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The structural and biochemical integrity
of biological material can seriously be
damaged during the freezing procedure.
Previous studies have revealed that not
only the mechanical disruptive power of
ice crystals but also phenomena like osmotic
stress, precipitation of salts, segregation of
macromolecules, and small eytoplasmie or-
ganelles will inflict injury to the cell
(12-16, 23). Only cells which are frozen
very rapidly are well preserved (2, 13, 14,
16). Such quenching techniques are em-
ployed in freeze-etching. In an early freeze-
eteh paper it was shown by Moor (16) that
cells frozen at slower rates exhibited a cyto-
plasm with large smooth areas surrounded
by course material in freeze-fractured
replicas. It was suggested that the smooth
areas represent fracture faces of ice crystals
and that these are girdled by cytoplasmic
material. A considerable decrease in the size
of the ice crystals and a concomitant im-
provement of the viability upon thawing
could be achieved by addition of cryo-
protectants like glycerol or dimethyl
sulfoxyde (13, 14) to the material before
quenching, Good preservation of the cell’s
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ultrastructure can be obtained by the ad-
dition of eryoprotectants; by the applica-
tion of ultrarapid quenching techniques (1);
or by the freezing of cells under pressure
(18).

From an experimental and numerical
analysis of the freezing process Riehle (18)
concluded that biological systems can only
be vitrified when the cooling velocity is
higher than 10,000°C/s. It was assumed
that in the center of a specimen cooling
velocity will be lowest and ecrystal size
greatest. By applying a high pressure he
could obtain “vitrification” of 59 glycerol
solutions, which was concluded from freeze-
etch replicas showing small 50-100 A ““ice
crystals.” He found that the crystal size
decreased approximately with the square
of the cooling time.

The aim of the present report is a better
understanding of the relation between
crystal size, freezing velocity, and location
in the specimen. Therefore, we compared
numerical and experimental data on freez-
ing velocity with crystal size measurements
from freeze-etch replicas.

The theoretical analysis of the cooling
process was performed for simplicity on a
spherical model. Apart from a few exact
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solutions for infinite slabs all quantitative
analyses of the temperature changes in
systems in which phase changes occur have
to be attempted either by approximation
methods or by numerical methods. Nu-
merical procedures have been given for
circular eyvlinders (4, 11) and spheres
(9, 10, 20), however, in these cases special
fixed boundary or initial conditions are
required. We used the method of finite dif-
ferences. The advantages of this method are
that arbitrary choices of boundary and
initial conditions are allowed and that by
simple change of a few equations solutions
for infinite slabs and infinite circular c¢ylin-
ders can also be calculated.

MATERIALS AND METHODS
Temperature Measurements

Experimental results were obtained using
a thin-walled (100 um) silver cylinder with
a diameter of 2 mm and a height of 2 mm,
constructed by carefully piercing a little
silver rod. This eylinder was filled with a
59, glycerol solution. The change in temper-
ature due to immersion in Freon 22
(—145°C) was measured using a thermo-
couple with a diameter of 100 um, whereas
the leads have diameters of 50 um. The
thermocouple was positioned under micro-
scopic control in the cylinder by putting
the leads through opposite holes (100 um)
in the wall. By bending the leads outside
the cylinder wall the thermocouple was
more or less fixed. After the measurement
the cylinder content was thawed in order
to check that the positioning of the couple
was not disturbed during quenching in the
freon. In this way the change in tempera-
ture was measured at different locations in
the plane in the middle of the cylinder
perpendicular to the axis: in the center,
near the border and halfway between the
center and the border.

FElectron Microscopy Freeze-Fracturing

A conventional eylinder of 1-mm diame-
ter was filled with a 209, glycerol solution

and a small hollow, open cylinder was
placed on top of it; the complete specimen
holder was quenched in Freon 22, and then
transferred to a Denton freeze-etch ma-
chine. The specimen was fractured at
—100°C; etched for 2 min, and subse-
quently Pt/C shadowed. Only those repli-
cas displaying the complete fracture area
of the cylinder were used.

Other electronmicrographs were also
made from preparations spray-frozen ac-
cording to the Bachmann-method (1).

Electronmicrographs were made on a
Siemens Elmiskop IA.

Crystal Dimensions

Crystal dimensions were measured by
means of simple stereological procedures
(21). In the area in which the dimensions of
the crystals were to be measured two test
lines were drawn with known length X : one
in the radial direction and one in the direc-
tion perpendicular to the radial direction
(this line has the form of the arc of a circle).
The number of intersections P were
counted. So the average lengths of the
crystals as they display in that area are
given by A/P. Because we use two test
lines crystal measures are known then in
two perpendicular directions. The length
of the radial test line was chosen to be
short compared to the radius of the sample.

