z) differ for different realisations, then the terms Z;;(i # ) producing the
virtual images will cancel in the average CoSTID. On the other hand, if the signal £(¢) is
coherent, i.e., the phase relations among the £;(r) are identical in different realisations,
then the virtual images caused by =Z;(i # /) will be present in the average CoSTID. The
boundaries of the spectro-temporal coherence region can then be estimated from the val-
ues of the intermodulation products averaged over an ensemble of comparable signals or
sounds. Segments of animal and human vocalisation or music which are reproducibly
coherent form indivisible elements of the phonation. These acoustic elements may be
indicated as phonons.

Definition: A phonon is a spectro-temporal component of a homogeneous ensemble of
signals or phonations such that within the phonon phase relations are deterministic and
between phonons the phase relations vary stochastically. In other words: a phonon is the
content of the spectro-temporal coherence region of an ensemble of signals.

From the average CoSTID of an ensemble of signals the phonons can be determined.
If the spectro-temporal regions for the phonons forming a given signal are known, then
the boundaries (—o°, ) in the definition of integrals leading to the CoSTID can be
replaced by the phonon boundaries. Following this approach, Eqn. 22 can be rewritten
as a sum of phonons and Eqn. 23 then no longer contains any interference products. As
a consequence phonons form the elementary constituents of an ensemble of signals or
sounds. In solid-state physics the phonon is defined as a harmonic acoustic oscillation in a
crystal. Since phonons interact only to a small extent, the definition given here may be
considered as a generalisation of the one used in physics [25]. In statistical signal analy-
sis use is made of the principal components or Karhunen-Loéve expansion for the descrip-
tion of an ensemble of signals [19]. The eigenfunctions of the time-dependent autocorre-
lation function of the signal ensemble form an uncorrelated, orthogonal and complete set
of functions optimally suited for representation and approximation of the signals under
consideration, The relation of the principal components analysis and signal representa-
tion in terms of phonons appears worthy of investigation.

The difference of phonon and phoneme should clearly be realised. A phonon can be
determined from a homogeneous ensemble of different realisations of a single phonation.
A phoneme is the minimal discriminative element for different phonations. As such, at
least two different types of phonations should be involved. For the determination of a
phoneme, semantic and pragmatic aspects of the phonation are relevant; this is not the
case for the phonon. A phoneme may contain more than one phonon.

The theoretical considerations of this chapter can be summarised as follows. The
CoSTID representation of a signal gives a coherent spectro-temporal representation. Dif-
ferentials and integrals of the CoSTID generate both the well known signal characteristics
and the dynamic spectrum or sonogram with arbitrary form of the spectro-temporal reso-
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lution. Ensemble averaging of the CoSTID for different realisations of the signal indicates
the spectro-temporal coherence regions of the signal. Knowledge of these regions may
allow an expansion of the signal or sound in terms of phonons.

RESULTS

Chromatic representation

In this chapter examples are presented of the CoSTID for nine different signals varying
from a simple amplitude-modulated tone to an element of the vocalisation of the grass
frog. The signals shown in Fig. 4 have been chosen in order to illustrate the concepts and
mathematical properties of the previous chapter.

The CoSTID is a function of two variables: frequency and time. Moreover the CoSTID
is a complex function; this implies that in each point of the (w, f)-plane two values have
to be presented. These values can be real and imaginary parts or amplitude and phase of
the CoSTID. In Fig. 5 these four aspects of the CoSTID are presented for the single gam-
ma-tone given in Fig. 4a by means of grey-coding of the (w, £)-plane. The horizontal axes
of the figures correspond with time, the vertical axes with frequency. A drawback of this
representation is the necessity to display two separate pictures for one CoSTID. Percep-
tually it is difficult to integrate either real and imaginary or amplitude and phase display
into one impression. A representation of a complex variable can also be given by means
of a vector field defined on the (w, £)-plane [18]. This procedure, however, leads to a sort
of optical congestion at positions where the amplitude of the CoSTID is large; also, the
direction of the vector is difficult to represent.

i R |
VT e

Fig. 4. Examples of different acoustic signals: (a) single y-tone; (b) sequence of two y-tones with iden-
tical spectral content; (¢} two simultaneous y-tones with different spectral content; (d) sequence of
two y-tones with different spectral content; (e) tone burst with trapezoid envelope; (f) frequency-
modulated tone; (g) element of frog vocalisation.