THEORY
Model

The samples used for freeze-etching have
the form of a circular cylinder with a
diameter which is almost equal to the
height. For reasons of simplifications in the
theoretical and numerical analysis a sphere
will be congidered (see discussion). It will
be assumed that the sphere has radius R,
and consists of a liquid. At time ¢{=0 the
temperature of the sphere is T1(7T: > Ty
with 7', as the freezing point). The sphere
is surrounded by a boundary layer with
thickness R, — R;, which has an initial
temperature of T.(T» < T ). The layer has
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Fig. 1. Freezing of the sphere. () denotes the
location of the boundary between the liquid and the
solid phase at time ¢. Outside Rs: cooling liquid
which remains at temperature T';. The shell between
Ry and R:: cooling liquid with initial temperature
Ts. The shell between () and R;: solid phase. The
sphere within z(¢) : liquid phase.

heat transfer properties of the cooling
liquid. The outside of the boundary layer
is assumed to stay at temperature T'; during
the cooling process. During the phase
transition heat of crystalization is liberated
at the boundary between the liquid and
solid phase (see Fig. 1). This boundary
will move from the surface of the sample to
its center.

Symbols and definitions

¢ = time.

r = radial distance measured from
the center of the sphere.

T(r,t) = temperature at time ¢ and po-

sition 7.
T; = freezing point.
2(t) = location of the boundary between

liquid and solid phase at time ¢,
measured from the center of the
sphere.
p = density.
specific heat.
K = heat conductivity 5 the quan-
tity of heat which is transmitted
as a result of unit temperature
difference per unit time through a
plate of unit thickness across an
area of unit surface.
diffusivity of heat 5 (K/pc).
L = crystallization heat.

i D
li

>
i

I, s,¢c = indices, referring to liquid, solid
phase, and cooling liquid, re-
spectively.

Vy = the freezing velocity of a volume

element dV defined as the rate of
change of temperature 7 with
time ¢ immediately after solidi-
fication.

Heat Conduction Equations

Cooling by means of diffusion is described
for spherical symmetry by the equation:

(0°T/ar*) + (2/r)(aT/ar)
= (1/k)(oT/0t). (1)

During the freezing process a transition
boundary separating the liquid and solid
phase moves inwards through the sphere.
The rate of change of unsolidified volume
depends on the heat balance at the bound-
ary according to

d{$ma?) aT,
Lp = — 4m2?K,—— /
dt or 7/
oT,
+ dmrK, / @)
ar K
Furthermore, it holds that
Ti(x) = Ti(z) = T, (3)

Boundary Conditions

The temperature at the center of the
sphere (r = 0) satisfies the condition:

(aT/ar) = 0. (4)

At the surface of the sphere (r = R,)
there is no heat source or sink, so,

aT, /, )

aT.
k2 ) -x,
ar ar
r=R)]

=R\

in which the index ¢ refers to the liquid
(T(Ry) > T,] or the solid phase [T(R))
< T/l
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Fra. 1. Freezing of the sphere. z(¢) denotes the
location of the boundary between the liquid and the
solid phase at time ¢ Outside R:: cooling liquid
which remains at temperature T's. The shell between
R: and R;: cooling liquid with initial temperature
T. The shell between z(f) and Ry: solid phase. The
sphere within z(z) : liquid phase.

heat transfer properties of the cooling
liquid. The outside of the boundary layer
is assumed to stay at temperature T's during
the cooling process. During the phase
transition heat of erystalization is liberated
at the boundary between the liquid and
solid phase (see Fig. 1). This boundary
will move from the surface of the sample to
its center.

Symbols and definitions

t = time.

r = radial distance measured from
the center of the sphere.

T(r,t) = temperature at time ¢ and po-

sition r.
T, = freezing point.
z(t) = location of the boundary between

liquid and solid phase at time ¢,
measured from the center of the
sphere.
) = density.
specific heat.
K = heat conductivity 5 the quan-
tity of heat which is transmitted
as a result of unit temperature
difference per unit time through a
plate of unit thickness across an
area, of unit surface.
diffusivity of heat 5 (K /pc).
L = crystallization heat.
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l, s, ¢ = indices, referring to liquid, solid
phase, and cooling liquid, re-
spectively.

V; = the freezing velocity of a volume

element dV defined as the rate of
change of temperature 7 with
time ¢ immediately after solidi-
fication.

Heat Conduction Equations

Cooling by means of diffusion is described
for spherical symmetry by the equation:

(0*T/ar®) + (2/7)(3T/dr)
= (1/k)(aT/at). (1)

During the freezing process a transition
boundary separating the liquid and solid
phase moves inwards through the sphere.
The rate of change of unsolidified volume
depends on the heat balance at the bound-
ary according to

d($ma®) oT
S it /
dt ar

r=x

Lo

e

aT,
+ 4mK, / )
ar K
Furthermore, it holds that
T(zx) = Ti(x) = T, 3)

Boundary Conditions

The temperature at the center of the
sphere (r = 0) satisfies the condition:

(aT/or) = 0. 4)

At the surface of the sphere (r = Ry)
there is no heat source or sink, so,

aT, aT,
K; / = Kq / ) (5)
ar ar

r=R1 r=R1

in which the index ¢ refers to the liquid
[T(Ry) > T,] or the solid phase [T(R1)
< T/
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TABLE 1

VaLugks FOR THE USED MATERIAL CONSTANTS

Quantity P ¢ K k
(kgm™) (Jkg™°C™) (Js7'm™1°C™)  (m2s7)
Water 1000 4200 0.588 14 X 107#
Ice 900 2100 2.52 13 X 1077
Freon 22 1500 1260 0.126 6 X 1078

Assuming intimate contact at the sur-
face of the sphere we have in addition to
Eq. (5),

T.(Ry) = To(Ry). (6)

From the model assumptions it follows
that the temperature at + = R, is given by :

T(Ry, t) = Tb. )

Initial Conditions

At the time that cooling starts (¢ = 0)
the temperatures are supposed to be given

by:

T = T, > T, for all values of r < Rl]

T =T, <T,forall values of r > R,
KT,+ KT, (®)

TRt R

for r = Ry

The numerical treatment of the cooling
process is evaluated in Appendix 1. The
accuracy of the obtained solution appears
to be about 59 ,which will be illustrated in
Appendix 2.

RESULTS
Material Constants

The calculations have been carried out for
a system consisting of water (cq. ice) and
Freon 22, as these correspond to the ex-
perimental conditions. The values for the
material constants are listed in Table 1.

Other values used in the ecalculations are
listed in Table 2.

Temperature Measurenents

The temperatures in a cylinder (di-
ameter 2 mm) were measured using a

thermocouple. This was done at three dif-
ferent locations: in the center (r = 0 mm),
half-way between the center and the
outersurface (r = 0.5 mm), and near the
border (r < 1.0 mm). The results of these
measurements are shown in Fig. 2a.

Theoretical Results

Different definitions for freezing velocity
¢q. cooling rate appear in the literature. In
this report we define freezing velocity as
the decrease in temperature per unit time
immediately after the moment that freezing
has started. At this temperature the growth
rate of crystals will in general be the fastest
(18).

Measurements during which only the
thermocouple was immersed in Freon 22
show that the cooling of the thermocouple
from 20 to —145°C takes place within
0.01 s. Because this cooling velocity is very
high compared to the measured cooling
velocities, it is not likely that the conduc-
tion of heat by the leads of the thermo-
couple will disturb the measurements.
However, the thermocouple has a diameter
of 100 um, so the temperature indicated by
the thermocouple belongs to an area of as
least 100 um. We have tried to simulate this
during the numerical treatment on the
cooling process of the sphere by averaging
the temperatures within an area of about
100 ym. The value of Ry was taken equal to
1.145 mm (see discussion) and R./R; was
taken equal to 62/60. The results are given
in the Figs. 2b and 2¢. In Fig. 2b the freez-
ing point was chosen —15°C and in Fig. 2¢
equal to —1°C. (The freezing point of a
59, glycerol solution is about —1°C).

TABLE 2

Varves Uskp ror SevERAL UsEp CONSTANTS

Quantity Value
T, +15°C
T, —145°C
L 4200 J kgt
o 0.3
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tained in a spray-frozen preparation ac-
cording to the Bachmann-method. In this
case the object size is about 10-20 um.

Within the replica (diameter 1 mm) we
also measured the dimension ¢ of the crys-
tals at different locations. Using the nu-
merical scheme the freezing velocities at
different locations within a sphere with
Ry = 05725 mm (see discussion) and
Ry/Ry = 62/60 were calculated on corre-
sponding sites. The results of these measure-
ments and calculations are shown in Fig. 4.
(now the temperatures are not averaged
over an area of 100 um).

The ratio 8 = R:/R: determines the
width of the boundary layer of cooling
liquid surrounding the sphere in which the
temperature does not remain at its initial
temperature. The parameter 8 may be
considered as a measure for convection in
the cooling liquid. 8 = = suggests no con-
vection, whereas 8 = 1 indicates that all
heat is removed by convection.

To illustrate that the width of the bound-
ary layer plays an important role, the calcu-
lations on the sphere (R, = 1.145 mm) were
repeated for a slightly different value of

—> ¢pm

Y TIIONA

Rl Ao

?‘%:\ 2% NS

Fia. 3. a: Crystals from the center. Bar = 1 pm.
b: Crystals from an area halfway between the center
and the border. Bar = | um. ¢: Crystals near the
border. Bar = 1 um. d: Crystals in a spray-frozen
preparation. Bar = 500 A.