CoSTID = REAL PART

GAMHA-TOME OF 1000 HZ GANNA-TONE OF 1000 MZ

CoSTID - IMAGINARY PART CoSTID = PHASE

GAMMA-TONE OF 1000 HZ GAMMA-TOME OF 1000 HZ

GCANNA-TONE OF 1000 WZ GAMMA-TOME OF 1000 MZ
1

Fig. 5. Different representations of the CoSTID of a single y-tone as given in ig. 4a
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A solution of these problems can be found by the introduction of colour. Since the
colour or chromatic value of a point is specified by three independent aspects, this gives
the possibility to represent three independent variables at each point in the (w, ¢)-plane.
Two rather straightforward choices can be made for the chromatic variables: the triplet
(Red, Green, Blue) as well as the triplet (Intensity, Saturation, Hue) [28]. For the rep-
resentation of a complex number only two variables are needed. For the chromatic repre-
sentation of the CoSTID = (w, f) two variables are chosen from the triplet.

The chromatic representation of the CoSTID is then made in the following way. The
spectro-temporal plane is mapped onto the image plane by

(w, >, x)

The CoSTID in each spectro-temporal point (w, ) is transformed into a chromatic value
for the associated (v, x) point in the image by either

ReZ(w,1), ImE(w,0)}~>{RE,x), G@, 0}

or

Norm Z(w, 1), AgZ(w,0}~> {S¢,x), Hy,x)}

where R(y, x) is the intensity of red at the position (y, x), G stands for green, S for sat-
uration and H for hue.

The precise quantitative form of the chromatic map can now be given. For the argu-
ments there exist at least two possibilities

y=w, x=t (252)
or
y=lhw, x=t (25b)

Different choices of w — y may be derived from perceptual resolution of frequency based
on measurements of pitch and timbre. For the complex variable some simple choices for
the chromatic coding are

R—_Ry =Re = G-Gy =ImE (26a)

InR/Ry =Re E InG/Gy =Im = (26b)

S =Norm £ H =Arg = (26¢)
S

1.5 =Norm £ H = Arg = (26d)

Again a comparison of perceptual resolution (j.n.d.) of auditory and visual systems may
suggest different or more refined forms of Eqn. 26.
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Definition: A PHONOCHROME of a sound or signal x(t) is the chromatic image of the
coherent spectro-temporal intensity density Z (w, t) of the sound based on a mapping as
defined by Eqns. 25 and 26.

The results presented in this paper were produced by a computer-controlled video
colour display (Ramtek RH-2300, 6 bitplanes; Barco display CDCT 2/66). Frequency and
time scale are chosen linear as given in Eqn. 25a. For the complex variable = both the lin-
ear form of the (R, G) coding of Eqn. 26a and the linear form of the (S, H) coding of
» Eqn. 26¢ are shown. The lower part of Fig. 5 displays these two phonochromes of the

' amplitude-modulated oscillation given in Fig. 4a. The chromatic code which has been
used is included as a separate key in each figure.

Some comments should be given on the choice of the chromatic mapping defined in
Eqn. 26. Real and imaginary parts of a complex variable are real variables in the range
(—°, =) while intensity of a colour component is a real variable in the range (0, ). This
suggests the logarithmic relations of Eqn. 26b. For a finite segment of sound, however,
maximal and minimal values of real and imaginary parts of the CoSTID are limited. It is
possible to apply the linear (R, G) coding given in Eqn. 26a by a shift of the (R, G) origin
from (0, 0) to (Rq, Go). Saturation S of a colour is a real variable limited to the range [0,
1], S = O corresponding with completely unsaturated, i.e., white, and S = 1 describing the
fully saturated colour. Hue H can be defined on [0, 27]: it may be considered as a vari-
able defined on a circle; H(0) is identical with H(2n). As a consequence, saturation .S
may be related to norm or amplitude of the CoSTID, while hue H is a proper variable to
represent argument or phase. While Eqn. 26d can be used for arbitrary sounds, a finite
segment with a maximal value of || can be coded by Eqn. 26¢. Because of the finite
colour resolution of the video display, the intensities of red and green have only seven
different levels each; saturation is sectioned into eight values, and hue is divided into eight
segments apart from the smallest set of saturation values where differentiation is no
longer made with respect to hue.

For the signals presented in Fig. 4b—g the (Red, Green) and (Saturation, Hue) phono-
chromes are shown in Figs. 6 and 7.

Y

Properties of the phonochrome
The chromatic coding defined by Eqns. 25 and 26 is defined from point to point: one
spectro-temporal value of the sound is mapped into one chromatic point of the image.
The goal of the construction of the phonochrome is a simple correspondence of visual
qualities of a picture and auditory features of sound. Distinctive auditory features in ani-
mal communication may be related to identification and localisation of the acoustic
source: in human communication recognition of spoken words and music is an important
aspect. Some perceptual qualities of sound are loudness, pitch, timbre, harmony, thythm
and melody. As a first approximation these features may be related to the characteristic
functions a(?), a(w), b(2), B(w) and their derivatives given in Table 1.
K For colour pictures two main types of features can be indicated: local and global
aspects of the image. It will be shown that for a phonochrome both aspects correspond
directly with the characteristic features of an acoustic signal as proposed in Table 1. The
colour or chromatic value of a single point of the phonochrome can be taken as a position
in a colour plane. Its coordinate is given by either R +i G or by S el Asa consequence
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Eqns. 25 and 26 can be combined to a compact notation for the linear (R, G) code:
Z(w, )¢ RE,x)+iG,x) (27)

where R and G are the amount of red and green with respect to some background level.
For the linear (S, H) code the mapping can be written in the form

E(w,t) < Sy, x)expiH(y,x) (28)

These two mappings form the base for the audio-visual relations of characteristic features
of sound and images.

Local or differential aspects of a chromatic picture are determined by the relative
change in colour: the chromatic contrast given by the gradient of the logarithm of the
chromatic variables. The differential properties of the CoSTID as expressed in Eqn. 11
given in connection with Property II, combined with the linear (S, H) code given by Eqn.
28, lead to the relation of acoustic and chromatic variables given in Table II.

Global or integral aspects of a chromatic picture are related to the amount of colour
present in certain regions. In Property III it has been shown that integrals over the
CoSTID are simply related to the spectro-temporal acoustic characteristics. Use of the lin-
ear (R, G) phonochrome as expressed in Eqn. 27 leads to a relation of acoustic param-
eters and global aspects of its chromatic image. The relations are given in Table III.

The results presented in Tables II and III allow the conclusion: Spectro-temporal
change in relative envelope and in phase of the acoustic signal correspond with contrast
in saturation and change in hue in the (S, H) phonochrome and with average location of
red and green in the (R, G) phonochrome.

Apart from the local and global features described here, colour pictures can also be
characterised by their set of isochromes. An isochrome is defined as the set of points

TABLE II

RELATION OF CHARACTERISTICS OF ACOUSTICAL SIGNAL AND LOCAL ASPECTS OF THE
(S, H) PHONOCHROME

Acoustical Optical
. a 1 -
a(t) relative temporal —InS§ horizontal relative
envelope modulation ox change in saturation
. relative spectral 0 vertical relative
a'(w) . —In S . .
envelope modulation ay change in saturation
; difference of temporal 3 horizontal change
b{t) - w . —H .
phase modulation and ax in hue
frequency
, difference of spectral 9 vertical change
Bw)~1t - —H .
phase modulation ay in hue