R./R,, namely 63/60. Figure 5 shows the
temperatures within the sphere at the same
locations as in Figs. 2b and 2¢. In this case
T, = — 15°C. The fact that in the case
of Freon 22 the ratio appears to be 62/60

———> V(%)

200

T
200
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Fia. 4. Crystal sizes and freezing velocities as a function of the location within the replica with
a diameter of 1 mm. The open dots represent the length of the crystals in the radial direction,
whereas the black dots represent the length in the direction perpendicular to the radial direction.
The left vetrtical axis indicates the value of these dimensions. The crosslets represent the freezing
velocities calculated from the results of the numerical scheme applied to the freezing sphere
(diameter: 1.145 mm) on corresponding sites. The right vertical axis indicates the velocities.
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Fra. 5. Idem as in Fig. 2b only V. = 63 and
N1 = 60.

implies a reasonable convection within the
cooling liquid.

Influence of Freezing Point upon Freezing
Velocity

Calculating freezing velocities near the
border and in the center of the sphere (now
without averaging over an area of 100 um)
gives an impression of the influence of T';
upon the freezing velocity V; within the
sample (see Table 3).

DISCUSSION
Difference in Geometry

Although in the actual experiments the
sample is a finite cylinder rather than a
sphere, the sphere has been taken as a
model because of the difficulties associated
with the mathematical treatment of heat

TABLE 3

FrenziNeg ViLociTiES NEAR THE SURFACE AND IN
THE CENTER OF THE SPHERE FOR Two VALUES
oF Ty, (NoTE : DIAMETER SAMPLE = 2 mm)

Ty = — 15°C Ty = —1°C
“ 'V, in center 2000°C g1 2200°C 1
Vs near surface 200°C st

1000°C s

VAN VENROOI] ET AL.

diffusion in a finite cylinder. The dimensions
of the cylinder (height = diameter) more
or less justify this approximation,

In order to obtain an optimal similarity
the radius of the sphere was made equal to
1.145 times the radius of the eylinder. In
that case the volume of the sphere is equal
to the volume of the cylinder. Williamson
and Adams (22) calculated the time de-
pendence of the central temperature during
cooling of a sphere and of a cylinder of
length equal to diameter from 7'y to 0°C (no
freezing occurs and the border stays at 0°C).
Recaleulation of these temperatures for a
sphere and cylinder with equal volumes
shows that the central temperature of the
sphere and the cylinder are much the same
(see Fig. 6).

The Density

In the model calculations the volume
change upon solidification is neglected.
Such changes cause an increase in pressure
within the sample, which in turn leads to a
lowering of the freezing point. Experiments
suggest that the pressure is allowed to
escape through cracks in the ice crust,
possibly giving rise to long ice crystals in
the radial direction like shown in Fig. 7.

Experiments by Riehle (18) suggest that
the pressure necessary to show an appre-
ciable effect on the crystal sizes is very
high (100-1000 atm). It is hardly conceiv-
able that pressures of this magnitude are
established inside the sample. Furthermore,

00 T

0o 01 Kt 02 03
—);r

Fia. 6. Central temperature in (I) cylinder with
diameter equal to height and (II) sphere. The radius
of the cylinder is ¢ and that of the sphere 1.145 a.



FREEZING VELOCITY AND CRYSTAL SIZE B 53

Fig. 7. Electronmicrograph from a freeze-etch replica showing the center area of a frozen sample
(diameter cylinder 1 mm). Note the radial pressure escape routes. Bar = 5 um.

in studies concerning heat transfer in one
dimension Heitz and Westwater (8) show
that the effect of unequal phase densities
upon the interfacial velocity is small (in
the order of 5-109).

Freezing Temperature Ty

Due to the lowering of the freezing point
and segregation phenomena in the freezing
region no exact value for the freezing point
is known. From the theoretical analysis,
however, we know that there is a sharp
transition in the time-dependent course of
the temperature at the freezing point due
to the changes in heat transfer properties at
that point (Fig. 2b). This change favors
the diffusion of heat from the boundary
between solid and liquid phase to the
cooling liquid, and thus the cooling rate
increases at that point. In the experi-
mental curve for the central tempera-
ture (Fig. 2a) this occurs at about —15°C.
On the other hand the freezing point of a
59, glycerol solution is about —1°C. The
fact that in Fig. 2a the central freezing

point is —15°C may be due to supercooling
or to an accumulation of glycerol in front
of the moving phase transition. From Table
3 it follows that in our case using the initial
conditions mentioned the value of T,
strongly influences the freezing velocities
near the border of the sample and only
slightly in the center (this effect is obscured
in the Figs. 2b and 2¢ by averaging the
temperatures over an area of about 100
um). Because of the fact that near the
surface the freezing point will indeed be
—1°C the freezing velocities calculated
using T; = — 1°C will be more realistic
than those calculated under the assumption
that 7y = — 15°C. For this reason the
freezing velocities in Fig. 4 are calculated
under the condition 7, = — 5°C, corre-
sponding to the freezing point of a 209
glycerol solution.

Dyfferences tn Dimensions and Solutions

Since the temperature measurements
were carried out using a thermocouple
with a diameter of 100 um the diameter of
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the cylinder could not be taken too small
in order to measure local temperatures. A
diameter of 2 mm seemed a reasonable
value. The eylinder was filled with a 59,
glycerol solution. Thus, it would be logical
to use for freeze-etching a eylinder with a
diameter of 2 mm with a 59 glycerol solu-
tion to get a replica displaying the complete
fracture area. However, such a replica
could not be kept undamaged during the
cleaning procedure. It was necessary to
reduce the diameter to 1 mm and to in-
crease the glycerol concentration to 209, in
order to obtain a stable replica.

Wall Thickness

The wall thickness of the silver cylinders
used 1s about 100 uwm, but silver has a
thermal conductivity which exceeds those
of water and Freon 22 by about a factor
1000. This means that the effective wall
thickness is negligible compared to the
sample diameter.

Freezing Velocity and Crystal Size

From Fig. 4 a difference can be observed
between the relation of freezing velocity
and crystal size near the border as compared
to that at the center. This may be due to
convection phenomena. At the start of the
cooling process the sample will move with
a high speed through the cooling liquid. Also
in this part of the cooling process, the
temaperature differences are largest. At this
time the boundary layer around the sample
will be very thin, resulting in high cooling
rates near the border. In the theoretical
analysis a boundary layer with constant
thickness is considered.

From Fig. 4 it became evident that the
dimensions of the crystals in the radial
direction are larger than those in the direc-
tion perpendicular to this direction. This
may be due to the direction along which
the pressure is released (see also Fig. 7).

We want to emphasize that the measured
dimensions in Fig. 4 are the dimensions of
the crystals as they appear in the replica.

The average crystal size in the sample will
be higher (6).

Implications for Freezing Specimens

According to Moor (17) specimens can
only be solidified in the native state without
changes in structure or chemical compo-
sitions if the temperature interval from O to
—100°C is passed in less than 0.01 s. This
is equivalent to a freezing velocity of about
10,000°C/s.

From the results in Fig. 4 it 1s found that
the lowest freezing velocity in a sample with
a diameter of 1 mm is about 800°C/s. Since
a reduction of the object dimensions by a
factor v will roughly result in an increase
of the freezing velocities by a factor 2, it
is to be expected that samples with diame-
ters less than 0.3 mm can be frozen in such
a manner that the freezing velocity every-
where in the sample is higher than
10,000°C/s. In samples with diameters
bhetween 0.3 and 1.0 mm there will be an
area around the center in which the freezing
velocities are higher than 10,000°C/s.
These findings agree roughly with those of
Riehle (18) who found that specimen with
dimensions less than 100 um can be solidi-
fied in the native state.

CONCLUSIONS

There exists a fair agreement between the
temperature course in a cylinder measured
with a thermocouple and the temperature
course as calculated on corresponding sites
in a sphere.

The freezing velocity depends on the
location in the sample. From experimental
and theoretical results it follows that the
freezing velocity is higher at the border and
in the center of the sample than halfway
between the center and the outer surface
of the sample.

Flectronmicrographs show that the crys-
tals in the center and near the border are
smaller than halfway between the center
and the outer surface of the replica.
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The reduction in the dimensions of the
sample will increase the freezing velocities
at corresponding sites proportional to the
square of the reduction. From this and from
theoretical results it is to be expected that
samples with a diameter less than 0.3 mm
can be frozen without changes in structure
and chemical properties. In samples with
diameters between 0.3 and 1.0 mm, there
will be an area around the center in which
the substance is frozen without these
changes.

SUMMARY

Freezing velocity was studied experi-
mentally as well as theoretically in relation
to sample size and location within the
sample. Crystal sizes in a freeze-etch replica
displaying the complete fracture area of a
sample were compared to the experimental
and theoretical results concerning freezing
velocities at different locations in such a
sample. The freezing velocity was found to
be higher in the center and near the surface
than halfway between the center and the
outer surface of the sample. Also, the
crystals in the center and near the border
appear to be small as compared to the crys-
tals in the other fracture domain.

APPENDIX 1
Numerical Methods

Symbols and Defintions

N, = number of shells in the sphere
together with the boundary layer.

N = number of shells in the sphere.

Ar = thickness of one shell.

n = shell number

T(n) = temperature at time ¢ at location
r = nAr.

T+(n) = temperature at time ¢4 Af at
location » = nAr.

x(t) = position of the boundary between
liquid and solid phase at time ¢.

x+(t) = position of the boundary at time
L+ Al

y = shell number in which the bound-

ary is moving (y = 1,2, --- V).