and time
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TABLE HI

RELATION OF CHARACTERISTICS OF ACOUSTICAL SIGNAL AND GLOBAL ASPECTS OF
THE (R, G) PHONOCHROME

Acoustical Optical
. . ' _ amount of red on vertical
(1) temporal intensity R(x) —fdy R(y,x) line atx =
J(w) spectral intensity Rp) = f dx R, x) amount of red on horizontal
’ lineaty = w
dyy G(y, x
) relative temporal f vy G0, x) average location of green on
envelope modulation R(x) horizontal line at x = ¢
. [axxGo,x .
() relative spectral average location of green on
envelope modulation R(») vertical line at y = w
dy y R(y, x
i)(t) temporal phase modu- f Yy RO, x) average location of red on
lation R(x) horizontal line at x = ¢
dx x R(y, x
8'(w) spectral phase modu- f 0 %) average location of red on

lation R() vertical line at y = w

which have the same value of the chromatic variables. Both for the (R, G) and the (S, H)
coding an isochrome in the phonochrome is the set of points for which the CoSTID
= (e, t) has the same value. Taking account of Eqn. 10, the following conclusion can be
formulated: on or along an isochrome of the phonochrome the acoustic features given in
Table I obey the relations

aft) + of w) = constant (29a)
b(t)+ B(w)— w t = constant (29b)

In experimental practice only the finite number of different colours shown in the
colour code are available. As a consequence the isochromes are determined by the condi-
tion that the left-hand sides of Eqn. 29 are approximately constant; this leads to the
results that for continuous, differentiable signals each part of an isochrome always covers a
finite area. Mathematically it can be shown by direct computation that for a tone of con-
stant frequency and Gaussian-modulated envelope the regions of constant saturation
given by the condition of Eqn. 29a are ellipses, while the regions of constant hue defined
by Eqn. 29b are hyperboles. The isochromes are then formed by the intersection of
regions of constant saturation and constant hue. For a 7y-tone as given in Fig. 4a these
regions have approximately the same form; this can be clearly seen in the grey-display of
norm and phase of the CoSTID of this signal as shown in Fig. 5. The iso-norm regions in
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Fig. 5b are approximately ellipsoidal, the iso-phase regions in Fig. 5d hyperbolical. The
form of the (S, H) phonochrome can be understood from these data.

The two y-tones shifted in time presented in Fig. 6a, b show periodic spectral modula-
tion induced by the temporal repetition of the signal. In an analogous way the two
v-tones shifted in frequency given in Fig. 6¢, d show periodic temporal modulation
reflecting the interference or ‘beating’. In the case of the low-frequency tone followed by
a high-frequency tone given in Fig. 6e, f the combination of these two effects is visible
in the cross-terms or ‘ghost images’ as discussed in connection with Property VL In this
context it should be noted that visual inspection of the (R, ) phonochrome in Fig. 6e
with the eyes half closed results in the disappearance of the ‘ghost images’. This effect can
be understood from the integral properties of the (R, G) phonochrome. The same effect
can be observed in Fig. 7c. As is expected, this effect does not occur in the corresponding
(S, H) photochromes. The elements of a frog vocalisation shown in Fig. 4g closely resem-
bles a y-tone. Its phonochrome given in Fig. 7e, f does not differ significantly from that
of the y-tone shown in Fig. Se, f; only a slight deviation is present in the onset.

DISCUSSION

For the understanding of audition and phonation both temporal and spectral aspects
of sound have to be considered. Vocalisation apparatus and cochlea are constructed in
such a way that an interplay of spectral and temporal features may occur in the synthe-
sis and analysis of sound. An integrated spectro-temporal representation should be based
on second-order characteristics of the signal. There exist four types of these second-order
characteristics mutually related through Fourier transformation: product function T(z —
7, t) CoSTID E (w, t), ambiguity function A(r, v) and bispectrum I'(w, v). For the charac-
terisation of an ensemble of signals the average product function or autocorrelation
matrix can be used to generate uncorrelated orthogonal signal components: the Kar-
hunen-Loéve expansion which is closely related to principal components analysis [19].
This approach should be connected with the definition of phonons as elementary acoustic
signals proposed in the Theory section. Determination of the elementary constituents of
a vocalisation in terms of phonons may contribute to a basic understanding of form and
function of acoustic communication.