CENTER
0‘ 12345 Ry f:l N2
< R2 »

Fra. 8 Division of the sphere together with the
boundary layer into shells of equal width. The shells
are numbered as indicated. The sphere consists of
V1 shells and the boundary layer of Ny shells.

p = position of the boundary with
respect to y at time ¢.

pr = position of the boundary with
respect to y at time ¢ + At
a = [kt/(Ar)?].

Numerical Scheme

The sphere together with the boundary
layer are divided into N, shells of equal
thickness A». The shells are numbered as
indicated in Fig. 8.

Using the methods of finite differences
the derivatives of the temperature 7T at
position n(r = nAr) are given by

aT /— Tnh+1) —Th—=1)

ar 2Ar

3

+ OL(4Ar)*],
@1 T+ 1) = 2Tw) + T = 1)
a2 / B (Ar)?

n

+ OL(4ar)?],

aT / T+(n) — T(n)
at B

———— + O[(an*].
Al

n

Using these expressions and neglecting
second and higher differences, the heat
equation Fq. (1) takes the form:

TH(n) = T(n) + [kat/(Ar)?]
X AL+ DT + 1) — 20T (n)
+ (n— DT — 1]/ n}(n=0). (9
For n = 01t holds that (3)
T+(0) = T(0) + [6kAt/(Ar)?]

X AT = T0)}. (10)
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Y+2 Y+ Y X vt Y-2 Y-3
PAr

P*ar

! Al

SOLID

Liguo

Fig. 9. Position of the moving boundary in shell
number y.

Now if the method has to be useful,
errors must not grow. The required restric-
tion on A¢ (the stability condition) is given
by (3):

= [kAt/(Ar)*] < 3 (11)

To obtain a time step admissable in all
regions the maximum value for k& of the
three values k,, k. and k; must be taken.

Note. 1. Equations (9) and (10) are only
valid if the same value for £ holds for the
position n + 1, n and n — 1.

To calculate the position x(t) of the mov-
ing boundary a similar approach as given
by Crank (1957) for calculations on plane
systems is followed. Let the boundary at
time ¢ be somewhere in the layer between
the positions y and y — 1, such that its
position z is given by z = (y + 1 — p)Ar,
where p is fractional and 1 < p < 2. At
time ¢ -+ At¢ the position is given by:
xt = (y + 1 — pt)Ar. See also Fig. 9.

Taking into account the spherical struc-
ture of the model, Eq. (2) can be approxi-
mated by:

ir 1—p)3— 1—pt)s
Lp~3—(Ar)3- (y+1—-p»—(y+ p)}

At

T,
= Kalg+1=pPanary =/
)

aT, /
ar '

=X

— K. (y+1—p)4r(Ar)?

Or, after rearranging the terms:

Fmy bl (y+1— ){1 sal
pT=y — p -
LMJ+1—WAT
T,
(s

S )

The temperatures 7+ at the positions
y +1 and y — 2 can be computed using
Eq. (9). For the positions y and y — 1 we
use 3-points Lagrange interpolation on the
temperatures T+ at the positions zt, y + 1,
y + 2, and x*, y — 2, y — 3, respectively.

The temperature gradients are computed
too by means of 3-points Lagrange inter-
polation: for (87T,/0r)/,—. these points are
¥y + 2,y + 1, and zt, and for (87'1/37r)/r—=
they are ¥, y — 2, and y — 3.

If p crosses the value 2, which means that
the boundary between liquid and solid
phase moves from one shell into another,
then both y and p are reduced by 1 and the
calculations are continued with the same
equations.

At the boundary between the sphere and
the cooling liquid a linear approximation
for the gradients (37 /dr) is used in Eq. (5)
resulting in:

TH(Ny) = {[K TN — 1)
+ KTHN:+ DI/(Kg + Ko} (13)
From Eq. (6) it follows
T+(1\/YQ) = T(Zv_z) (14)

Note 2. The methods for calculating the
position p* can only be used for values
2 <y £ Ny — 2. In the outer and inner
shells of the sphere other approximations
must be made.

The exceptions to the above described
scheme (Notes 1 and 2) are now treated
separately :

Yy = ;\“71

Freezing starts as soon as T(Ny) < T;.
The first value of p is computed applying
the nonequidistant analogon of Eq. (13) to
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the known temperatures T (N, + 1), T(Ny)
and T,. Hence,

KJ[T; — T(NY)]
KJ[T(NyY — T(N:+1)T

Pstart = 1 + (15)

This results in a first position of the moving
boundary :

Tstart, = A\rl + ]- — Pstare-

This means that the latent heat, liberated
by freezing of the thin shell between outer
surface of the sphere and position ,pu 18
neglected.

Now, the temperature 7*(Ni) is com-
puted by applying the nonequidistant ana-
logon of Eq. (13) to the known tempera-
tures T+(Ny + 1) and T, using the known
value of p.

The value of pt is calculated by means of
Eq. (12) in which (87./9r)/ - 1s approxi-
mated by
a7, T, — T+(Ny)

/R m
or (p — DAr

r=2x

(16)

i.e., linear approximation.
Yy = A\f‘v1 — Z

In this case, the temperatures T+(NV,)
and TH(N; — 1) are both calculated by
linear interpolation on the known tempera-
tures T+(N; + 1) and T,

In order to calculate pt the value of
(8T1/0r)/r—s in Eq. (12) is approximated
by linear interpolation on the values
T+(N1+ 1) and T,.

y=2

Because of the boundary condition
(0T/07)/+r=0 = 0 a temperature 7T (—1)
= T(1) can be defined, T*(1) can be com-
puted then by using 3-points interpolation
on the temperatures 7'y, T+(0) and T+(—1)
= T*(1). In this way it is found that

) ={[T,+ (@ —2)(p — HTT0)]/
(=32 A7
y =1

Tor the computation of 7+ (0) the expres-
sion T(1) — T'(0) in Eq. (10) must be
replaced by [T, - T0)]/(2 — p)2 In
order to calculate pt the value of
(0T1/97r)/r—, is calculated using the ex-

pression:
6T1 /
ar

r=x

T, — T+(0)

—_— (18)
2 — p)ar

As soon as pt crosses the value 2 the sphere

is completely frozen. After that the cooling

process of the sphere will be described again
by the Eqgs. (9), (10), (13), and (14).

APPENDIX 2
The Accuracy of the Numerical Solutions
Stability Parameler o

As already noted, stability of the numeri-
cal methods requires « < 0.5 (Kq. 11).
During the calculations a has been taken
equal to 0.3. In order to check that this
choice is correct, some analyses were done
for both @ = 0.3 and @ = 0.1. The results
show a complete similarity.

Convergence of the Numerical Solutions

A correct numerical approach will pro-
duce a solution that converges to the exact

315+
0310+
¥
Q305
03004~
= SOLUTION
L T T LI T 1
0/0 20/10 0/20 60730
—>Ny /N

F1g. 10a. The time needed to reach the tempera-
ture 0.35 T, at the location » = 0.2b as a function
of the number of shells. The dotted line indicates
this time calculated using the analytical solution.
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BT Ty

—— KL

Fic. 10b. The analytical solution (line) together
with the numerical solution (dots) with parameters
Ny =60 and N, = 30 on different locations: (1)
r=02b; (2) r =0.6b; (3) r = 1.0b; (4) »r = 1.4b;
() r = 1.8b.

solution of the corresponding differential
equation when the intervals Ar (and thus
At) become smaller. To illustrate the con-
vergence of the solutions using the de-
scribed numerical scheme, the temperature
course was calculated in two cases for which
the exact solution was known:

(a) A sphere radius a in which the initial
temperature s Ty for 0 < r < b and zero
for b < r < a, The temperature at » = a
remains zero at all times. No freezing oc-
curs. Under these conditions the tempera-
ture 7'(r, t) is given by (3),

ZT() 0 [ a
T(r, t) = —

. /nwd
> —sin{ —
a1 lni’w‘l a

b nwb nwr
— cos(——)) sin<f~>
nw a a

[ — k2l
X Oxpl Th} (19)

a>

The analytical solution has been calcu-
lated for b = 3a by a numerical approxi-
mation of Eq. (19). Numerical solutions
have been obtained by using the Eq. (9),
(10), (13), and (14) for different values of
N2/ Ny, réspectively, namely 10/5, 20/10,

30/15, 40/20, and 60/30. For one arbitrary
chosen position r = 0.2b6 the time needed
to reach the temperature 0.35 T, at this
location was calculated for these different
values of N, and V1. Figure 10a shows the
results of these computations.

The accuracy of the computed time using
the analytical solution is about 0.59,.
Figure 10a shows that with increasing num-
ber of shells the time in which the temper-
ature has reached 0.35 T, decreases. This
effect must be due to the use of Eq. (13).
If Aris replaced by Ar/K ., c.q. Ar/K, it was
observed from results of numerical analysis
that the temperature profile at r = b is
concave. However, using Eq. (13) the
temperature at r = b is calculated by a
linear interpolation which produces a too
high temperature at r = b. This implies
an a priori too slow numerical solution.
Obviously, the error introduced in this way
decreases rapidly with increasing number
of shells.

The analytical solution together with the
numerical solution with N. = 60 and
N1 = 30 are shown in Fig. 10b. It was ob-
served from numerical analysis that the
same behavior was followed in the case that
a/b = 10/8. In that case only the errors
were much smaller.