The bispectrum can be used in the same way; it is also useful for the characterisation
of nonlinear systems. Both ambiguity function and CoSTID are defined in a spectro-
temporal domain. The ambiguity function is expressed in terms of spectral difference v
and temporal difference 7. It appears an appropriate function when signals and their
reflections are involved; with a well chosen test signal the ambiguity function may show
distance and velocity of a sound-reflecting object. The CoSTID appears to be closely
related to auditory perception; it can be displayed as a colour image with simple relations
of visual features of the image and auditory features of the sound.

A somewhat different spectro-temporal signal representation can be derived from the
symmetrical form of the product function

Nt - 7/2,t +7/2) = £*(t — 7/2) - £(t +7/2) (8a)
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The Fourier transform of Eqn. 8a with respect to 7 is a function of frequency w and
time t: W(w, t). Since the product function given in Eqn. 8a is a Hermitian matrix its
Fourier transform W(w, t) is real valued. In quantum mechanics this function is known
as the Wigner distribution function. Defined with spatial coordinate ¥ and wave vector
% as arguments W(%, X) supplies a measure for the coherence of light [7]. For the spec-
tro-temporal representation of sound W has been proposed by de Bruijn [10]. Since W
is real valued it can be represented in grey scaled image. However, the W(w, t) function
cannot be factorised in a spectral and a temporal part; also, no simple relation has been
found between integrals or derivatives of W(w, ¢) and the signal parameters a, o, b and §
given in Table 1. For these reasons we tend to prefer the CoSTID.

Since the real-valued Wigner distribution function is mathematically isomorphic with
the complex valued CoSTID it is expected that some relation exists between the real and
imaginary parts of the CoSTID. That this is in fact the case has been formulated in Prop-
erty IV given in the Theory section. The imaginary part of the CoSTID is determined by
the real part. For this reason it may appear that for a single signal the imaginary part of
the CoSTID is superfluous. From this point of view the phonochrome might be reduced
to a grey image. However, the relations of the acoustical parameters with the local aspects
of the phonochrome as given in Table II are then not valid any more. Moreover it should
be realised that the existence of mathematical relations between real and imaginary parts
does not imply that one of the two should not be included in the phonochrome: mathe-
matical isomorphism does not necessarily imply perceptual isomorphism, redundancy
may support perception. Moreover, for the average CoSTID the imaginary part is not
determined by the real part.

The function of the auditory system in a natural environment is both the identifica-
tion and localisation of an acoustic source. For localisation two acoustic signals are need-
ed. The introduction of the cross-CoSTID for the two signals gives the possibility to
represent the sound as present at the two ears in the form of a phonochrome;in the
cross-CoSTID real and imaginary parts are independent. Since the CoSTID is sensitive for
phase relations of different signals it seems probable that the spatial position of a sound
source has its influence on the appearance of the phonochrome. For a given sound given
by N sampled values, the resulting phonochrome includes N2 chromatic points. As a con-
sequence NV different signals can be stored in one phonochrome, Making use of the cross-
CoSTID we suggest the possibility that NV binaural sounds of V samples each can be stored
in a N X N chromatic image,

The purpose of the phonochrome is the creation of a physical one-to-one map of
acoustical signal and optical image such that there exists a simple perceptual correspon-
dence of auditory features of the sound and visual features of the image. Two different
mappings have been introduced. The Red—Green phonochrome, of which the global fea-
tures, and the Saturation—Hue phonochrome, of which the local features correspond with
characteristics of the sound. In both representations the isochromes relate to acoustical
features. In this paper the mathematical formulation has been given together with some
simple examples. The coherent spectro-temporal representation of signals and sounds
based on the CoSTID has been applied in two different areas. For analysis of the electro-
cardiogram CoSTIDs have been determined for single ECGs [15] as well as the average
CoSTID for an ensemble of ECGs [23]. In a neurophysiological investigation of the
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auditory midbrain of the frog the CoSTID has been used for the determination of the
spectro-temporal receptive field of single neurons [16].
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