(b) Solidification in one dimension. Con-
sider a liquid, bounded on one side by an
infinite plane surface and not bounded in
other directions. At time ¢ = 0 the liquid
has a constant initial temperature
T1(T1 > T,), while the surface tempera-
ture remains constant 7, at all times
(T, < T,). Frank and Von Mises (7) calcu-
lated the temperature as a function of time
on different locations for T; = 4 4°C,
T: = —4°C, and T, = 0°C. The liquid
has heat transfer properties of water.
The solid those of ice. In our numerical
scheme the Kgs. (9), (10), and (12) are
adjusted to the one dimensional problem.
However, one has to keep in mind that the
liquid is bounded on two sides and the thick-
ness of the slab is 2a. The difference between
these two cases is negligible as long as the
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ANALYTICAL
SOLUTION

——>+1(8)

00 T T T T T !
0 20 40 60
—>N

Fig. 11a. The time needed for the moving bound-
ary to penetrate at a depth of 0.2 mm as a function
of the number of shells. The dotted line indicates
this time calculated using the analytical solution.

temperature in the center of the slab re-
mains near 7’5, Again, calculations were
carried out for different values of N, = ¥y,
namely 5, 10, 15, 20, 25, and 50. The value
of @ was taken 1 mm. The time needed for
the moving boundary to penetrate at a
depth of 0.2 mm was calculated for these
different values of V;. Figure 11a shows the
results of these computations. The accuracy
of the computed time using the solution
given by Frank and Von Mises (7) is about
0.59,. Figure 11a shows that with an in-
creasing number of shells, the velocity of the
moving boundary decreases.

This effect must be due to Eq. (15) in
which the latent heat liberated by freezing
of the thin shell between the outer surface
and position Zuat 18 neglected. However,
this error decreases rapidly with increasing
number of shells. The analytical solution
together with the numerical solution for
N: = N; = 50 are shown in Fig. 11b.

Nongrowth of Computational Errors

The problem of the solidification in one
dimension can also be used to illustrate that
the computational errors are depressed in
our numerical scheme. During the iteration
process an artificial error was introduced on
time ¢ = 0.42 s by changing the value of

-4 T T T T T
000 025 Q50 Q75 100 125
— 4(S)

F1ia. 11b. The analytical solution (line) together
with the numerical solution (dots) with the parame-
ters No = N, = 50 at different locations inside
the slab with thickness 2 mm: (1) r = 0.0 mm (2)
r =04 mm; (3) r = 0.6 mm; (4) r =0.7 mm;
(5) r =08 mm; (6) r =088 mm; (7) r = 0.92
mm; (8) r = 0.96 mm.

p from 1.11 to 1.99 in shell number 43
(N1 = N, = 50). The effect of this arti-

“

—>T{°C)

~4 T T T T T
Qo0 425 Q50 a7s 100 125

—> (8}

T'1a. 12, Fffect of the artificially introduced error
at {ime [ = 0.43 s by changing the value of p from
1.11 to 1.99 in shell No. 43. (N1 = N2 = 50). The
time dependent courses at different locations are
shown: (1) » =06 mm; (2) r =08 mm; (3)
r = 0.88 mm; (4) » = 0.92 mm; (5) » = 0.96 mm.
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Fig. 13. The time needed for the moving boundary
to reach the center of the sphere (diameter 2 mm)
as a function of the number of the shells.

ficially introduced error is illustrated in
Fig. 12.

Obviously, the error does not grow during
further iteration but even the numerical
solution shows the tendency to move
toward the analytical solution.

Analysis concerning convergence was
also done for the numerical scheme used
for the calculations on the freezing sphere.
A specific situation (N./Ni = 1.2) was
analyzed to some extent. For different
values of N3/ Ny, namely 10/8, 20/16, 40/32,
and 80/64, the time needed for the phase
transition to reach the center of the sphere
were calculated for these values. The results
are shown in Fig. 13.

Comparing Figs. 11a, 11b, and 13 the
same course is observed. If Af; is the time
difference produced by increasing the num-
ber of shells from (N, N1} until (2N, 2¥y)
and At, is the time difference produced by
increasing the number of shells from
(2N3, 2Ny) until (4N,, 4N,) the figures show
that :

Aby/Aly ~ L.

This implies that A¢; is an estimate of the
difference between the numerical solution
with parameters 2N, and 2N and the solu-
tion which would be obtained in the case
that Ar — 0.

The fact that the curve in Fig. 13 is the
same as those of the Figs. 11a and 11b
is not surprising because the numerical

scheme used for the calculations on the
freezing sphere is in fact a combination of
the scheme used for the calculations on
the cooling sphere without freezing and the
scheme used for the solidification of the
slab. Because of the depression of compu-
tational errors, the combination of the
two schemes will not give rise to a growing
error.

Summarizing these findings it may be
concluded that the computed solution for
the freezing sphere with parameters
N, =80 and N, = 64 does not differ by
more than 59 from the solution obtained
for Ar — 0 (Fig. 13). The same order of
magnitude may be expected for the error
in the solution for the parameters N, = 62
and N{ = 60.
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